Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import cv2 | |
| import numpy as np | |
| from tensorflow.keras.models import load_model | |
| from tensorflow.keras.preprocessing.image import img_to_array | |
| from tensorflow.keras.applications.mobilenet_v2 import preprocess_input | |
| # Function to detect and predict mask | |
| def detect_and_predict_mask(frame, faceNet, maskNet, confidence_threshold): | |
| (h, w) = frame.shape[:2] | |
| blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), (104.0, 177.0, 123.0)) | |
| faceNet.setInput(blob) | |
| detections = faceNet.forward() | |
| faces = [] | |
| locs = [] | |
| preds = [] | |
| for i in range(detections.shape[2]): | |
| confidence = detections[0, 0, i, 2] | |
| if confidence > confidence_threshold: | |
| box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) | |
| (startX, startY, endX, endY) = box.astype("int") | |
| (startX, startY) = (max(0, startX), max(0, startY)) | |
| (endX, endY) = (min(w - 1, endX), min(h - 1, endY)) | |
| face = frame[startY:endY, startX:endX] | |
| if face.shape[0] > 0 and face.shape[1] > 0: | |
| face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) | |
| face = cv2.resize(face, (224, 224)) | |
| face = img_to_array(face) | |
| face = preprocess_input(face) | |
| faces.append(face) | |
| locs.append((startX, startY, endX, endY)) | |
| if len(faces) > 0: | |
| faces = np.array(faces, dtype="float32") | |
| preds = maskNet.predict(faces, batch_size=32) | |
| return (locs, preds) | |
| # Load models | |
| def load_models(): | |
| prototxtPath = "face_detector/deploy.prototxt" | |
| weightsPath = "face_detector/res10_300x300_ssd_iter_140000.caffemodel" | |
| faceNet = cv2.dnn.readNet(prototxtPath, weightsPath) | |
| maskNet = load_model("mask_detector.model") | |
| return faceNet, maskNet | |
| faceNet, maskNet = load_models() | |
| # Streamlit UI | |
| st.title("Real-Time Face Mask Detection with TensorFlow") | |
| st.text("Turn on your webcam to detect masks in real-time.") | |
| run = st.button("Start Camera") | |
| # Create a Streamlit "Stop" button outside the loop to avoid duplicate key issues | |
| stop_button = st.button("Stop") | |
| if run: | |
| confidence_threshold = st.slider("Confidence Threshold", 0.1, 1.0, 0.5, 0.1) | |
| stframe = st.empty() | |
| cap = cv2.VideoCapture(0) | |
| while True: | |
| ret, frame = cap.read() | |
| if not ret: | |
| st.error("Failed to access camera.") | |
| break | |
| frame = cv2.resize(frame, (800, 600)) | |
| locs, preds = detect_and_predict_mask(frame, faceNet, maskNet, confidence_threshold) | |
| for (box, pred) in zip(locs, preds): | |
| (startX, startY, endX, endY) = box | |
| (mask, withoutMask) = pred | |
| label = "Mask" if mask > withoutMask else "No Mask" | |
| color = (0, 255, 0) if label == "Mask" else (0, 0, 255) | |
| text = f"{label}: {'Allowed' if label == 'Mask' else 'Not Allowed'}" | |
| cv2.putText(frame, text, (startX, startY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2) | |
| cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2) | |
| stframe.image(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), channels="RGB") | |
| # Check if the "Stop" button was clicked | |
| if stop_button: | |
| break | |
| cap.release() | |
| cv2.destroyAllWindows() | |