Corey Morris
Added bar chart for abstract algebra data.
a79afe8
raw
history blame
7.81 kB
import streamlit as st
import pandas as pd
import plotly.express as px
from result_data_processor import ResultDataProcessor
import matplotlib.pyplot as plt
import numpy as np
def plot_top_n(df, target_column, n=10):
top_n = df.nlargest(n, target_column)
# Initialize the bar plot
fig, ax1 = plt.subplots(figsize=(10, 5))
# Set width for each bar and their positions
width = 0.28
ind = np.arange(len(top_n))
# Plot target_column and MMLU_average on the primary y-axis with adjusted positions
ax1.bar(ind - width, top_n[target_column], width=width, color='blue', label=target_column)
ax1.bar(ind, top_n['MMLU_average'], width=width, color='orange', label='MMLU_average')
# Set the primary y-axis labels and title
ax1.set_title(f'Top {n} performing models on {target_column}')
ax1.set_xlabel('Model')
ax1.set_ylabel('Score')
# Create a secondary y-axis for Parameters
ax2 = ax1.twinx()
# Plot Parameters as bars on the secondary y-axis with adjusted position
ax2.bar(ind + width, top_n['Parameters'], width=width, color='red', label='Parameters')
# Set the secondary y-axis labels
ax2.set_ylabel('Parameters', color='red')
ax2.tick_params(axis='y', labelcolor='red')
# Set the x-ticks and their labels
ax1.set_xticks(ind)
ax1.set_xticklabels(top_n.index, rotation=45, ha="right")
# Adjust the legend
fig.tight_layout()
fig.legend(loc='center left', bbox_to_anchor=(1, 0.5))
# Show the plot
st.pyplot(fig)
data_provider = ResultDataProcessor()
# st.title('Model Evaluation Results including MMLU by task')
st.title('MMLU-by-Task Evaluation Results for 500+ Open Source Models')
st.markdown("""***Last updated August 7th***""")
st.markdown("""
Hugging Face has run evaluations on over 500 open source models and provides results on a
[publicly available leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) and [dataset](https://huggingface.co/datasets/open-llm-leaderboard/results).
The leaderboard currently displays the overall result for MMLU. This page shows individual accuracy scores for all 57 tasks of the MMLU evaluation.
[Preliminary analysis of MMLU-by-Task data](https://coreymorrisdata.medium.com/preliminary-analysis-of-mmlu-evaluation-data-insights-from-500-open-source-models-e67885aa364b)
""")
filters = st.checkbox('Select Models and Evaluations')
# Create defaults for selected columns and models
selected_columns = data_provider.data.columns.tolist()
selected_models = data_provider.data.index.tolist()
if filters:
# Create checkboxes for each column
selected_columns = st.multiselect(
'Select Columns',
data_provider.data.columns.tolist(),
default=selected_columns
)
selected_models = st.multiselect(
'Select Models',
data_provider.data.index.tolist(),
default=selected_models
)
# Get the filtered data
st.header('Sortable table')
filtered_data = data_provider.get_data(selected_models)
# sort the table by the MMLU_average column
filtered_data = filtered_data.sort_values(by=['MMLU_average'], ascending=False)
st.dataframe(filtered_data[selected_columns])
# CSV download
filtered_data.index.name = "Model Name"
csv = filtered_data.to_csv(index=True)
st.download_button(
label="Download data as CSV",
data=csv,
file_name="model_evaluation_results.csv",
mime="text/csv",
)
def create_plot(df, arc_column, moral_column, models=None):
if models is not None:
df = df[df.index.isin(models)]
# remove rows with NaN values
df = df.dropna(subset=[arc_column, moral_column])
plot_data = pd.DataFrame({
'Model': df.index,
arc_column: df[arc_column],
moral_column: df[moral_column],
})
plot_data['color'] = 'purple'
fig = px.scatter(plot_data, x=arc_column, y=moral_column, color='color', hover_data=['Model'], trendline="ols")
fig.update_layout(showlegend=False,
xaxis_title=arc_column,
yaxis_title=moral_column,
xaxis = dict(),
yaxis = dict())
# Add a dashed line at 0.25 for the moral columns
x_min = df[arc_column].min()
x_max = df[arc_column].max()
y_min = df[moral_column].min()
y_max = df[moral_column].max()
if arc_column.startswith('MMLU'):
fig.add_shape(
type='line',
x0=0.25, x1=0.25,
y0=y_min, y1=y_max,
line=dict(
color='red',
width=2,
dash='dash'
)
)
if moral_column.startswith('MMLU'):
fig.add_shape(
type='line',
x0=x_min, x1=x_max,
y0=0.25, y1=0.25,
line=dict(
color='red',
width=2,
dash='dash'
)
)
return fig
# Custom scatter plots
st.header('Custom scatter plots')
st.write("The dashed red line represents the random chance performance of 0.25")
selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0)
selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=3)
if selected_x_column != selected_y_column: # Avoid creating a plot with the same column on both axes
fig = create_plot(filtered_data, selected_x_column, selected_y_column)
st.plotly_chart(fig)
else:
st.write("Please select different columns for the x and y axes.")
# end of custom scatter plots
st.markdown("## Notable findings and plots")
st.markdown("### Moral Scenarios Performance")
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
st.plotly_chart(fig)
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios')
st.plotly_chart(fig)
fig = px.histogram(filtered_data, x="MMLU_moral_scenarios", marginal="rug", hover_data=filtered_data.columns)
st.plotly_chart(fig)
st.header('Abstract Algebra Performance')
st.write("Small models showed surprisingly strong performance on the abstract algebra task. A 6 Billion parameter model is tied for the best performance on this task and there are a number of other small models in the top 10.")
# Usage example:
plot_top_n(filtered_data, 'MMLU_abstract_algebra', 10)
fig = create_plot(filtered_data, 'Parameters', 'MMLU_abstract_algebra')
st.plotly_chart(fig)
st.markdown("***Thank you to hugging face for running the evaluations and supplying the data as well as the original authors of the evaluations.***")
st.markdown("""
# References
1. Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, Thomas Wolf. (2023). *Open LLM Leaderboard*. Hugging Face. [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
2. Gao, Leo et al. (2021). *A framework for few-shot language model evaluation*. Zenodo. [link](https://doi.org/10.5281/zenodo.5371628)
3. Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, Oyvind Tafjord. (2018). *Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge*. arXiv. [link](https://arxiv.org/abs/1803.05457)
4. Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, Yejin Choi. (2019). *HellaSwag: Can a Machine Really Finish Your Sentence?*. arXiv. [link](https://arxiv.org/abs/1905.07830)
5. Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, Jacob Steinhardt. (2021). *Measuring Massive Multitask Language Understanding*. arXiv. [link](https://arxiv.org/abs/2009.03300)
6. Stephanie Lin, Jacob Hilton, Owain Evans. (2022). *TruthfulQA: Measuring How Models Mimic Human Falsehoods*. arXiv. [link](https://arxiv.org/abs/2109.07958)
""")