Spaces:
Running
Running
| import os | |
| import sys | |
| sys.path.append("./") | |
| import torch | |
| from torchvision import transforms | |
| from src.transformer import Transformer2DModel | |
| from src.pipeline import Pipeline | |
| from src.scheduler import Scheduler | |
| from transformers import ( | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| ) | |
| from diffusers import VQModel | |
| import gradio as gr | |
| import spaces | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| dtype = torch.bfloat16 | |
| model_path = "Collov-Labs/Monetico" | |
| model = Transformer2DModel.from_pretrained(model_path, subfolder="transformer", torch_dtype=dtype) | |
| vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae", torch_dtype=dtype) | |
| # text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path, subfolder="text_encoder") | |
| text_encoder = CLIPTextModelWithProjection.from_pretrained( #more stable sampling for some cases | |
| "laion/CLIP-ViT-H-14-laion2B-s32B-b79K", torch_dtype=dtype | |
| ) | |
| tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer", torch_dtype=dtype) | |
| scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler", torch_dtype=dtype) | |
| pipe = Pipeline(vq_model, tokenizer=tokenizer, text_encoder=text_encoder, transformer=model, scheduler=scheduler) | |
| pipe.to(device) | |
| MAX_SEED = 2**32 - 1 | |
| MAX_IMAGE_SIZE = 512 | |
| def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed or seed == 0: | |
| seed = torch.randint(0, MAX_SEED, (1,)).item() | |
| torch.manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| height=height, | |
| width=width, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps | |
| ).images[0] | |
| return image, seed | |
| # Default negative prompt | |
| default_negative_prompt = "worst quality, low quality, low res, blurry, distortion, watermark, logo, signature, text, jpeg artifacts, signature, sketch, duplicate, ugly, identifying mark" | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| examples = [ | |
| "Modern Architecture render with pleasing aesthetics.", | |
| "An image of a Pikachu wearing a birthday hat and playing guitar.", | |
| "A statue of a lion stands in front of a building.", | |
| "A white and blue coffee mug with a picture of a man on it.", | |
| "A metal sculpture of a deer with antlers.", | |
| "A bronze statue of an owl with its wings spread.", | |
| "A white table with a vase of flowers and a cup of coffee on top of it.", | |
| "A woman stands on a dock in the fog.", | |
| "A lion's head is shown in a grayscale image.", | |
| "A sculpture of a Greek woman head with a headband and a head of hair." | |
| ] | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("# Monetico Text-to-Image Generator") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| value=default_negative_prompt, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=20.0, | |
| step=0.1, | |
| value=9.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=48, | |
| ) | |
| gr.Examples(examples=examples, inputs=[prompt]) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=generate_image, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| demo.launch() |