RamblingGPT / app.py
Corianas's picture
Update app.py
6c5bdb4
raw
history blame
4.17 kB
import gradio as gr
from model import GPTConfig, GPT
import torch
from contextlib import nullcontext
import os
import pickle
def remove_caseifer(text):
new_text = ""
i = 0
while i < len(text):
if text[i] == "^":
if i+1 < len(text):
new_text += text[i+1].upper()
i += 1
else:
pass # skip this index
else:
new_text += text[i]
i += 1
return new_text
def add_caseifer(text):
new_text = ""
for char in text:
if char.isupper():
new_text += "^" + char.lower()
else:
new_text += char
return new_text
max_new_tokens = 88 # number of tokens generated in each sample
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
top_k = None # retain only the top_k most likely tokens, clamp others to have 0 probability
device = 'cpu' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
dtype = 'bfloat16' # 'float32' or 'bfloat16' or 'float16'
out_dir = 'Eml' # ignored if init_from is not 'resume'
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
# init from a model saved in a specific directory
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
checkpoint = torch.load(ckpt_path, map_location=device)
gptconf = GPTConfig(**checkpoint['model_args'])
model = GPT(gptconf)
state_dict = checkpoint['model']
unwanted_prefix = '_orig_mod.'
for k,v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
model.load_state_dict(state_dict)
model.eval()
model.to(device)
meta_path = os.path.join(out_dir, 'meta.pkl')
load_meta = os.path.exists(meta_path)
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
# TODO want to make this more general to arbitrary encoder/decoder schemes
stoi, itos = meta['stoi'], meta['itos']
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
def load_model(model_name):
ckpt_path = os.path.join(out_dir, model_name)
checkpoint = torch.load(ckpt_path, map_location=device)
gptconf = GPTConfig(**checkpoint['model_args'])
model = GPT(gptconf)
state_dict = checkpoint['model']
unwanted_prefix = '_orig_mod.'
for k,v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
model.load_state_dict(state_dict)
model.eval()
model.to(device)
return model
def get_model_list():
models_dir = out_dir
model_files = os.listdir(models_dir)
model_files = [f for f in model_files if f.endswith('.pt')]
return model_files
def gen(input):
generated_text = ''
start_ids = encode(add_caseifer(input))
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
for idx_next in model.generate_streaming(x, max_new_tokens, temperature=temperature, top_k=top_k):
# convert the index to a character and print it to the screen
char = decode([idx_next])
generated_text += char
# check for newline character
if char == '\n':
out = remove_caseifer(generated_text)
return input + out
md = """This is some code:
hello
```py
def fn(x, y, z):
print(x, y, z)
"""
chat_history = []
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
def respond(message, chat_history):
chat_history.append((message, md))
bot_message = gen(str(chat_history))
time.sleep(1)
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch()