Corey Morris
commited on
Commit
·
2b55a03
1
Parent(s):
298ba1f
Extracted plotting functions from moral_app to plotting_utils to improve organization and testability
Browse files- moral_app.py +42 -168
- plotting_utils.py +152 -0
moral_app.py
CHANGED
@@ -5,90 +5,10 @@ from result_data_processor import ResultDataProcessor
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import numpy as np
|
7 |
import plotly.graph_objects as go
|
|
|
8 |
|
9 |
st.set_page_config(layout="wide")
|
10 |
|
11 |
-
def plot_top_n(df, target_column, n=10):
|
12 |
-
top_n = df.nlargest(n, target_column)
|
13 |
-
|
14 |
-
# Initialize the bar plot
|
15 |
-
fig, ax1 = plt.subplots(figsize=(10, 5))
|
16 |
-
|
17 |
-
# Set width for each bar and their positions
|
18 |
-
width = 0.28
|
19 |
-
ind = np.arange(len(top_n))
|
20 |
-
|
21 |
-
# Plot target_column and MMLU_average on the primary y-axis with adjusted positions
|
22 |
-
ax1.bar(ind - width, top_n[target_column], width=width, color='blue', label=target_column)
|
23 |
-
ax1.bar(ind, top_n['MMLU_average'], width=width, color='orange', label='MMLU_average')
|
24 |
-
|
25 |
-
# Set the primary y-axis labels and title
|
26 |
-
ax1.set_title(f'Top {n} performing models on {target_column}')
|
27 |
-
ax1.set_xlabel('Model')
|
28 |
-
ax1.set_ylabel('Score')
|
29 |
-
|
30 |
-
# Create a secondary y-axis for Parameters
|
31 |
-
ax2 = ax1.twinx()
|
32 |
-
|
33 |
-
# Plot Parameters as bars on the secondary y-axis with adjusted position
|
34 |
-
ax2.bar(ind + width, top_n['Parameters'], width=width, color='red', label='Parameters')
|
35 |
-
|
36 |
-
# Set the secondary y-axis labels
|
37 |
-
ax2.set_ylabel('Parameters', color='red')
|
38 |
-
ax2.tick_params(axis='y', labelcolor='red')
|
39 |
-
|
40 |
-
# Set the x-ticks and their labels
|
41 |
-
ax1.set_xticks(ind)
|
42 |
-
ax1.set_xticklabels(top_n.index, rotation=45, ha="right")
|
43 |
-
|
44 |
-
# Adjust the legend
|
45 |
-
fig.tight_layout()
|
46 |
-
fig.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
47 |
-
|
48 |
-
# Show the plot
|
49 |
-
st.pyplot(fig)
|
50 |
-
|
51 |
-
# Function to create an unfilled radar chart
|
52 |
-
def create_radar_chart_unfilled(df, model_names, metrics):
|
53 |
-
fig = go.Figure()
|
54 |
-
min_value = df.loc[model_names, metrics].min().min()
|
55 |
-
max_value = df.loc[model_names, metrics].max().max()
|
56 |
-
for model_name in model_names:
|
57 |
-
values_model = df.loc[model_name, metrics]
|
58 |
-
fig.add_trace(go.Scatterpolar(
|
59 |
-
r=values_model,
|
60 |
-
theta=metrics,
|
61 |
-
name=model_name
|
62 |
-
))
|
63 |
-
|
64 |
-
fig.update_layout(
|
65 |
-
polar=dict(
|
66 |
-
radialaxis=dict(
|
67 |
-
visible=True,
|
68 |
-
range=[min_value, max_value]
|
69 |
-
)),
|
70 |
-
showlegend=True,
|
71 |
-
width=800, # Change the width as needed
|
72 |
-
height=600 # Change the height as needed
|
73 |
-
)
|
74 |
-
return fig
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
# Function to create a line chart
|
79 |
-
def create_line_chart(df, model_names, metrics):
|
80 |
-
line_data = []
|
81 |
-
for model_name in model_names:
|
82 |
-
values_model = df.loc[model_name, metrics]
|
83 |
-
for metric, value in zip(metrics, values_model):
|
84 |
-
line_data.append({'Model': model_name, 'Metric': metric, 'Value': value})
|
85 |
-
|
86 |
-
line_df = pd.DataFrame(line_data)
|
87 |
-
|
88 |
-
fig = px.line(line_df, x='Metric', y='Value', color='Model', title='Comparison of Models', line_dash_sequence=['solid'])
