Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import lru_cache
|
2 |
+
import time, aiohttp, asyncio, json, os, multiprocessing, torch, \
|
3 |
+
requests, xmltodict, fitz, io
|
4 |
+
from minivectordb.embedding_model import EmbeddingModel
|
5 |
+
from minivectordb.vector_database import VectorDatabase
|
6 |
+
from text_util_en_pt.cleaner import structurize_text, detect_language, Language
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
torch.set_num_threads(2)
|
10 |
+
|
11 |
+
openrouter_key = os.environ.get("OPENROUTER_KEY")
|
12 |
+
model = EmbeddingModel(use_quantized_onnx_model=True)
|
13 |
+
|
14 |
+
def convert_xml_to_json(xml):
|
15 |
+
return xmltodict.parse(xml)
|
16 |
+
|
17 |
+
def clean_title(title):
|
18 |
+
title = title.replace('\n', ' ')
|
19 |
+
while ' ' in title:
|
20 |
+
title = title.replace(' ', ' ')
|
21 |
+
return title
|
22 |
+
|
23 |
+
@lru_cache(maxsize=500)
|
24 |
+
def fetch_arxiv_links(query, max_results=5):
|
25 |
+
url = f'http://export.arxiv.org/api/query?search_query=all:{query}&start=0&max_results={max_results}'
|
26 |
+
response = requests.get(url)
|
27 |
+
json_response = convert_xml_to_json(response.text)
|
28 |
+
|
29 |
+
# Return a list of titles and links, and pdf links
|
30 |
+
entries = []
|
31 |
+
for entry in json_response['feed']['entry']:
|
32 |
+
|
33 |
+
title = entry['title']
|
34 |
+
id = entry['id'].split('/abs/')[-1]
|
35 |
+
|
36 |
+
link = f'http://arxiv.org/abs/{id}'
|
37 |
+
pdf_link = f'http://arxiv.org/pdf/{id}.pdf'
|
38 |
+
|
39 |
+
entries.append({
|
40 |
+
'title': clean_title(title),
|
41 |
+
'link': link,
|
42 |
+
'pdf_link': pdf_link
|
43 |
+
})
|
44 |
+
return entries
|
45 |
+
|
46 |
+
def download_pdf_from_link(link):
|
47 |
+
# Download the file and hold it in memory
|
48 |
+
response = requests.get(link)
|
49 |
+
return io.BytesIO(response.content)
|
50 |
+
|
51 |
+
@lru_cache(maxsize=100)
|
52 |
+
def read_remote_pdf(pdf_metadata):
|
53 |
+
pdf_metadata = json.loads(pdf_metadata)
|
54 |
+
|
55 |
+
link = pdf_metadata['pdf_link']
|
56 |
+
title = pdf_metadata['title']
|
57 |
+
|
58 |
+
pdf_content = download_pdf_from_link(link)
|
59 |
+
pdf_file = fitz.open("pdf", pdf_content.read())
|
60 |
+
text_content = [page.get_text() for page in pdf_file]
|
61 |
+
pdf_file.close()
|
62 |
+
del pdf_file
|
63 |
+
return {'title': title, 'text': '\n'.join(text_content)}
|
64 |
+
|
65 |
+
def fetch_data_from_pdfs(links):
|
66 |
+
links = [ json.dumps(link) for link in links ]
|
67 |
+
with multiprocessing.Pool(10) as pool:
|
68 |
+
pdf_metadata = pool.map(read_remote_pdf, links)
|
69 |
+
return pdf_metadata
|
70 |
+
|
71 |
+
def index_and_search(query, pdf_metadata):
|
72 |
+
start = time.time()
|
73 |
+
query_embedding = model.extract_embeddings(query)
|
74 |
+
|
75 |
+
# Indexing
|
76 |
+
vector_db = VectorDatabase()
|
77 |
+
|
78 |
+
sentence_counter = 1
|
79 |
+
|
80 |
+
for pdf_data in pdf_metadata:
|
81 |
+
text = pdf_data['text']
|
82 |
+
title = pdf_data['title']
|
83 |
+
|
84 |
+
sentences = [ s['sentence'] for s in structurize_text(text)]
|
85 |
+
|
86 |
+
for sentence in sentences:
|
87 |
+
sentence_embedding = model.extract_embeddings(sentence)
|
88 |
+
vector_db.store_embedding(
|
89 |
+
sentence_counter,
|
90 |
+
sentence_embedding,
|
91 |
+
{
|
92 |
+
'sentence': sentence,
|
93 |
+
'title': title
|
94 |
+
}
|
95 |
+
)
|
96 |
+
sentence_counter += 1
|
97 |
+
|
98 |
+
embedding_time = time.time() - start
|
99 |
+
|
100 |
+
# Retrieval
|
101 |
+
start = time.time()
|
102 |
+
search_results = vector_db.find_most_similar(query_embedding, k = 15)
|
103 |
+
search_metadata = search_results[2]
|
104 |
+
retrieval_time = time.time() - start
|
105 |
+
|
106 |
+
retrieved_contents = {}
|
107 |
+
for ret_cont in search_metadata:
|
108 |
+
title = ret_cont['title']
|
109 |
+
if title not in retrieved_contents:
|
110 |
+
retrieved_contents[title] = []
|
111 |
+
retrieved_contents[title].append(ret_cont['sentence'])
|
112 |
+
|
113 |
+
retrieved_contents = {k: '\n'.join(v) for k, v in retrieved_contents.items()}
|
114 |
+
|
115 |
+
return retrieved_contents, embedding_time, retrieval_time
|
116 |
+
|
117 |
+
def retrieval_pipeline(query, question):
|
118 |
+
start = time.time()
|
119 |
+
links = fetch_arxiv_links(query)
|
120 |
+
websearch_time = time.time() - start
|
121 |
+
|
122 |
+
start = time.time()
|
123 |
+
pdf_metadata = fetch_data_from_pdfs(links)
|
124 |
+
webcrawl_time = time.time() - start
|
125 |
+
|
126 |
+
retrieved_contents, embedding_time, retrieval_time = index_and_search(question, pdf_metadata)
|
127 |
+
|
128 |
+
return retrieved_contents, websearch_time, webcrawl_time, embedding_time, retrieval_time, links
|
129 |
+
|
130 |
+
async def predict(message, history):
|
131 |
+
# message is in format: "Search: <query>; Question: <question>"
|
132 |
+
# we need to parse both parts into variables
|
133 |
+
message = message.split(';')
|
134 |
+
|
135 |
+
query = message[0].split(':')[-1].strip()
|
136 |
+
question = message[1].split(':')[-1].strip()
|
137 |
+
|
138 |
+
retrieved_contents, websearch_time, webcrawl_time, embedding_time, retrieval_time, links = retrieval_pipeline(query, question)
|
139 |
+
|
140 |
+
if detect_language(message) == Language.ptbr:
|
141 |
+
context = ""
|
142 |
+
for title, content in retrieved_contents.items():
|
143 |
+
context += f'Artigo "{title}"\nConteúdo:\n{content}\n\n'
|
144 |
+
prompt = f'{context.strip()}\n\nBaseado nos conteúdos dos artigos, responda: "{message}"\n\nPor favor, mencione a fonte da sua resposta.'
