Update app.py
Browse files
app.py
CHANGED
|
@@ -10,7 +10,7 @@ import os
|
|
| 10 |
app = Flask(__name__, static_folder='.', static_url_path='/')
|
| 11 |
CORS(app)
|
| 12 |
|
| 13 |
-
# Load models
|
| 14 |
try:
|
| 15 |
rf = joblib.load("rf_model.pkl")
|
| 16 |
xgb_model = xgb.Booster()
|
|
@@ -20,82 +20,85 @@ except Exception as e:
|
|
| 20 |
print(f"β Error loading models: {e}")
|
| 21 |
raise e
|
| 22 |
|
| 23 |
-
# Load tile
|
| 24 |
with open("tile_catalog.json", "r", encoding="utf-8") as f:
|
| 25 |
tile_catalog = json.load(f)
|
| 26 |
-
|
| 27 |
with open("tile_sizes.json", "r", encoding="utf-8") as f:
|
| 28 |
-
|
| 29 |
-
tile_sizes = {item["label"]: item["area_sqft"] for item in tile_sizes_list}
|
| 30 |
|
| 31 |
@app.route("/")
|
| 32 |
def index():
|
| 33 |
return send_from_directory(".", "index.html")
|
| 34 |
|
| 35 |
-
@app.route("/
|
| 36 |
-
def
|
| 37 |
try:
|
| 38 |
data = request.get_json()
|
| 39 |
tile_type = data.get("tile_type", "").lower()
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
return jsonify({"error": "Invalid tile size"}), 400
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
boxes = math.ceil(tiles_needed / 10)
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
|
|
|
|
| 55 |
return jsonify({
|
| 56 |
-
"
|
| 57 |
-
"
|
| 58 |
-
"
|
| 59 |
-
"tiles_needed": tiles_needed,
|
| 60 |
-
"boxes_needed": boxes,
|
| 61 |
-
"matching_products": matching_products[:3],
|
| 62 |
-
"total_matches": len(matching_products)
|
| 63 |
})
|
| 64 |
except Exception as e:
|
| 65 |
-
print(
|
| 66 |
return jsonify({"error": "Server error"}), 500
|
| 67 |
|
| 68 |
-
@app.route("/
|
| 69 |
-
def
|
| 70 |
try:
|
| 71 |
data = request.get_json()
|
| 72 |
-
tile_type = data.get("tile_type", "").lower()
|
| 73 |
area = float(data.get("area", 0))
|
| 74 |
-
|
| 75 |
-
price_range = data.get("price_range", [1, 100000])
|
| 76 |
-
preferred_sizes = data.get("preferred_sizes", [])
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
|
| 85 |
return jsonify({
|
| 86 |
-
"
|
| 87 |
-
"
|
| 88 |
-
"
|
|
|
|
| 89 |
})
|
| 90 |
except Exception as e:
|
| 91 |
-
print(
|
| 92 |
-
return jsonify({"error": "
|
| 93 |
|
| 94 |
def prepare_features(tile_type, coverage, area, price_range):
|
| 95 |
tile_type_num = 0 if tile_type == "floor" else 1
|
| 96 |
min_price, max_price = price_range
|
| 97 |
-
price_per_sqft = max_price / coverage
|
| 98 |
-
efficiency = coverage / max_price
|
| 99 |
return np.array([[tile_type_num, area, coverage, min_price, max_price, price_per_sqft, efficiency]])
|
| 100 |
|
| 101 |
def filter_products(tile_type, price_range, preferred_sizes):
|
|
@@ -110,7 +113,7 @@ def filter_products(tile_type, price_range, preferred_sizes):
|
|
| 110 |
continue
|
| 111 |
|
| 112 |
price_score = 1 - (product["price"] - min_price) / (max_price - min_price + 1e-6)
|
| 113 |
-
size_score = 1 if
|
| 114 |
score = round((price_score + size_score) / 2, 2)
|
| 115 |
filtered.append({**product, "recommendation_score": score})
|
| 116 |
return sorted(filtered, key=lambda x: x["recommendation_score"], reverse=True)
|
|
|
|
| 10 |
app = Flask(__name__, static_folder='.', static_url_path='/')
|
| 11 |
CORS(app)
|
| 12 |
|
| 13 |
+
# Load ML models
|
| 14 |
try:
|
| 15 |
rf = joblib.load("rf_model.pkl")
|
| 16 |
xgb_model = xgb.Booster()
|
|
|
|
| 20 |
print(f"β Error loading models: {e}")
|
| 21 |
raise e
|
| 22 |
|
| 23 |
+
# Load tile data
|
| 24 |
with open("tile_catalog.json", "r", encoding="utf-8") as f:
|
| 25 |
tile_catalog = json.load(f)
|
|
|
|
| 26 |
with open("tile_sizes.json", "r", encoding="utf-8") as f:
|
| 27 |
+
tile_sizes = json.load(f)
|
|
|
|
| 28 |
|
| 29 |
@app.route("/")
|
| 30 |
def index():
|
| 31 |
return send_from_directory(".", "index.html")
|
| 32 |
|
| 33 |
+