|
89 |
-
fig.update_layout(showlegend=True)
|
90 |
-
return fig
|
91 |
-
|
92 |
def find_top_differences_table(df, target_model, closest_models, num_differences=10, exclude_columns=['Parameters', 'organization']):
|
93 |
# Calculate the absolute differences for each task between the target model and the closest models
|
94 |
new_df = df.drop(columns=exclude_columns)
|
@@ -104,6 +24,10 @@ def find_top_differences_table(df, target_model, closest_models, num_differences
|
|
104 |
unique_top_differences_tasks = list(set(top_differences_table['Task'].tolist()))
|
105 |
return top_differences_table, unique_top_differences_tasks
|
106 |
|
|
|
|
|
|
|
|
|
107 |
data_provider = ResultDataProcessor()
|
108 |
|
109 |
st.title('Why are large language models so bad at the moral scenarios task?')
|
@@ -171,9 +95,9 @@ column_search_query = st.text_input("Filter by Column/Task Name:", "")
|
|
171 |
# Get the columns that contain the search query
|
172 |
matching_columns = [col for col in filtered_data.columns if column_search_query.lower() in col.lower()]
|
173 |
|
174 |
-
# Display the DataFrame with only the matching columns
|
175 |
-
st.markdown("## Sortable Results")
|
176 |
-
st.dataframe(filtered_data[matching_columns])
|
177 |
|
178 |
|
179 |
# CSV download
|
@@ -189,70 +113,43 @@ st.download_button(
|
|
189 |
)
|
190 |
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
-
# remove rows with NaN values
|
197 |
-
df = df.dropna(subset=[x_values, y_values])
|
198 |
|
199 |
-
plot_data = pd.DataFrame({
|
200 |
-
'Model': df.index,
|
201 |
-
x_values: df[x_values],
|
202 |
-
y_values: df[y_values],
|
203 |
-
})
|
204 |
|
205 |
-
plot_data['color'] = 'purple'
|
206 |
-
fig = px.scatter(plot_data, x=x_values, y=y_values, color='color', hover_data=['Model'], trendline="ols")
|
207 |
-
|
208 |
-
# If title is not provided, use x_values vs. y_values as the default title
|
209 |
-
if title is None:
|
210 |
-
title = x_values + " vs. " + y_values
|
211 |
-
|
212 |
-
layout_args = dict(
|
213 |
-
showlegend=False,
|
214 |
-
xaxis_title=x_values,
|
215 |
-
yaxis_title=y_values,
|
216 |
-
xaxis=dict(),
|
217 |
-
yaxis=dict(),
|
218 |
-
title=title,
|
219 |
-
height=500,
|
220 |
-
width=1000,
|
221 |
-
)
|
222 |
-
fig.update_layout(**layout_args)
|
223 |
-
|
224 |
-
# Add a dashed line at 0.25 for the y_values
|
225 |
-
x_min = df[x_values].min()
|
226 |
-
x_max = df[x_values].max()
|
227 |
-
|
228 |
-
y_min = df[y_values].min()
|
229 |
-
y_max = df[y_values].max()
|
230 |
-
|
231 |
-
if x_values.startswith('MMLU'):
|
232 |
-
fig.add_shape(
|
233 |
-
type='line',
|
234 |
-
x0=0.25, x1=0.25,
|
235 |
-
y0=y_min, y1=y_max,
|
236 |
-
line=dict(
|
237 |
-
color='red',
|
238 |
-
width=2,
|
239 |
-
dash='dash'
|
240 |
-
)
|
241 |
-
)
|
242 |
-
|
243 |
-
if y_values.startswith('MMLU'):
|
244 |
-
fig.add_shape(
|
245 |
-
type='line',
|
246 |
-
x0=x_min, x1=x_max,
|
247 |
-
y0=0.25, y1=0.25,
|
248 |
-
line=dict(
|
249 |
-
color='red',
|
250 |
-
width=2,
|
251 |
-
dash='dash'
|
252 |
-
)
|
253 |
-
)
|
254 |
-
|
255 |
-
return fig
|
256 |
|
257 |
|
258 |
# Custom scatter plots
|
@@ -325,31 +222,8 @@ plot_top_n(filtered_data, 'MMLU_abstract_algebra', 10)
|
|
325 |
fig = create_plot(filtered_data, 'Parameters', 'MMLU_abstract_algebra')
|
326 |
st.plotly_chart(fig)
|
327 |
|
328 |
-
# Moral scenarios plots
|
329 |
-
st.markdown("### Moral Scenarios Performance")
|
330 |
-
def show_random_moral_scenarios_question():