|
145 |
+
else:
|
146 |
+
context = ""
|
147 |
+
for title, content in retrieved_contents.items():
|
148 |
+
context += f'Article "{title}"\nContent:\n{content}\n\n'
|
149 |
+
prompt = f'{context.strip()}\n\nBased on the article\'s contents, answer: "{message}"\n\nPlease, mention the source of your answer.'
|
150 |
+
|
151 |
+
print(prompt)
|
152 |
+
|
153 |
+
url = "https://openrouter.ai/api/v1/chat/completions"
|
154 |
+
headers = { "Content-Type": "application/json",
|
155 |
+
"Authorization": f"Bearer {openrouter_key}" }
|
156 |
+
body = { "stream": True,
|
157 |
+
"models": [
|
158 |
+
"mistralai/mistral-7b-instruct:free",
|
159 |
+
"openchat/openchat-7b:free"
|
160 |
+
],
|
161 |
+
"route": "fallback",
|
162 |
+
"max_tokens": 1024,
|
163 |
+
"messages": [
|
164 |
+
{"role": "user", "content": prompt}
|
165 |
+
] }
|
166 |
+
|
167 |
+
full_response = ""
|
168 |
+
async with aiohttp.ClientSession() as session:
|
169 |
+
async with session.post(url, headers=headers, json=body) as response:
|
170 |
+
buffer = "" # A buffer to hold incomplete lines of data
|
171 |
+
async for chunk in response.content.iter_any():
|
172 |
+
buffer += chunk.decode()
|
173 |
+
while "\n" in buffer: # Process as long as there are complete lines in the buffer
|
174 |
+
line, buffer = buffer.split("\n", 1)
|
175 |
+
|
176 |
+
if line.startswith("data: "):
|
177 |
+
event_data = line[len("data: "):]
|
178 |
+
if event_data != '[DONE]':
|
179 |
+
try:
|
180 |
+
current_text = json.loads(event_data)['choices'][0]['delta']['content']
|
181 |
+
full_response += current_text
|
182 |
+
yield full_response
|
183 |
+
await asyncio.sleep(0.01)
|
184 |
+
except Exception:
|
185 |
+
try:
|
186 |
+
current_text = json.loads(event_data)['choices'][0]['text']
|
187 |
+
full_response += current_text
|
188 |
+
yield full_response
|
189 |
+
await asyncio.sleep(0.01)
|
190 |
+
except Exception:
|
191 |
+
pass
|
192 |
+
|
193 |
+
final_metadata_block = ""
|
194 |
+
|
195 |
+
final_metadata_block += f"Links visited:\n"
|
196 |
+
for link in links:
|
197 |
+
final_metadata_block += f"{link['title']} ({link['link']})\n"
|
198 |
+
final_metadata_block += f"\nWeb search time: {websearch_time:.4f} seconds\n"
|
199 |
+
final_metadata_block += f"\nText extraction: {webcrawl_time:.4f} seconds\n"
|
200 |
+
final_metadata_block += f"\nEmbedding time: {embedding_time:.4f} seconds\n"
|
201 |
+
final_metadata_block += f"\nRetrieval from VectorDB time: {retrieval_time:.4f} seconds"
|
202 |
+
|
203 |
+
yield f"{full_response}\n\n{final_metadata_block}"
|
204 |
+
|
205 |
+
gr.ChatInterface(
|
206 |
+
predict,
|
207 |
+
title="Automated Arxiv Paper Search and Question Answering",
|
208 |
+
description="Provide a search term and a question to find relevant papers and answer questions about them.",
|
209 |
+
retry_btn=None,
|
210 |
+
undo_btn=None,
|
211 |
+
examples=[
|
212 |
+
'Search: RAG LLMS; Question: What are some challenges of implementing a system of RAG with LLMS ?',
|
213 |
+
'Search: LLM Self-Play; Question: What are the benefits of using self-play with LLMS?',
|
214 |
+
'Search: Brazil Tax Rate; Question: Why does Brazil has a high tax rate?',
|
215 |
+
'Search: Stomach medicine; Question: Can stomach medicine cause genetic mutations?'
|
216 |
+
]
|
217 |
+
).launch()
|