ColdHearted commited on
Commit
d3ab610
·
verified ·
1 Parent(s): bd7fc1b

Upload 3 files

Browse files
Files changed (3) hide show
  1. Object_Detection.ipynb +0 -0
  2. gradioapp.py +56 -0
  3. requirements.txt +6 -0
Object_Detection.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
gradioapp.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """gradioapp
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1cD6eAJDAuLfS_1T9LE749-TpglGMtUq8
8
+ """
9
+
10
+ !pip install gradio
11
+
12
+ import gradio as gr
13
+ import tensorflow as tf
14
+ import numpy as np
15
+ from PIL import Image
16
+ import gdown
17
+ import os
18
+
19
+ # Load model
20
+ def load_model():
21
+ model_path = "resnet50_cifar10_model.h5"
22
+ if not os.path.exists(model_path):
23
+ url = "https://drive.google.com/uc?id=13KgM2DddlsscFQx4uoYK0lesSE6-DAo3"
24
+ gdown.download(url, model_path, quiet=False)
25
+ model = tf.keras.models.load_model(model_path)
26
+ return model
27
+
28
+ model = load_model()
29
+
30
+ class_names = ['Airplane', 'Automobile', 'Bird', 'Cat', 'Deer',
31
+ 'Dog', 'Frog', 'Horse', 'Ship', 'Truck']
32
+
33
+ # Prediction function
34
+ def predict_cifar10(image):
35
+ image = image.convert("RGB")
36
+ img = image.resize((32, 32))
37
+ img_array = np.array(img) / 255.0
38
+ img_array = np.expand_dims(img_array, axis=0)
39
+
40
+ prediction = model.predict(img_array)
41
+ predicted_label = class_names[np.argmax(prediction)]
42
+ confidence = float(np.max(prediction)) * 100
43
+
44
+ return {predicted_label: confidence}
45
+
46
+ # Gradio Interface
47
+ iface = gr.Interface(
48
+ fn=predict_cifar10,
49
+ inputs=gr.Image(type="pil"),
50
+ outputs=gr.Label(num_top_classes=3),
51
+ title="🚀 CIFAR-10 Image Classifier using ResNet50",
52
+ description="Upload an image, and the model will classify it into one of the 10 CIFAR-10 classes."
53
+ )
54
+
55
+ iface.launch()
56
+
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio
2
+ tensorflow
3
+ numpy
4
+ Pillow
5
+ gdown
6
+ opencv-python