Conner commited on
Commit
5f0082d
1 Parent(s): fd2d726

app.py created

Browse files
Files changed (1) hide show
  1. app.py +28 -0
app.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from keras.models import load_model
2
+ from PIL import Image, ImageOps
3
+ import numpy as np
4
+
5
+ # Load the model
6
+ model = load_model('keras_model.h5')
7
+
8
+ # Create the array of the right shape to feed into the keras model
9
+ # The 'length' or number of images you can put into the array is
10
+ # determined by the first position in the shape tuple, in this case 1.
11
+ data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
12
+ # Replace this with the path to your image
13
+ image = Image.open('<IMAGE_PATH>')
14
+ #resize the image to a 224x224 with the same strategy as in TM2:
15
+ #resizing the image to be at least 224x224 and then cropping from the center
16
+ size = (224, 224)
17
+ image = ImageOps.fit(image, size, Image.ANTIALIAS)
18
+
19
+ #turn the image into a numpy array
20
+ image_array = np.asarray(image)
21
+ # Normalize the image
22
+ normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
23
+ # Load the image into the array
24
+ data[0] = normalized_image_array
25
+
26
+ # run the inference
27
+ prediction = model.predict(data)
28
+ print(prediction)