Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- services/grammar_service.py +68 -27
services/grammar_service.py
CHANGED
|
@@ -2,69 +2,110 @@ import os
|
|
| 2 |
import nltk
|
| 3 |
import torch
|
| 4 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 5 |
-
from huggingface_hub import snapshot_download
|
| 6 |
|
| 7 |
class GrammarService:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
_models = {}
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
_hf_token = os.environ.get("HUGGING_FACE_TOKEN")
|
| 11 |
|
| 12 |
@classmethod
|
| 13 |
def load_models(cls):
|
|
|
|
|
|
|
|
|
|
| 14 |
print("="*50)
|
| 15 |
-
print(f"
|
| 16 |
|
| 17 |
-
# --- NLTK
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
os.makedirs(local_nltk_data_path)
|
| 21 |
-
nltk.data.path.append(local_nltk_data_path)
|
| 22 |
try:
|
| 23 |
nltk.data.find('tokenizers/punkt')
|
| 24 |
-
print(
|
| 25 |
except LookupError:
|
| 26 |
-
print(
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
|
| 29 |
supported_languages = ["english", "french"]
|
| 30 |
|
| 31 |
if not cls._hf_token:
|
| 32 |
-
print(" > [FATAL ERROR] HUGGING_FACE_TOKEN not set.")
|
| 33 |
return
|
| 34 |
|
| 35 |
for lang in supported_languages:
|
| 36 |
model_subfolder = lang
|
| 37 |
print(f" > Processing model for '{lang}'...")
|
| 38 |
try:
|
| 39 |
-
|
| 40 |
-
print(f" > Step 1: Downloading all files from subfolder '{model_subfolder}'...")
|
| 41 |
-
# snapshot_download is the most reliable way to download a whole folder
|
| 42 |
-
# It will use the token and save files to a local cache directory
|
| 43 |
local_model_dir = snapshot_download(
|
| 44 |
repo_id=cls._hf_repo_name,
|
| 45 |
-
allow_patterns=f"{model_subfolder}/*",
|
| 46 |
use_auth_token=cls._hf_token,
|
| 47 |
repo_type="model"
|
| 48 |
)
|
| 49 |
-
print(f"
|
| 50 |
|
| 51 |
-
|
| 52 |
-
print(f" > Step 2: Loading pipeline from local cache...")
|
| 53 |
-
device_num = 0 if torch.cuda.is_available() else -1
|
| 54 |
-
# We point the pipeline to the specific subfolder inside the cache
|
| 55 |
final_model_path = os.path.join(local_model_dir, model_subfolder)
|
| 56 |
cls._models[lang] = pipeline(
|
| 57 |
"text2text-generation",
|
| 58 |
-
model=final_model_path,
|
| 59 |
-
device
|
| 60 |
)
|
| 61 |
print(f" > Model for '{lang}' loaded successfully into memory.")
|
| 62 |
|
| 63 |
except Exception as e:
|
| 64 |
-
print(f" > [FATAL ERROR] during processing for '{lang}'.")
|
| 65 |
-
|
| 66 |
|
| 67 |
print("Model loading complete.")
|
| 68 |
print("="*50)
|
| 69 |
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import nltk
|
| 3 |
import torch
|
| 4 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 5 |
+
from huggingface_hub import snapshot_download
|
| 6 |
|
| 7 |
class GrammarService:
|
| 8 |
+
"""
|
| 9 |
+
Final, definitive service class.
|
| 10 |
+
- Models are downloaded from a private Hugging Face Hub.
|
| 11 |
+
- NLTK data is expected to be pre-installed by the Docker build process.
|
| 12 |
+
"""
|
| 13 |
_models = {}
|
| 14 |
+
|
| 15 |
+
# --- CONFIGURATION ---
|
| 16 |
+
_hf_repo_name = "Connexus/grammar-genie-models" # Your specific repo name
|
| 17 |
_hf_token = os.environ.get("HUGGING_FACE_TOKEN")
|
| 18 |
|
| 19 |
@classmethod
|
| 20 |
def load_models(cls):
|
| 21 |
+
"""
|
| 22 |
+
Loads all available models from the private Hugging Face repository into memory.
|
| 23 |
+
"""
|
| 24 |
print("="*50)
|
| 25 |
+
print(f"Final Version Startup: Loading models from '{cls._hf_repo_name}'...")
