Corey Morris
commited on
Commit
•
28e8799
1
Parent(s):
667f9a4
loading from csv instead of processing data each time
Browse files
app.py
CHANGED
@@ -5,11 +5,11 @@ from result_data_processor import ResultDataProcessor
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import numpy as np
|
7 |
import plotly.graph_objects as go
|
8 |
-
from streamlit.components.v1 import html
|
9 |
|
10 |
st.set_page_config(layout="wide")
|
11 |
|
12 |
def load_csv_data(file_path):
|
|
|
13 |
return pd.read_csv(file_path)
|
14 |
|
15 |
|
@@ -109,7 +109,7 @@ def find_top_differences_table(df, target_model, closest_models, num_differences
|
|
109 |
unique_top_differences_tasks = list(set(top_differences_table['Task'].tolist()))
|
110 |
return top_differences_table, unique_top_differences_tasks
|
111 |
|
112 |
-
data_provider = ResultDataProcessor()
|
113 |
|
114 |
# st.title('Model Evaluation Results including MMLU by task')
|
115 |
st.title('Exploring the Characteristics of Large Language Models: An Interactive Portal for Analyzing 1100+ Open Source Models Across 57 Diverse Evaluation Tasks')
|
@@ -131,27 +131,29 @@ data_df = load_csv_data(data_path)
|
|
131 |
filters = st.checkbox('Select Models and/or Evaluations')
|
132 |
|
133 |
# Initialize selected columns with "Parameters" and "MMLU_average" if filters are checked
|
134 |
-
selected_columns = ['Parameters', 'MMLU_average'] if filters else data_provider.data.columns.tolist()
|
|
|
135 |
|
136 |
# Initialize selected models as empty if filters are checked
|
137 |
-
selected_models = [] if filters else
|
138 |
|
139 |
if filters:
|
140 |
# Create multi-select for columns with default selection
|
141 |
selected_columns = st.multiselect(
|
142 |
'Select Columns',
|
143 |
-
|
144 |
default=selected_columns
|
145 |
)
|
146 |
|
147 |
# Create multi-select for models without default selection
|
148 |
selected_models = st.multiselect(
|
149 |
'Select Models',
|
150 |
-
|
151 |
)
|
152 |
|
153 |
# Get the filtered data
|
154 |
-
filtered_data = data_provider.get_data(selected_models)
|
|
|
155 |
|
156 |
# sort the table by the MMLU_average column
|
157 |
filtered_data = filtered_data.sort_values(by=['MMLU_average'], ascending=False)
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import numpy as np
|
7 |
import plotly.graph_objects as go
|
|
|
8 |
|
9 |
st.set_page_config(layout="wide")
|
10 |
|
11 |
def load_csv_data(file_path):
|
12 |
+
|
13 |
return pd.read_csv(file_path)
|
14 |
|
15 |
|
|
|
109 |
unique_top_differences_tasks = list(set(top_differences_table['Task'].tolist()))
|
110 |
return top_differences_table, unique_top_differences_tasks
|
111 |
|
112 |
+
# data_provider = ResultDataProcessor()
|
113 |
|
114 |
# st.title('Model Evaluation Results including MMLU by task')
|
115 |
st.title('Exploring the Characteristics of Large Language Models: An Interactive Portal for Analyzing 1100+ Open Source Models Across 57 Diverse Evaluation Tasks')
|
|
|
131 |
filters = st.checkbox('Select Models and/or Evaluations')
|
132 |
|
133 |
# Initialize selected columns with "Parameters" and "MMLU_average" if filters are checked
|
134 |
+
# selected_columns = ['Parameters', 'MMLU_average'] if filters else data_provider.data.columns.tolist()
|
135 |
+
selected_columns = ['Parameters', 'MMLU_average'] if filters else data_df.columns.tolist()
|
136 |
|
137 |
# Initialize selected models as empty if filters are checked
|
138 |
+
selected_models = [] if filters else data_df.index.tolist()
|
139 |
|
140 |
if filters:
|
141 |
# Create multi-select for columns with default selection
|
142 |
selected_columns = st.multiselect(
|
143 |
'Select Columns',
|
144 |
+
data_df.columns.tolist(),
|
145 |
default=selected_columns
|
146 |
)
|
147 |
|
148 |
# Create multi-select for models without default selection
|
149 |
selected_models = st.multiselect(
|
150 |
'Select Models',
|
151 |
+
data_df.index.tolist()
|
152 |
)
|
153 |
|
154 |
# Get the filtered data
|
155 |
+
# filtered_data = data_provider.get_data(selected_models)
|
156 |
+
filtered_data = data_df
|
157 |
|
158 |
# sort the table by the MMLU_average column
|
159 |
filtered_data = filtered_data.sort_values(by=['MMLU_average'], ascending=False)
|