Spaces:
Runtime error
Runtime error
apolinario
commited on
Commit
·
86a76f5
1
Parent(s):
c38543f
Initial version
Browse files- app.py +33 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import LatentDiffusionPipeline
|
2 |
+
import gradio as gr
|
3 |
+
import PIL.Image
|
4 |
+
import numpy as np
|
5 |
+
import random
|
6 |
+
import torch
|
7 |
+
|
8 |
+
ldm_pipeline = LatentDiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")
|
9 |
+
images = []
|
10 |
+
|
11 |
+
def predict(prompt, steps=100, seed=42, guidance_scale=5.0):
|
12 |
+
torch.cuda.empty_cache()
|
13 |
+
generator = torch.manual_seed(seed)
|
14 |
+
image = ldm_pipeline([prompt], generator=generator, num_inference_steps=steps, guidance_scale=guidance_scale)
|
15 |
+
image_processed = image.cpu().permute(0, 2, 3, 1)
|
16 |
+
image_processed = (image_processed + 1.0) * 127.5
|
17 |
+
image_processed = image_processed.clamp(0, 255).numpy().astype(np.uint8)
|
18 |
+
return PIL.Image.fromarray(image_processed[0])
|
19 |
+
|
20 |
+
random_seed = random.randint(0, 2147483647)
|
21 |
+
gr.Interface(
|
22 |
+
predict,
|
23 |
+
inputs=[
|
24 |
+
gr.inputs.Textbox(label='Prompt', default='a chalk pastel drawing of a llama wearing a wizard hat'),
|
25 |
+
gr.inputs.Slider(1, 100, label='Inference Steps', default=50, step=1),
|
26 |
+
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1),
|
27 |
+
gr.inputs.Slider(1.0, 20.0, label='Guidance Scale - how much the prompt will influence the results', default=5.0, step=0.1),
|
28 |
+
],
|
29 |
+
outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"),
|
30 |
+
css="#output_image{width: 256px}",
|
31 |
+
title="ldm-text2im-large-256 - 🧨 diffusers library",
|
32 |
+
description="This Spaces contains a text-to-image Latent Diffusion process for the <a href=\"https://huggingface.co/CompVis/ldm-text2im-large-256\">ldm-text2im-large-256</a> model by <a href=\"https://huggingface.co/CompVis\">CompVis</a> using the <a href=\"https://github.com/huggingface/diffusers\">diffusers library</a>. The goal of this demo is to showcase the diffusers library and you can check how the code works here. If you want the state-of-the-art experience with Latent Diffusion text-to-image check out the <a href=\"https://huggingface.co/spaces/multimodalart/latentdiffusion\">main Spaces</a>.",
|
33 |
+
).launch()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/diffusers.git
|