niulx commited on
Commit
05cf004
·
verified ·
1 Parent(s): a324ab1

Update app.py

Browse files

step2 and step3 together

Files changed (1) hide show
  1. app.py +39 -36
app.py CHANGED
@@ -119,7 +119,7 @@ def slider_release(index, image, mask_np_list_updated, mask_label_list):
119
  gr.Info('Edit '+ mask_label)
120
  return new_image, mask_label, mask_prompt
121
  def image_change():
122
- return gr.Slider(value = 0, minimum=0, maximum=1, step=1, visible=False),gr.Button("Step 3. Run Editing (Check log for progress.)",interactive = False)
123
 
124
  def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
125
  print(mask_np_list_updated)
@@ -188,7 +188,7 @@ with gr.Blocks() as demo:
188
  with gr.Row():
189
  gr.Markdown("""# D-Edit""")
190
 
191
- with gr.Tab(label="D-edit"):
192
  with gr.Row():
193
  with gr.Column():
194
  canvas = gr.Image(value = None, type="numpy", label="Show Mask", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
@@ -211,7 +211,6 @@ with gr.Blocks() as demo:
211
 
212
 
213
 
214
- #with gr.Tab(label="2 Optimization"):
215
 
216
  result_info = gr.Text(label="Response")
217
 
@@ -229,7 +228,6 @@ with gr.Blocks() as demo:
229
  train_batch_size = gr.Number(value="20", label="Batch size", interactive= True )
230
  gradient_accumulation_steps=gr.Number(value="2", label="Gradient accumulation", interactive= True )
231
 
232
- add_button = gr.Button("Step 2. Run optimization")
233
  def run_optimization_wrapper (
234
  mask_np_list,
235
  mask_label_list,
@@ -259,11 +257,11 @@ with gr.Blocks() as demo:
259
  )
260
  run_optimization()
261
  gr.Info("Optimization Finished! Move to the next step.")
262
- return "Optimization finished! Move to the next step.",gr.Button("Step 3. Run Editing",interactive = True)
263
  except Exception as e:
264
  print(e)
265
  gr.Error("e")
266
- return "Error: use a smaller batch size or try latter.",gr.Button("Step 3. Run Editing",interactive = False)
267
 
268
 
269
 
@@ -283,7 +281,7 @@ with gr.Blocks() as demo:
283
  edge_thickness = gr.Number(value="10", label="Editing: Edge thickness", interactive= True )
284
  strength = gr.Textbox(value="0.5", label="Editing: Mask strength", interactive= True )
285
 
286
- add_button2 = gr.Button("Step 3. Run Editing",interactive = False)
287
  def run_edit_text_wrapper(
288
  mask_np_list,
289
  mask_label_list,
@@ -319,36 +317,41 @@ with gr.Blocks() as demo:
319
 
320
 
321
 
 
 
 
 
322
 
323
- canvas.upload(image_change, inputs=[], outputs=[slider,add_button2])
324
- add_button.click(run_optimization_wrapper,
325
- inputs = [
326
- mask_np_list,
327
- mask_label_list,
328
- image_loaded,
329
- opt_flag,
330
- num_tokens,
331
- embedding_learning_rate ,
332
- max_emb_train_steps ,
333
- diffusion_model_learning_rate ,
334
- max_diffusion_train_steps,
335
- train_batch_size,
336
- gradient_accumulation_steps
337
- ],
338
- outputs = [result_info,add_button2], api_name=False, concurrency_limit=45)
339
-
340
- add_button2.click(run_edit_text_wrapper,
341
- inputs = [ mask_np_list,
342
- mask_label_list,
343
- image_loaded,num_tokens_global,
344
- guidance_scale,
345
- num_sampling_steps,
346
- strength ,
347
- edge_thickness,
348
- tgt_prompt ,
349
- slider2
350
- ],
351
- outputs = [canvas_text_edit],queue=True)
 