|
331 |
-
moral_scenarios_data = pd.read_csv('moral_scenarios_questions.csv')
|
332 |
-
random_question = moral_scenarios_data.sample()
|
333 |
-
expander = st.expander("Show a random moral scenarios question")
|
334 |
-
expander.write(random_question['query'].values[0])
|
335 |
-
|
336 |
-
show_random_moral_scenarios_question()
|
337 |
-
|
338 |
-
st.write("""
|
339 |
-
While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher.
|
340 |
-
There are no models with less than 13 billion parameters with performance much better than random chance. Further investigation into other capabilities that emerge at 13 billion parameters could help
|
341 |
-
identify capabilities that are important for moral reasoning.
|
342 |
-
""")
|
343 |
-
|
344 |
-
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios")
|
345 |
-
st.plotly_chart(fig)
|
346 |
-
st.write()
|
347 |
-
|
348 |
|
349 |
|
350 |
-
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
|
351 |
-
st.plotly_chart(fig)
|
352 |
-
|
353 |
|
354 |
|
355 |
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import numpy as np
|
7 |
import plotly.graph_objects as go
|
8 |
+
from plotting_utils import plot_top_n, create_radar_chart_unfilled, create_line_chart, create_plot
|
9 |
|
10 |
st.set_page_config(layout="wide")
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def find_top_differences_table(df, target_model, closest_models, num_differences=10, exclude_columns=['Parameters', 'organization']):
|
13 |
# Calculate the absolute differences for each task between the target model and the closest models
|
14 |
new_df = df.drop(columns=exclude_columns)
|
|
|
24 |
unique_top_differences_tasks = list(set(top_differences_table['Task'].tolist()))
|
25 |
return top_differences_table, unique_top_differences_tasks
|
26 |
|
27 |
+
|
28 |
+
|
29 |
+
# Main Application
|
30 |
+
|
31 |
data_provider = ResultDataProcessor()
|
32 |
|
33 |
st.title('Why are large language models so bad at the moral scenarios task?')
|
|
|
95 |
# Get the columns that contain the search query
|
96 |
matching_columns = [col for col in filtered_data.columns if column_search_query.lower() in col.lower()]
|
97 |
|
98 |
+
# # Display the DataFrame with only the matching columns
|
99 |
+
# st.markdown("## Sortable Results")
|
100 |
+
# st.dataframe(filtered_data[matching_columns])
|
101 |
|
102 |
|
103 |
# CSV download
|
|
|
113 |
)
|
114 |
|
115 |
|
116 |
+
# Moral Scenarios section
|
117 |
+
st.markdown("## Why are large language models so bad at the moral scenarios task?")
|
118 |
+
st.markdown("### The structure of the task is odd")
|
119 |
+
|
120 |
+
# - Are the models actually bad at moral reasoning ?
|
121 |
+
# - Is it the structure of the task that is the causing the poor performance ?
|
122 |
+
# - Are there other tasks with questions in a similar structure ?
|
123 |
+
# - How do models perform when the structure of the task is changed ?
|
124 |
+
st.markdown("### Moral Scenarios Performance")
|
125 |
+
def show_random_moral_scenarios_question():
|
126 |
+
moral_scenarios_data = pd.read_csv('moral_scenarios_questions.csv')
|
127 |
+
random_question = moral_scenarios_data.sample()
|
128 |
+
expander = st.expander("Show a random moral scenarios question")
|
129 |
+
expander.write(random_question['query'].values[0])
|
130 |
+
|
131 |
+
show_random_moral_scenarios_question()
|
132 |
+
|
133 |
+
st.write("""
|
134 |
+
While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher.
