Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
|
5 |
-
"""
|
6 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
7 |
-
"""
|
8 |
# Load the model and tokenizer
|
9 |
-
|
10 |
-
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
|
13 |
def correct_text(text, max_length, max_new_tokens, min_length, num_beams, temperature, top_p):
|
14 |
inputs = tokenizer.encode("grammar: " + text, return_tensors="pt")
|
@@ -37,7 +32,6 @@ def correct_text(text, max_length, max_new_tokens, min_length, num_beams, temper
|
|
37 |
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
return corrected_text
|
39 |
|
40 |
-
|
41 |
def respond(message, history, max_length, min_length, max_new_tokens, num_beams, temperature, top_p):
|
42 |
response = correct_text(message, max_length, max_new_tokens, min_length, num_beams, temperature, top_p)
|
43 |
yield response
|
@@ -48,7 +42,6 @@ For information on how to customize the ChatInterface, peruse the gradio docs: h
|
|
48 |
demo = gr.ChatInterface(
|
49 |
respond,
|
50 |
additional_inputs=[
|
51 |
-
#gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
52 |
gr.Slider(minimum=1, maximum=256, value=100, step=1, label="Max Length"),
|
53 |
gr.Slider(minimum=1, maximum=256, value=0, step=1, label="Min Length"),
|
54 |
gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Max New Tokens (optional)"),
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
|
|
|
|
|
|
|
4 |
# Load the model and tokenizer
|
5 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("vennify/t5-base-grammar-correction")
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("vennify/t5-base-grammar-correction")
|
|
|
7 |
|
8 |
def correct_text(text, max_length, max_new_tokens, min_length, num_beams, temperature, top_p):
|
9 |
inputs = tokenizer.encode("grammar: " + text, return_tensors="pt")
|
|
|
32 |
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
33 |
return corrected_text
|
34 |
|
|
|
35 |
def respond(message, history, max_length, min_length, max_new_tokens, num_beams, temperature, top_p):
|
36 |
response = correct_text(message, max_length, max_new_tokens, min_length, num_beams, temperature, top_p)
|
37 |
yield response
|
|
|
42 |
demo = gr.ChatInterface(
|
43 |
respond,
|
44 |
additional_inputs=[
|
|
|
45 |
gr.Slider(minimum=1, maximum=256, value=100, step=1, label="Max Length"),
|
46 |
gr.Slider(minimum=1, maximum=256, value=0, step=1, label="Min Length"),
|
47 |
gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Max New Tokens (optional)"),
|