352
 
353
  slider.release(slider_release,
354
  inputs = [slider, image_loaded, mask_np_list_updated, mask_label_list],
 
119
  gr.Info('Edit '+ mask_label)
120
  return new_image, mask_label, mask_prompt
121
  def image_change():
122
+ return gr.Slider(value = 0, minimum=0, maximum=1, step=1, visible=False)
123
 
124
  def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
125
  print(mask_np_list_updated)
 
188
  with gr.Row():
189
  gr.Markdown("""# D-Edit""")
190
 
191
+ if 1:
192
  with gr.Row():
193
  with gr.Column():
194
  canvas = gr.Image(value = None, type="numpy", label="Show Mask", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
 
211
 
212
 
213
 
 
214
 
215
  result_info = gr.Text(label="Response")
216
 
 
228
  train_batch_size = gr.Number(value="20", label="Batch size", interactive= True )
229
  gradient_accumulation_steps=gr.Number(value="2", label="Gradient accumulation", interactive= True )
230
 
 
231
  def run_optimization_wrapper (
232
  mask_np_list,
233
  mask_label_list,
 
257
  )
258
  run_optimization()
259
  gr.Info("Optimization Finished! Move to the next step.")
260
+ return "Optimization finished! Move to the next step."#,gr.Button("Step 3. Run Editing",interactive = True)
261
  except Exception as e:
262
  print(e)
263
  gr.Error("e")
264
+ return "Error: use a smaller batch size or try latter."#,gr.Button("Step 3. Run Editing",interactive = False)
265
 
266
 
267
 
 
281
  edge_thickness = gr.Number(value="10", label="Editing: Edge thickness", interactive= True )
282
  strength = gr.Textbox(value="0.5", label="Editing: Mask strength", interactive= True )
283
 
284
+ add_button = gr.Button("Step 2. Run Editing",interactive = False)
285
  def run_edit_text_wrapper(
286
  mask_np_list,
287
  mask_label_list,
 
317
 
318
 
319
 
320
+ def run_total_wrapper(mask_np_list, mask_label_list, image_loaded, opt_flag, num_tokens, embedding_learning_rate, max_emb_train_steps, diffusion_model_learning_rate, max_diffusion_train_steps, train_batch_size, gradient_accumulation_steps, num_tokens_global, guidance_scale, num_sampling_steps, strength, edge_thickness, tgt_prompt, slider2):
321
+ result_info = run_optimization_wrapper(mask_np_list, mask_label_list, image_loaded, opt_flag, num_tokens, embedding_learning_rate, max_emb_train_steps, diffusion_model_learning_rate, max_diffusion_train_steps, train_batch_size, gradient_accumulation_steps)
322
+ canvas_text_edit = run_edit_text_wrapper(mask_np_list, mask_label_list, image_loaded, num_tokens_global, guidance_scale, num_sampling_steps, strength, edge_thickness, tgt_prompt, slider2)
323
+ return result_info, canvas_text_edit
324
 
325
+
326
+ add_button.click(
327
+ run_total_wrapper,
328
+ inputs=[
329
+ mask_np_list,
330
+ mask_label_list,
331
+ image_loaded,
332
+ opt_flag,
333
+ num_tokens,
334
+ embedding_learning_rate,
335
+ max_emb_train_steps,
336
+ diffusion_model_learning_rate,
337
+ max_diffusion_train_steps,
338
+ train_batch_size,
339
+ gradient_accumulation_steps,
340
+ num_tokens_global,
341
+ guidance_scale,
342
+ num_sampling_steps,
343
+ strength,
344
+ edge_thickness,
345
+ tgt_prompt,
346
+ slider2
347
+ ],
348
+ outputs=[result_info, canvas_text_edit],
349
+ )
350
+
351
+
352
+
353
+
354
+ canvas.upload(image_change, inputs=[], outputs=[slider])
355
 
356
  slider.release(slider_release,
357
  inputs = [slider, image_loaded, mask_np_list_updated, mask_label_list],