|
135 |
+
There are no models with less than 13 billion parameters with performance much better than random chance. Further investigation into other capabilities that emerge at 13 billion parameters could help
|
136 |
+
identify capabilities that are important for moral reasoning.
|
137 |
+
""")
|
138 |
+
|
139 |
+
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios")
|
140 |
+
st.plotly_chart(fig)
|
141 |
+
st.write()
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
|
146 |
+
st.plotly_chart(fig)
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
|
|
|
|
|
151 |
|
|
|
|
|
|
|
|
|
|
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
|
155 |
# Custom scatter plots
|
|
|
222 |
fig = create_plot(filtered_data, 'Parameters', 'MMLU_abstract_algebra')
|
223 |
st.plotly_chart(fig)
|
224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
|
|
|
|
|
|
|
227 |
|
228 |
|
229 |
|
plotting_utils.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
|
8 |
+
def plot_top_n(df, target_column, n=10):
|
9 |
+
top_n = df.nlargest(n, target_column)
|
10 |
+
|
11 |
+
# Initialize the bar plot
|
12 |
+
fig, ax1 = plt.subplots(figsize=(10, 5))
|
13 |
+
|
14 |
+
# Set width for each bar and their positions
|
15 |
+
width = 0.28
|
16 |
+
ind = np.arange(len(top_n))
|
17 |
+
|
18 |
+
# Plot target_column and MMLU_average on the primary y-axis with adjusted positions
|
19 |
+
ax1.bar(ind - width, top_n[target_column], width=width, color='blue', label=target_column)
|
20 |
+
ax1.bar(ind, top_n['MMLU_average'], width=width, color='orange', label='MMLU_average')
|
21 |
+
|
22 |
+
# Set the primary y-axis labels and title
|
23 |
+
ax1.set_title(f'Top {n} performing models on {target_column}')
|
24 |
+
ax1.set_xlabel('Model')
|
25 |
+
ax1.set_ylabel('Score')
|
26 |
+
|
27 |
+
# Create a secondary y-axis for Parameters
|
28 |
+
ax2 = ax1.twinx()
|
29 |
+
|
30 |
+
# Plot Parameters as bars on the secondary y-axis with adjusted position
|
31 |
+
ax2.bar(ind + width, top_n['Parameters'], width=width, color='red', label='Parameters')
|
32 |
+
|
33 |
+
# Set the secondary y-axis labels
|
34 |
+
ax2.set_ylabel('Parameters', color='red')
|
35 |
+
ax2.tick_params(axis='y', labelcolor='red')
|
36 |
+
|
37 |
+
# Set the x-ticks and their labels
|
38 |
+
ax1.set_xticks(ind)
|
39 |
+
ax1.set_xticklabels(top_n.index, rotation=45, ha="right")
|
40 |
+
|
41 |
+
# Adjust the legend
|
42 |
+
fig.tight_layout()
|
43 |
+
fig.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
44 |
+
|
45 |
+
# Show the plot
|
46 |
+
st.pyplot(fig)
|
47 |
+
|
48 |
+
# Function to create an unfilled radar chart
|
49 |
+
def create_radar_chart_unfilled(df, model_names, metrics):
|
50 |
+
fig = go.Figure()
|
51 |
+
min_value = df.loc[model_names, metrics].min().min()
|
52 |
+
max_value = df.loc[model_names, metrics].max().max()
|
53 |
+
for model_name in model_names:
|
54 |
+
values_model = df.loc[model_name, metrics]
|
55 |
+
