ConstantCoder's picture
Update app.py
56ff163 verified
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.pipeline import Pipeline
import streamlit as st
df = pd.read_excel("cars.xls")
x = df.drop('Price', axis=1)
y = df['Price']
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
preprocess = ColumnTransformer(
transformers=[
('num', StandardScaler(), ['Mileage', 'Cylinder', 'Liter', 'Doors']),
('cat', OneHotEncoder(), ['Make', 'Model', 'Trim', 'Type', 'Cruise', 'Sound', 'Leather'])
]
)
my_model = LinearRegression()
pipe = Pipeline(steps=[('preprocessor', preprocess), ('model', my_model)])
pipe.fit(x_train, y_train)
y_pred = pipe.predict(x_test)
print('RMSE', mean_squared_error(y_test, y_pred) ** 0.5)
print('R2', r2_score(y_test, y_pred))
st.title("II. El Araba Fiyatı Tahmin:red_car: @aysel_olcer")
st.write('Arabanın özelliklerini seçiniz')
make = st.selectbox('Marka', df['Make'].unique())
model = st.selectbox('Model', df[df['Make'] == make]['Model'].unique())
trim = st.selectbox('Trim', df[(df['Make'] == make) & (df['Model'] == model)]['Trim'].unique())
mileage = st.number_input('Kilometre', 100, 200000)
car_type = st.selectbox('Araç Tipi', df['Type'].unique())
cylinder = st.selectbox('Silindir', df['Cylinder'].unique())
liter = st.number_input('Yakıt Hacmi', 1, 10)
doors = st.selectbox('Kapı sayısı', df['Doors'].unique())
cruise = st.radio('Hız Sbt.', [True, False])
sound = st.radio('Ses Sistemi.', [True, False])
leather = st.radio('Deri döşeme.', [True, False])
def price(make, model, trim, mileage, car_type, cylinder, liter, doors, cruise, sound, leather):
input_data = pd.DataFrame({
'Make': [make],
'Model': [model],
'Trim': [trim],
'Mileage': [mileage],
'Type': [car_type],
'Cylinder': [cylinder],
'Liter': [liter],
'Doors': [doors],
'Cruise': [cruise],
'Sound': [sound],
'Leather': [leather]
})
prediction = pipe.predict(input_data)[0]
return prediction
if st.button('Tahmin Et'):
pred = price(make, model, trim, mileage, car_type, cylinder, liter, doors, cruise, sound, leather)
st.write('Fiyat:red_car: $', round(pred, 2))