@app.route("/recommend", methods=["POST"])
|
| 34 |
+
def recommend():
|
| 35 |
try:
|
| 36 |
data = request.get_json()
|
| 37 |
tile_type = data.get("tile_type", "").lower()
|
| 38 |
+
coverage = float(data.get("coverage", 1))
|
| 39 |
+
area = float(data.get("area", 1))
|
| 40 |
+
price_range = data.get("price_range", [1, 100])
|
| 41 |
+
preferred_sizes = data.get("preferred_sizes", [])
|
|
|
|
| 42 |
|
| 43 |
+
if coverage <= 0 or area <= 0:
|
| 44 |
+
return jsonify({"error": "Please enter valid positive values for area and coverage."}), 400
|
|
|
|
| 45 |
|
| 46 |
+
features = prepare_features(tile_type, coverage, area, price_range)
|
| 47 |
+
xgb_pred = xgb_model.predict(xgb.DMatrix(features))[0]
|
| 48 |
+
rf_pred = rf.predict_proba(features)[0][1]
|
| 49 |
+
score = (xgb_pred + rf_pred) / 2
|
| 50 |
|
| 51 |
+
products = filter_products(tile_type, price_range, preferred_sizes)
|
| 52 |
return jsonify({
|
| 53 |
+
"recommendation_score": round(float(score), 3),
|
| 54 |
+
"recommended_products": products[:4],
|
| 55 |
+
"total_matches": len(products),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
})
|
| 57 |
except Exception as e:
|
| 58 |
+
print("β Error in /recommend:", str(e))
|
| 59 |
return jsonify({"error": "Server error"}), 500
|
| 60 |
|
| 61 |
+
@app.route("/calculate", methods=["POST"])
|
| 62 |
+
def calculate():
|
| 63 |
try:
|
| 64 |
data = request.get_json()
|
| 65 |
+
tile_type = data.get("tile_type", "").strip().lower()
|
| 66 |
area = float(data.get("area", 0))
|
| 67 |
+
tile_size = data.get("tile_size", "").strip()
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
if not tile_type:
|
| 70 |
+
return jsonify({"error": "Please select a tile type (e.g., Floor or Wall)."}), 400
|
| 71 |
+
if area <= 0:
|
| 72 |
+
return jsonify({"error": "Area must be a positive number."}), 400
|
| 73 |
+
if tile_size not in tile_sizes:
|
| 74 |
+
return jsonify({"error": f"Invalid tile size '{tile_size}'. Please select a valid size."}), 400
|
| 75 |
+
|
| 76 |
+
# Fetch tile size info
|
| 77 |
+
info = tile_sizes[tile_size]
|
| 78 |
+
per_tile_area = info["area_sqft"]
|
| 79 |
+
if per_tile_area <= 0:
|
| 80 |
+
return jsonify({"error": f"Tile size '{tile_size}' has invalid area data."}), 400
|
| 81 |
+
|
| 82 |
+
tiles_needed = math.ceil((area / per_tile_area) * 1.1)
|
| 83 |
+
boxes = math.ceil(tiles_needed / info.get("tiles_per_box", 10))
|
| 84 |
|
| 85 |
+
matches = [p for p in tile_catalog if p["type"].lower() == tile_type and p["size"] == tile_size]
|
| 86 |
|
| 87 |
return jsonify({
|
| 88 |
+
"tiles_needed": tiles_needed,
|
| 89 |
+
"boxes_needed": boxes,
|
| 90 |
+
"matching_products": matches[:3],
|
| 91 |
+
"total_matches": len(matches)
|
| 92 |
})
|
| 93 |
except Exception as e:
|
| 94 |
+
print("β Error in /calculate:", str(e))
|
| 95 |
+
return jsonify({"error": "Please ensure valid tile type, size, and area are provided."}), 500
|
| 96 |
|
| 97 |
def prepare_features(tile_type, coverage, area, price_range):
|
| 98 |
tile_type_num = 0 if tile_type == "floor" else 1
|
| 99 |
min_price, max_price = price_range
|
| 100 |
+
price_per_sqft = max_price / coverage
|
| 101 |
+
efficiency = coverage / max_price
|
| 102 |
return np.array([[tile_type_num, area, coverage, min_price, max_price, price_per_sqft, efficiency]])
|
| 103 |
|
| 104 |
def filter_products(tile_type, price_range, preferred_sizes):
|
|
|
|
| 113 |
continue
|
| 114 |
|
| 115 |
price_score = 1 - (product["price"] - min_price) / (max_price - min_price + 1e-6)
|
| 116 |
+
size_score = 1 if product["size"] in preferred_sizes else 0.5
|
| 117 |
score = round((price_score + size_score) / 2, 2)
|
| 118 |
filtered.append({**product, "recommendation_score": score})
|
| 119 |
return sorted(filtered, key=lambda x: x["recommendation_score"], reverse=True)
|