Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,56 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
|
4 |
-
|
5 |
-
model_id = "grammarly/coedit-large"
|
6 |
-
pipe = pipeline("text2text-generation", model=model_id)
|
7 |
-
corrected = pipe(text)[0]['generated_text']
|
8 |
-
return corrected
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import InferenceClient
|
2 |
import gradio as gr
|
|
|
3 |
|
4 |
+
client = InferenceClient("grammarly/coedit-large")
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
def generate(prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
|
7 |
+
temperature = float(temperature)
|
8 |
+
if temperature < 1e-2: temperature = 1e-2
|
9 |
+
top_p = float(top_p)
|
10 |
+
|
11 |
+
generate_kwargs = dict(temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42,)
|
12 |
+
|
13 |
+
#formatted_prompt = format_prompt_grammar(f"Corrected Sentence: {prompt}", history)
|
14 |
+
#formatted_prompt = format_prompt(f"{system_prompt} {prompt}", history)
|
15 |
+
formatted_prompt = "Fix grammatical errors in this sentence: " + prompt
|
16 |
+
print("\nPROMPT: \n\t" + formatted_prompt)
|
17 |
+
|
18 |
+
# Generate text from the HF inference
|
19 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
20 |
+
output = ""
|
21 |
+
|
22 |
+
for response in stream:
|
23 |
+
output += response.token.text
|
24 |
+
yield output
|
25 |
+
return output
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
additional_inputs=[
|
30 |
+
gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ),
|
31 |
+
gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ),
|
32 |
+
gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ),
|
33 |
+
gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", )
|
34 |
+
]
|
35 |
+
|
36 |
+
|
37 |
+
gr.ChatInterface(
|
38 |
+
fn=generate,
|
39 |
+
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
40 |
+
additional_inputs=additional_inputs,
|
41 |
+
title="My Grammarly Space",
|
42 |
+
concurrency_limit=20,
|
43 |
+
).launch(show_api=False)
|
44 |
+
|
45 |
+
|
46 |
+
#import gradio as gr
|
47 |
+
#from transformers import pipeline
|
48 |
+
|
49 |
+
#def correct_text(text):
|
50 |
+
# model_id = "grammarly/coedit-large"
|
51 |
+
# pipe = pipeline("text2text-generation", model=model_id)
|
52 |
+
# corrected = pipe(text)[0]['generated_text']
|
53 |
+
# return corrected
|
54 |
+
|
55 |
+
#interface = gr.Interface(fn=correct_text, inputs="text_area", outputs="text")
|
56 |
+
#interface.launch()
|