Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
|
5 |
"""
|
6 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
7 |
"""
|
8 |
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
-
client = InferenceClient("vennify/t5-base-grammar-correction")
|
10 |
#gr.load("models/vennify/t5-base-grammar-correction").launch()
|
11 |
|
12 |
# Load the model and tokenizer
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
def respond(
|
@@ -22,32 +33,22 @@ def respond(
|
|
22 |
history: list[tuple[str, str]],
|
23 |
system_message,
|
24 |
max_tokens,
|
|
|
25 |
temperature,
|
26 |
top_p,
|
27 |
):
|
28 |
-
messages = [{"role": "system", "content": system_message}]
|
29 |
-
|
30 |
-
for val in history:
|
31 |
-
if val[0]:
|
32 |
-
messages.append({"role": "user", "content": val[0]})
|
33 |
-
if val[1]:
|
34 |
-
messages.append({"role": "assistant", "content": val[1]})
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
for message in client.chat_completion(
|
41 |
-
messages,
|
42 |
-
max_tokens=max_tokens,
|
43 |
-
stream=True,
|
44 |
-
temperature=temperature,
|
45 |
-
top_p=top_p,
|
46 |
-
):
|
47 |
-
token = message.choices[0].delta.content
|
48 |
|
49 |
-
|
50 |
-
|
51 |
|
52 |
"""
|
53 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
@@ -56,9 +57,10 @@ demo = gr.ChatInterface(
|
|
56 |
respond,
|
57 |
additional_inputs=[
|
58 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
59 |
-
gr.Slider(minimum=1,
|
60 |
-
gr.Slider(minimum=
|
61 |
-
gr.Slider(minimum=0.1, maximum=
|
|
|
62 |
],
|
63 |
)
|
64 |
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
|
5 |
"""
|
6 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
7 |
"""
|
8 |
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
+
#client = InferenceClient("vennify/t5-base-grammar-correction")
|
10 |
#gr.load("models/vennify/t5-base-grammar-correction").launch()
|
11 |
|
12 |
# Load the model and tokenizer
|
13 |
+
model_name = "vennify/t5-base-grammar-correction"
|
14 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
16 |
|
17 |
+
def correct_text(text, max_length, num_beams, temperature, top_p):
|
18 |
+
inputs = tokenizer.encode(text, return_tensors="pt")
|
19 |
+
outputs = model.generate(
|
20 |
+
inputs,
|
21 |
+
max_length=max_length,
|
22 |
+
num_beams=num_beams,
|
23 |
+
temperature=temperature,
|
24 |
+
top_p=top_p,
|
25 |
+
early_stopping=True
|
26 |
+
)
|
27 |
+
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
+
return corrected_text
|
29 |
|
30 |
|
31 |
def respond(
|
|
|
33 |
history: list[tuple[str, str]],
|
34 |
system_message,
|
35 |
max_tokens,
|
36 |
+
num_beams,
|
37 |
temperature,
|
38 |
top_p,
|
39 |
):
|
40 |
+
#messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
#for val in history:
|
43 |
+
# if val[0]:
|
44 |
+
# messages.append({"role": "user", "content": val[0]})
|
45 |
+
# if val[1]:
|
46 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
47 |
|
48 |
+
#messages.append({"role": "user", "content": message})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
response = correct_text(message, max_tokens, num_beams, temperature, top_p)
|
51 |
+
yield response
|
52 |
|
53 |
"""
|
54 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
|
|
57 |
respond,
|
58 |
additional_inputs=[
|
59 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
60 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
61 |
+
gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams"),
|
62 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
63 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
64 |
],
|
65 |
)
|
66 |
|