|
import argparse |
|
import gradio as gr |
|
from ui import chat |
|
import os |
|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
|
|
USERNAME = os.getenv("USERNAME") |
|
PWD = os.getenv("PWD") |
|
|
|
def main(args): |
|
demo = gr.ChatInterface( |
|
fn=chat, |
|
examples=["Explain the enteerprise adoption challenges", "How can we identify a fraud transaction?", "Por que os grandes modelos de linguagem de AI halucinam?"], |
|
title="Chat and LLM server in the same application", |
|
description="This space is a template that we can duplicate for your own usage. " |
|
"This space let you build LLM powered idea on top of [Gradio](https://www.gradio.app/) " |
|
"and open LLM served locally by [TGI(Text Generation Inference)](https://huggingface.co/docs/text-generation-inference/en/index). " |
|
"Below is a placeholder Gradio ChatInterface for you to try out Mistral-7B backed by the power of TGI's efficiency. \n\n" |
|
"To use this space for your own usecase, follow the simple steps below:\n" |
|
"1. Duplicate this space. \n" |
|
"2. Set which LLM you wish to use (i.e. mistralai/Mistral-7B-Instruct-v0.2). \n" |
|
"3. Inside app/main.py write Gradio application. \n", |
|
multimodal=False, |
|
theme='sudeepshouche/minimalist', |
|
) |
|
|
|
demo.queue( |
|
default_concurrency_limit=20, |
|
max_size=256 |
|
).launch(auth=(USERNAME, PWD), server_name="0.0.0.0", server_port=args.port) |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="A MAGIC example by ConceptaTech") |
|
parser.add_argument("--port", type=int, default=7860, help="Port to expose Gradio app") |
|
|
|
args = parser.parse_args() |
|
main(args) |
|
|