|
| 26 |
|
| 27 |
+
# --- FINAL NLTK SETUP ---
|
| 28 |
+
# The Dockerfile is now responsible for the download.
|
| 29 |
+
# This code just verifies that the data is present where NLTK can find it.
|
|
|
|
|
|
|
| 30 |
try:
|
| 31 |
nltk.data.find('tokenizers/punkt')
|
| 32 |
+
print(" > NLTK 'punkt' tokenizer found successfully.")
|
| 33 |
except LookupError:
|
| 34 |
+
print(" > [FATAL ERROR] NLTK 'punkt' not found. The Docker build may have failed to download it.")
|
| 35 |
+
# Stop the application if NLTK data is missing, as it cannot function.
|
| 36 |
+
return
|
| 37 |
+
# --- END OF NLTK SETUP ---
|
| 38 |
|
| 39 |
supported_languages = ["english", "french"]
|
| 40 |
|
| 41 |
if not cls._hf_token:
|
| 42 |
+
print(" > [FATAL ERROR] HUGGING_FACE_TOKEN environment variable not set.")
|
| 43 |
return
|
| 44 |
|
| 45 |
for lang in supported_languages:
|
| 46 |
model_subfolder = lang
|
| 47 |
print(f" > Processing model for '{lang}'...")
|
| 48 |
try:
|
| 49 |
+
print(f" - Step 1: Downloading files from subfolder '{model_subfolder}'...")
|
|
|
|
|
|
|
|
|
|
| 50 |
local_model_dir = snapshot_download(
|
| 51 |
repo_id=cls._hf_repo_name,
|
| 52 |
+
allow_patterns=f"{model_subfolder}/*",
|
| 53 |
use_auth_token=cls._hf_token,
|
| 54 |
repo_type="model"
|
| 55 |
)
|
| 56 |
+
print(f" - Download complete.")
|
| 57 |
|
| 58 |
+
print(f" - Step 2: Loading pipeline from local cache...")
|
|
|
|
|
|
|
|
|
|
| 59 |
final_model_path = os.path.join(local_model_dir, model_subfolder)
|
| 60 |
cls._models[lang] = pipeline(
|
| 61 |
"text2text-generation",
|
| 62 |
+
model=final_model_path,
|
| 63 |
+
device=-1 # Force CPU
|
| 64 |
)
|
| 65 |
print(f" > Model for '{lang}' loaded successfully into memory.")
|
| 66 |
|
| 67 |
except Exception as e:
|
| 68 |
+
print(f" > [FATAL ERROR] during processing for '{lang}'. Details: {e}")
|
| 69 |
+
return
|
| 70 |
|
| 71 |
print("Model loading complete.")
|
| 72 |
print("="*50)
|
| 73 |
|
| 74 |
+
@classmethod
|
| 75 |
+
def correct_paragraph(cls, paragraph: str, language: str) -> str:
|
| 76 |
+
"""
|
| 77 |
+
Corrects the grammar of a paragraph for a specified language.
|
| 78 |
+
"""
|
| 79 |
+
if language not in cls._models:
|
| 80 |
+
return f"Error: Language '{language}' is not supported or its model failed to load."
|
| 81 |
+
|
| 82 |
+
corrector = cls._models[language]
|
| 83 |
+
sentences = nltk.sent_tokenize(paragraph)
|
| 84 |
+
|
| 85 |
+
if language == 'english':
|
| 86 |
+
prefix = "fix grammatical errors in the following text: "
|
| 87 |
+
elif language == 'french':
|
| 88 |
+
prefix = ""
|
| 89 |
+
else:
|
| 90 |
+
prefix = "correct grammar: "
|
| 91 |
+
|
| 92 |
+
corrected_sentences = []
|
| 93 |
+
for sentence in sentences:
|
| 94 |
+
input_text = f"{prefix}{sentence}"
|
| 95 |
+
try:
|
| 96 |
+
results = corrector(input_text, max_length=256, num_beams=5)
|
| 97 |
+
raw_output = results[0]['generated_text']
|
| 98 |
+
|
| 99 |
+
if prefix and raw_output.startswith(prefix):
|
| 100 |
+
clean_sentence = raw_output.replace(prefix, "", 1).strip()
|
| 101 |
+
else:
|
| 102 |
+
clean_sentence = raw_output.strip()
|
| 103 |
+
|
| 104 |
+
corrected_sentences.append(clean_sentence)
|
| 105 |
+
except Exception as e:
|
| 106 |
+
print(f" > [WARNING] Failed to process a sentence. Using original. Error: {e}")
|
| 107 |
+
corrected_sentences.append(sentence)
|
| 108 |
+
|
| 109 |
+
return " ".join(corrected_sentences)
|
| 110 |
+
|
| 111 |
+
### Next Steps
|