Haki_V2 / app.py
Core23's picture
Update app.py
4b25836
raw
history blame
8.23 kB
import os
import openai
import gradio as gr
from transformers import pipeline
from IPython.display import Audio
import os
import re
import glob
import json
import tempfile
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
import numpy as np
import commons
import utils
import argparse
import subprocess
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
from models import SynthesizerTrn
from scipy.io.wavfile import write
openai.api_key = os.getenv("OPENAI_API_KEY")
pipe = pipeline(model="seeafricatz/kiaziboraasr")
def transcribe(audio):
text = pipe(audio)["text"]
return text
def generate_response(transcribed_text):
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "system",
"content": "All your answers should be in Swahili only, users understand Swahili only so here we start... Wewe ni mtaalamu wa haki za ardhi za wanawake nchini Kongo na utajibu maswali yote kwa Kiswahili tu!"
},
{
"role": "user",
"content": "Mambo vipi?"
},
{
"role": "assistant",
"content": "Salama, je una swali lolote kuhusu haki za ardhi za wanawake nchini Kongo?"
},
{
"role": "user",
"content": "nini maana ya haki za ardhi za wanawake?"
},
{
"role": "assistant",
"content": "Haki za ardhi za wanawake zinamaanisha haki za wanawake kumiliki, kutumia, na kudhibiti ardhi. Katika muktadha wa Kongo, haki hizi zinaweza kuathiriwa na mila, sheria, na mizozo ya ardhi."
},
{
"role": "user",
"content": "nini matumizi ya haki za ardhi za wanawake?"
},
{
"role": "assistant",
"content": "Haki za ardhi za wanawake zina umuhimu mkubwa kwa kuwawezesha wanawake kiuchumi, kuimarisha usalama wa chakula, na kuchangia katika maendeleo ya jamii na taifa kwa ujumla. Kwa mfano, wanawake wenye haki za ardhi wanaweza kupata mikopo, kuendeleza ardhi, na kutoa mchango muhimu katika uchumi wa familia na jamii."
},
{
"role": "user",
"content": transcribed_text
},
]
)
return response['choices'][0]['message']['content']
import os
import subprocess
import locale
locale.getpreferredencoding = lambda: "UTF-8"
def download(lang, tgt_dir="./"):
lang_fn, lang_dir = os.path.join(tgt_dir, lang+'.tar.gz'), os.path.join(tgt_dir, lang)
cmd = ";".join([
f"wget https://dl.fbaipublicfiles.com/mms/tts/{lang}.tar.gz -O {lang_fn}",
f"tar zxvf {lang_fn}"
])
print(f"Download model for language: {lang}")
subprocess.check_output(cmd, shell=True)
print(f"Model checkpoints in {lang_dir}: {os.listdir(lang_dir)}")
return lang_dir
LANG = "swh"
ckpt_dir = download(LANG)
def preprocess_char(text, lang=None):
"""
Special treatement of characters in certain languages
"""
print(lang)
if lang == 'ron':
text = text.replace("ț", "ţ")
return text
class TextMapper(object):
def __init__(self, vocab_file):
self.symbols = [x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines()]
self.SPACE_ID = self.symbols.index(" ")
self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)}
def text_to_sequence(self, text, cleaner_names):
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
Args:
text: string to convert to a sequence
cleaner_names: names of the cleaner functions to run the text through
Returns:
List of integers corresponding to the symbols in the text
'''
sequence = []
clean_text = text.strip()
for symbol in clean_text:
symbol_id = self._symbol_to_id[symbol]
sequence += [symbol_id]
return sequence
def uromanize(self, text, uroman_pl):
iso = "xxx"
with tempfile.NamedTemporaryFile() as tf, \
tempfile.NamedTemporaryFile() as tf2:
with open(tf.name, "w") as f:
f.write("\n".join([text]))
cmd = f"perl " + uroman_pl
cmd += f" -l {iso} "
cmd += f" < {tf.name} > {tf2.name}"
os.system(cmd)
outtexts = []
with open(tf2.name) as f:
for line in f:
line = re.sub(r"\s+", " ", line).strip()
outtexts.append(line)
outtext = outtexts[0]
return outtext
def get_text(self, text, hps):
text_norm = self.text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def filter_oov(self, text):
val_chars = self._symbol_to_id
txt_filt = "".join(list(filter(lambda x: x in val_chars, text)))
print(f"text after filtering OOV: {txt_filt}")
return txt_filt
def preprocess_text(txt, text_mapper, hps, uroman_dir=None, lang=None):
txt = preprocess_char(txt, lang=lang)
is_uroman = hps.data.training_files.split('.')[-1] == 'uroman'
if is_uroman:
with tempfile.TemporaryDirectory() as tmp_dir:
if uroman_dir is None:
cmd = f"git clone git@github.com:isi-nlp/uroman.git {tmp_dir}"
print(cmd)
subprocess.check_output(cmd, shell=True)
uroman_dir = tmp_dir
uroman_pl = os.path.join(uroman_dir, "bin", "uroman.pl")
print(f"uromanize")
txt = text_mapper.uromanize(txt, uroman_pl)
print(f"uroman text: {txt}")
txt = txt.lower()
txt = text_mapper.filter_oov(txt)
return txt
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
print(f"Run inference with {device}")
vocab_file = f"{ckpt_dir}/vocab.txt"
config_file = f"{ckpt_dir}/config.json"
assert os.path.isfile(config_file), f"{config_file} doesn't exist"
hps = utils.get_hparams_from_file(config_file)
text_mapper = TextMapper(vocab_file)
net_g = SynthesizerTrn(
len(text_mapper.symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model)
net_g.to(device)
_ = net_g.eval()
g_pth = f"{ckpt_dir}/G_100000.pth"
print(f"load {g_pth}")
_ = utils.load_checkpoint(g_pth, net_g, None)
import torch
from scipy.io.wavfile import write
def inference(text):
# Preprocessing the text
text = preprocess_text(text, text_mapper, hps, lang=LANG)
stn_tst = text_mapper.get_text(text, hps)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0).to(device)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
hyp = net_g.infer(
x_tst, x_tst_lengths, noise_scale=.667,
noise_scale_w=0.8, length_scale=1.0
)[0][0,0].cpu().float().numpy()
# Saving the generated audio to a file
output_file = "tts_output.wav"
write(output_file, hps.data.sampling_rate, hyp)
return output_file
def process_audio_and_respond(audio):
text = transcribe(audio)
response_text = generate_response(text)
output_file = inference(response_text)
return response_text, output_file
demo = gr.Interface(
process_audio_and_respond,
gr.inputs.Audio(source="microphone", type="filepath", label="Bonyeza kitufe cha kurekodi na uliza swali lako"),
[gr.outputs.Textbox(label="Jibu (kwa njia ya maandishi)"), gr.outputs.Audio(type="filepath", label="Jibu kwa njia ya sauti (Bofya kusikiliza Jibu)")],
title="Haki",
description="Uliza Swali kuhusu haki za ardhi",
theme="compact",
layout="vertical",
allow_flagging=False,
live=True,
)
demo.launch()