fig.add_trace(go.Scatterpolar(
|
56 |
+
r=values_model,
|
57 |
+
theta=metrics,
|
58 |
+
name=model_name
|
59 |
+
))
|
60 |
+
|
61 |
+
fig.update_layout(
|
62 |
+
polar=dict(
|
63 |
+
radialaxis=dict(
|
64 |
+
visible=True,
|
65 |
+
range=[min_value, max_value]
|
66 |
+
)),
|
67 |
+
showlegend=True,
|
68 |
+
width=800, # Change the width as needed
|
69 |
+
height=600 # Change the height as needed
|
70 |
+
)
|
71 |
+
return fig
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
# Function to create a line chart
|
76 |
+
def create_line_chart(df, model_names, metrics):
|
77 |
+
line_data = []
|
78 |
+
for model_name in model_names:
|
79 |
+
values_model = df.loc[model_name, metrics]
|
80 |
+
for metric, value in zip(metrics, values_model):
|
81 |
+
line_data.append({'Model': model_name, 'Metric': metric, 'Value': value})
|
82 |
+
|
83 |
+
line_df = pd.DataFrame(line_data)
|
84 |
+
|
85 |
+
fig = px.line(line_df, x='Metric', y='Value', color='Model', title='Comparison of Models', line_dash_sequence=['solid'])
|
86 |
+
fig.update_layout(showlegend=True)
|
87 |
+
return fig
|
88 |
+
|
89 |
+
def create_plot(df, x_values, y_values, models=None, title=None):
|
90 |
+
if models is not None:
|
91 |
+
df = df[df.index.isin(models)]
|
92 |
+
|
93 |
+
# remove rows with NaN values
|
94 |
+
df = df.dropna(subset=[x_values, y_values])
|
95 |
+
|
96 |
+
plot_data = pd.DataFrame({
|
97 |
+
'Model': df.index,
|
98 |
+
x_values: df[x_values],
|
99 |
+
y_values: df[y_values],
|
100 |
+
})
|
101 |
+
|
102 |
+
plot_data['color'] = 'purple'
|
103 |
+
fig = px.scatter(plot_data, x=x_values, y=y_values, color='color', hover_data=['Model'], trendline="ols")
|
104 |
+
|
105 |
+
# If title is not provided, use x_values vs. y_values as the default title
|
106 |
+
if title is None:
|
107 |
+
title = x_values + " vs. " + y_values
|
108 |
+
|
109 |
+
layout_args = dict(
|
110 |
+
showlegend=False,
|
111 |
+
xaxis_title=x_values,
|
112 |
+
yaxis_title=y_values,
|
113 |
+
xaxis=dict(),
|
114 |
+
yaxis=dict(),
|
115 |
+
title=title,
|
116 |
+
height=500,
|
117 |
+
width=1000,
|
118 |
+
)
|
119 |
+
fig.update_layout(**layout_args)
|
120 |
+
|
121 |
+
# Add a dashed line at 0.25 for the y_values
|
122 |
+
x_min = df[x_values].min()
|
123 |
+
x_max = df[x_values].max()
|
124 |
+
|
125 |
+
y_min = df[y_values].min()
|
126 |
+
y_max = df[y_values].max()
|
127 |
+
|
128 |
+
if x_values.startswith('MMLU'):
|
129 |
+
fig.add_shape(
|
130 |
+
type='line',
|
131 |
+
x0=0.25, x1=0.25,
|
132 |
+
y0=y_min, y1=y_max,
|
133 |
+
line=dict(
|
134 |
+
color='red',
|
135 |
+
width=2,
|
136 |
+
dash='dash'
|
137 |
+
)
|
138 |
+
)
|
139 |
+
|
140 |
+
if y_values.startswith('MMLU'):
|
141 |
+
fig.add_shape(
|
142 |
+
type='line',
|
143 |
+
x0=x_min, x1=x_max,
|
144 |
+
y0=0.25, y1=0.25,
|
145 |
+
line=dict(
|
146 |
+
color='red',
|
147 |
+
width=2,
|
148 |
+
dash='dash'
|
149 |
+
)
|
150 |
+
)
|
151 |
+
|
152 |
+
return fig
|