Corey Morris
commited on
Commit
·
74822dd
1
Parent(s):
30fa96a
removed most commented out code from details processor
Browse files- details_data_processor.py +0 -149
details_data_processor.py
CHANGED
@@ -51,15 +51,6 @@ class DetailsDataProcessor:
|
|
51 |
constructed_url = base_url + organization + '/' + model + '/' + other_chunk + filename
|
52 |
return constructed_url
|
53 |
|
54 |
-
# @staticmethod
|
55 |
-
# def _find_files(directory, pattern):
|
56 |
-
# for root, dirs, files in os.walk(directory):
|
57 |
-
# for basename in files:
|
58 |
-
# if fnmatch.fnmatch(basename, pattern):
|
59 |
-
# filename = os.path.join(root, basename)
|
60 |
-
# yield filename
|
61 |
-
|
62 |
-
|
63 |
|
64 |
def _find_files(self, directory, pattern):
|
65 |
matching_files = [] # List to hold matching filenames
|
@@ -81,143 +72,3 @@ class DetailsDataProcessor:
|
|
81 |
df = self.single_file_pipeline(url, file_path)
|
82 |
dataframes.append(df)
|
83 |
return dataframes
|
84 |
-
# @staticmethod
|
85 |
-
# def _find_files(directory, pattern):
|
86 |
-
# for root, dirs, files in os.walk(directory):
|
87 |
-
# for basename in files:
|
88 |
-
# if fnmatch.fnmatch(basename, pattern):
|
89 |
-
# filename = os.path.join(root, basename)
|
90 |
-
# yield filename
|
91 |
-
|
92 |
-
# def _read_and_transform_data(self, filename):
|
93 |
-
# with open(filename) as f:
|
94 |
-
# data = json.load(f)
|
95 |
-
# df = pd.DataFrame(data['results']).T
|
96 |
-
# return df
|
97 |
-
|
98 |
-
# def _cleanup_dataframe(self, df, model_name):
|
99 |
-
# df = df.rename(columns={'acc': model_name})
|
100 |
-
# df.index = (df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True)
|
101 |
-
# .str.replace('harness\|', '', regex=True)
|
102 |
-
# .str.replace('\|5', '', regex=True))
|
103 |
-
# return df[[model_name]]
|
104 |
-
|
105 |
-
# def _extract_mc1(self, df, model_name):
|
106 |
-
# df = df.rename(columns={'mc1': model_name})
|
107 |
-
# # rename row harness|truthfulqa:mc|0 to truthfulqa:mc1
|
108 |
-
# df.index = (df.index.str.replace('mc\|0', 'mc1', regex=True))
|
109 |
-
# # just return the harness|truthfulqa:mc1 row
|
110 |
-
# df = df.loc[['harness|truthfulqa:mc1']]
|
111 |
-
# return df[[model_name]]
|
112 |
-
|
113 |
-
# def _extract_mc2(self, df, model_name):
|
114 |
-
# # rename row harness|truthfulqa:mc|0 to truthfulqa:mc2
|
115 |
-
# df = df.rename(columns={'mc2': model_name})
|
116 |
-
# df.index = (df.index.str.replace('mc\|0', 'mc2', regex=True))
|
117 |
-
# df = df.loc[['harness|truthfulqa:mc2']]
|
118 |
-
# return df[[model_name]]
|
119 |
-
|
120 |
-
# # remove extreme outliers from column harness|truthfulqa:mc1
|
121 |
-
# def _remove_mc1_outliers(self, df):
|
122 |
-
# mc1 = df['harness|truthfulqa:mc1']
|
123 |
-
# # Identify the outliers
|
124 |
-
# # outliers_condition = mc1 > mc1.quantile(.95)
|
125 |
-
# outliers_condition = mc1 == 1.0
|
126 |
-
# # Replace the outliers with NaN
|
127 |
-
# df.loc[outliers_condition, 'harness|truthfulqa:mc1'] = np.nan
|
128 |
-
# return df
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
# @staticmethod
|
133 |
-
# def _extract_parameters(model_name):
|
134 |
-
# """
|
135 |
-
# Function to extract parameters from model name.
|
136 |
-
# It handles names with 'b/B' for billions and 'm/M' for millions.
|
137 |
-
# """
|
138 |
-
# # pattern to match a number followed by 'b' (representing billions) or 'm' (representing millions)
|
139 |
-
# pattern = re.compile(r'(\d+\.?\d*)([bBmM])')
|
140 |
-
|
141 |
-
# match = pattern.search(model_name)
|
142 |
-
|
143 |
-
# if match:
|
