Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,72 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
def
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from model import GPTConfig, GPT
|
3 |
+
import torch
|
4 |
|
5 |
+
def remove_caseifer(text):
|
6 |
+
new_text = ""
|
7 |
+
i = 0
|
8 |
+
while i < len(text):
|
9 |
+
if text[i] == "^":
|
10 |
+
if i+1 < len(text):
|
11 |
+
new_text += text[i+1].upper()
|
12 |
+
i += 1
|
13 |
+
else:
|
14 |
+
pass # skip this index
|
15 |
+
else:
|
16 |
+
new_text += text[i]
|
17 |
+
i += 1
|
18 |
+
return new_text
|
19 |
+
|
20 |
+
def add_caseifer(text):
|
21 |
+
new_text = ""
|
22 |
+
for char in text:
|
23 |
+
if char.isupper():
|
24 |
+
new_text += "^" + char.lower()
|
25 |
+
else:
|
26 |
+
new_text += char
|
27 |
+
return new_text
|
28 |
|
29 |
+
max_new_tokens = 175 # number of tokens generated in each sample
|
30 |
+
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
|
31 |
+
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
|
32 |
+
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
33 |
+
|
34 |
+
|
35 |
+
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
36 |
+
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
37 |
+
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
38 |
+
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
39 |
+
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
40 |
+
|
41 |
+
# init from a model saved in a specific directory
|
42 |
+
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
43 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
44 |
+
gptconf = GPTConfig(**checkpoint['model_args'])
|
45 |
+
model = GPT(gptconf)
|
46 |
+
state_dict = checkpoint['model']
|
47 |
+
unwanted_prefix = '_orig_mod.'
|
48 |
+
for k,v in list(state_dict.items()):
|
49 |
+
if k.startswith(unwanted_prefix):
|
50 |
+
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
51 |
+
model.load_state_dict(state_dict)
|
52 |
+
|
53 |
+
model.eval()
|
54 |
+
model.to(device)
|
55 |
+
|
56 |
+
meta_path = os.path.join(out_dir, 'meta.pkl')
|
57 |
+
load_meta = os.path.exists(meta_path)
|
58 |
+
|
59 |
+
with open(meta_path, 'rb') as f:
|
60 |
+
meta = pickle.load(f)
|
61 |
+
# TODO want to make this more general to arbitrary encoder/decoder schemes
|
62 |
+
stoi, itos = meta['stoi'], meta['itos']
|
63 |
+
encode = lambda s: [stoi[c] for c in s]
|
64 |
+
decode = lambda l: ''.join([itos[i] for i in l])
|
65 |
+
|
66 |
+
def gen(input)
|
67 |
+
start_ids = encode(add_caseifer(input))
|
68 |
+
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
|
69 |
+
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
|
70 |
+
return remove_caseifer(decode(y[0].tolist()))
|
71 |
+
iface = gr.Interface(fn=gen, inputs="text", outputs="text")
|
72 |
iface.launch()
|