Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -220,10 +220,10 @@ with gr.Blocks() as demo:
|
|
220 |
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
|
221 |
num_tokens_global = num_tokens
|
222 |
embedding_learning_rate = gr.Textbox(value="0.00025", label="Embedding optimization: Learning rate", interactive= True )
|
223 |
-
max_emb_train_steps = gr.Number(value="6",
|
224 |
|
225 |
diffusion_model_learning_rate = gr.Textbox(value="0.0002", label="UNet Optimization: Learning rate", interactive= True )
|
226 |
-
max_diffusion_train_steps = gr.Number(value="28",
|
227 |
|
228 |
train_batch_size = gr.Number(value="20", label="Batch size", interactive= True )
|
229 |
gradient_accumulation_steps=gr.Number(value="2", label="Gradient accumulation", interactive= True )
|
@@ -249,9 +249,9 @@ with gr.Blocks() as demo:
|
|
249 |
image_gt=np.array(image),
|
250 |
num_tokens=int(num_tokens),
|
251 |
embedding_learning_rate = float(embedding_learning_rate),
|
252 |
-
max_emb_train_steps = int(max_emb_train_steps),
|
253 |
diffusion_model_learning_rate= float(diffusion_model_learning_rate),
|
254 |
-
max_diffusion_train_steps = int(max_diffusion_train_steps),
|
255 |
train_batch_size=int(train_batch_size),
|
256 |
gradient_accumulation_steps=int(gradient_accumulation_steps)
|
257 |
)
|
|
|
220 |
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
|
221 |
num_tokens_global = num_tokens
|
222 |
embedding_learning_rate = gr.Textbox(value="0.00025", label="Embedding optimization: Learning rate", interactive= True )
|
223 |
+
max_emb_train_steps = gr.Number(value="6", label="embedding optimization: Training steps", interactive= True )
|
224 |
|
225 |
diffusion_model_learning_rate = gr.Textbox(value="0.0002", label="UNet Optimization: Learning rate", interactive= True )
|
226 |
+
max_diffusion_train_steps = gr.Number(value="28", label="UNet Optimization: Learning rate: Training steps", interactive= True )
|
227 |
|
228 |
train_batch_size = gr.Number(value="20", label="Batch size", interactive= True )
|
229 |
gradient_accumulation_steps=gr.Number(value="2", label="Gradient accumulation", interactive= True )
|
|
|
249 |
image_gt=np.array(image),
|
250 |
num_tokens=int(num_tokens),
|
251 |
embedding_learning_rate = float(embedding_learning_rate),
|
252 |
+
max_emb_train_steps = min(int(max_emb_train_steps),50),
|
253 |
diffusion_model_learning_rate= float(diffusion_model_learning_rate),
|
254 |
+
max_diffusion_train_steps = min(int(max_diffusion_train_steps),100),
|
255 |
train_batch_size=int(train_batch_size),
|
256 |
gradient_accumulation_steps=int(gradient_accumulation_steps)
|
257 |
)
|