144 |
-
# num, magnitude = match.groups()
|
145 |
-
# num = float(num)
|
146 |
-
|
147 |
-
# # convert millions to billions
|
148 |
-
# if magnitude.lower() == 'm':
|
149 |
-
# num /= 1000
|
150 |
-
|
151 |
-
# return num
|
152 |
-
|
153 |
-
# # return NaN if no match
|
154 |
-
# return np.nan
|
155 |
-
|
156 |
-
|
157 |
-
# def process_data(self):
|
158 |
-
|
159 |
-
# dataframes = []
|
160 |
-
# organization_names = []
|
161 |
-
# for filename in self._find_files(self.directory, self.pattern):
|
162 |
-
# raw_data = self._read_and_transform_data(filename)
|
163 |
-
# split_path = filename.split('/')
|
164 |
-
# model_name = split_path[2]
|
165 |
-
# organization_name = split_path[1]
|
166 |
-
# cleaned_data = self._cleanup_dataframe(raw_data, model_name)
|
167 |
-
# mc1 = self._extract_mc1(raw_data, model_name)
|
168 |
-
# mc2 = self._extract_mc2(raw_data, model_name)
|
169 |
-
# cleaned_data = pd.concat([cleaned_data, mc1])
|
170 |
-
# cleaned_data = pd.concat([cleaned_data, mc2])
|
171 |
-
# organization_names.append(organization_name)
|
172 |
-
# dataframes.append(cleaned_data)
|
173 |
-
|
174 |
-
|
175 |
-
# data = pd.concat(dataframes, axis=1).transpose()
|
176 |
-
|
177 |
-
# # Add organization column
|
178 |
-
# data['organization'] = organization_names
|
179 |
-
|
180 |
-
# # Add Model Name and rearrange columns
|
181 |
-
# data['Model Name'] = data.index
|
182 |
-
# cols = data.columns.tolist()
|
183 |
-
# cols = cols[-1:] + cols[:-1]
|
184 |
-
# data = data[cols]
|
185 |
-
|
186 |
-
# # Remove the 'Model Name' column
|
187 |
-
# data = data.drop(columns=['Model Name'])
|
188 |
-
|
189 |
-
# # Add average column
|
190 |
-
# data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1)
|
191 |
-
|
192 |
-
# # Reorder columns to move 'MMLU_average' to the third position
|
193 |
-
# cols = data.columns.tolist()
|
194 |
-
# cols = cols[:2] + cols[-1:] + cols[2:-1]
|
195 |
-
# data = data[cols]
|
196 |
-
|
197 |
-
# # Drop specific columns
|
198 |
-
# data = data.drop(columns=['all', 'truthfulqa:mc|0'])
|
199 |
-
|
200 |
-
# # Add parameter count column using extract_parameters function
|
201 |
-
# data['Parameters'] = data.index.to_series().apply(self._extract_parameters)
|
202 |
-
|
203 |
-
# # move the parameters column to the front of the dataframe
|
204 |
-
# cols = data.columns.tolist()
|
205 |
-
# cols = cols[-1:] + cols[:-1]
|
206 |
-
# data = data[cols]
|
207 |
-
|
208 |
-
# # remove extreme outliers from column harness|truthfulqa:mc1
|
209 |
-
# data = self._remove_mc1_outliers(data)
|
210 |
-
|
211 |
-
# return data
|
212 |
-
|
213 |
-
# def rank_data(self):
|
214 |
-
# # add rank for each column to the dataframe
|
215 |
-
# # copy the data dataframe to avoid modifying the original dataframe
|
216 |
-
# rank_data = self.data.copy()
|
217 |
-
# for col in list(rank_data.columns):
|
218 |
-
# rank_data[col + "_rank"] = rank_data[col].rank(ascending=False, method='min')
|
219 |
-
|
220 |
-
# return rank_data
|
221 |
-
|
222 |
-
# def get_data(self, selected_models):
|
223 |
-
# return self.data[self.data.index.isin(selected_models)]
|
|
|
51 |
constructed_url = base_url + organization + '/' + model + '/' + other_chunk + filename
|
52 |
return constructed_url
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
def _find_files(self, directory, pattern):
|
56 |
matching_files = [] # List to hold matching filenames
|
|
|
72 |
df = self.single_file_pipeline(url, file_path)
|
73 |
dataframes.append(df)
|
74 |
return dataframes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|