Spaces:
Sleeping
Sleeping
| import comfy.utils | |
| import comfy_extras.nodes_post_processing | |
| import torch | |
| import nodes | |
| from typing_extensions import override | |
| from comfy_api.latest import ComfyExtension, io | |
| def reshape_latent_to(target_shape, latent, repeat_batch=True): | |
| if latent.shape[1:] != target_shape[1:]: | |
| latent = comfy.utils.common_upscale(latent, target_shape[-1], target_shape[-2], "bilinear", "center") | |
| if repeat_batch: | |
| return comfy.utils.repeat_to_batch_size(latent, target_shape[0]) | |
| else: | |
| return latent | |
| class LatentAdd(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="LatentAdd", | |
| category="latent/advanced", | |
| inputs=[ | |
| io.Latent.Input("samples1"), | |
| io.Latent.Input("samples2"), | |
| ], | |
| outputs=[ | |
| io.Latent.Output(), | |
| ], | |
| ) | |
| def execute(cls, samples1, samples2) -> io.NodeOutput: | |
| samples_out = samples1.copy() | |
| s1 = samples1["samples"] | |
| s2 = samples2["samples"] | |
| s2 = reshape_latent_to(s1.shape, s2) | |
| samples_out["samples"] = s1 + s2 | |
| return io.NodeOutput(samples_out) | |
| class LatentSubtract(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="LatentSubtract", | |
| category="latent/advanced", | |
| inputs=[ | |
| io.Latent.Input("samples1"), | |
| io.Latent.Input("samples2"), | |
| ], | |
| outputs=[ | |
| io.Latent.Output(), | |
| ], | |
| ) | |
| def execute(cls, samples1, samples2) -> io.NodeOutput: | |
| samples_out = samples1.copy() | |
| s1 = samples1["samples"] | |
| s2 = samples2["samples"] | |
| s2 = reshape_latent_to(s1.shape, s2) | |
| samples_out["samples"] = s1 - s2 | |
| return io.NodeOutput(samples_out) | |
| class LatentMultiply(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="LatentMultiply", | |
| category="latent/advanced", | |
| inputs=[ | |
| io.Latent.Input("samples"), | |
| io.Float.Input("multiplier", default=1.0, min=-10.0, max=10.0, step=0.01), | |
| ], | |
| outputs=[ | |
| io.Latent.Output(), | |
| ], | |
| ) | |
| def execute(cls, samples, multiplier) -> io.NodeOutput: | |
| samples_out = samples.copy() | |
| s1 = samples["samples"] | |
| samples_out["samples"] = s1 * multiplier | |
| return io.NodeOutput(samples_out) | |
| class LatentInterpolate(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="LatentInterpolate", | |
| category="latent/advanced", | |
| inputs=[ | |
| io.Latent.Input("samples1"), | |
| io.Latent.Input("samples2"), | |
| io.Float.Input("ratio", default=1.0, min=0.0, max=1.0, step=0.01), | |
| ], | |
| outputs=[ | |
| io.Latent.Output(), | |
| ], | |
| ) | |
| def execute(cls, samples1, samples2, ratio) -> io.NodeOutput: | |
| samples_out = samples1.copy() | |
| s1 = samples1["samples"] | |
| s2 = samples2["samples"] | |
| s2 = reshape_latent_to(s1.shape, s2) | |
| m1 = torch.linalg.vector_norm(s1, dim=(1)) | |
| m2 = torch.linalg.vector_norm(s2, dim=(1)) | |
| s1 = torch.nan_to_num(s1 / m1) | |
| s2 = torch.nan_to_num(s2 / m2) | |
| t = (s1 * ratio + s2 * (1.0 - ratio)) | |
| mt = torch.linalg.vector_norm(t, dim=(1)) | |
| st = torch.nan_to_num(t / mt) | |
| samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio)) | |
| return io.NodeOutput(samples_out) | |
| class LatentConcat(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="LatentConcat", | |
| category="latent/advanced", | |
| inputs=[ | |
| io.Latent.Input("samples1"), | |
| io.Latent.Input("samples2"), | |
| io.Combo.Input("dim", options=["x", "-x", "y", "-y", "t", "-t"]), | |
| ], | |
| outputs=[ | |
| io.Latent.Output(), | |
| ], | |
| ) | |
| def execute(cls, samples1, samples2, dim) -> io.NodeOutput: | |
| samples_out = samples1.copy() | |
| s1 = samples1["samples"] | |
| s2 = samples2["samples"] | |
| s2 = comfy.utils.repeat_to_batch_size(s2, s1.shape[0]) | |
| if "-" in dim: | |
| c = (s2, s1) | |
| else: | |
| c = (s1, s2) | |
| if "x" in dim: | |
| dim = -1 | |
| elif "y" in dim: | |
| dim = -2 | |
| elif "t" in dim: | |
| dim = -3 | |
| samples_out["samples"] = torch.cat(c, dim=dim) | |
| return io.NodeOutput(samples_out) | |
| class LatentCut(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="LatentCut", | |
| category="latent/advanced", | |
| inputs=[ | |
| io.Latent.Input("samples"), | |
| io.Combo.Input("dim", options=["x", "y", "t"]), | |
| io.Int.Input("index", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION, step=1), | |
| io.Int.Input("amount", default=1, min=1, max=nodes.MAX_RESOLUTION, step=1), | |
| ], | |
| outputs=[ | |
| io.Latent.Output(), | |
| ], | |
| ) | |
| def execute(cls, samples, dim, index, amount) -> io.NodeOutput: | |
| samples_out = samples.copy() | |
| s1 = samples["samples"] | |
| if "x" in dim: | |
| dim = s1.ndim - 1 | |
| elif "y" in dim: | |
| dim = s1.ndim - 2 | |
| elif "t" in dim: | |
| dim = s1.ndim - 3 | |
| if index >= 0: | |
| index = min(index, s1.shape[dim] - 1) | |
| amount = min(s1.shape[dim] - index, amount) | |
| else: | |
| index = max(index, -s1.shape[dim]) | |
| amount = min(-index, amount) | |
| samples_out["samples"] = torch.narrow(s1, dim, index, amount) | |
| return io.NodeOutput(samples_out) | |
| class LatentBatch(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="LatentBatch", | |
| category="latent/batch", | |
| inputs=[ | |
| io.Latent.Input("samples1"), | |
| io.Latent.Input("samples2"), | |
| ], | |
| outputs=[ | |
| io.Latent.Output(), | |
| ], | |
| ) | |
| def execute(cls, samples1, samples2) -> io.NodeOutput: | |
| samples_out = samples1.copy() | |
| s1 = samples1["samples"] | |
| s2 = samples2["samples"] | |
| s2 = reshape_latent_to(s1.shape, s2, repeat_batch=False) | |
| s = torch.cat((s1, s2), dim=0) | |
| samples_out["samples"] = s | |
| samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])]) | |
| return io.NodeOutput(samples_out) | |
| class LatentBatchSeedBehavior(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="LatentBatchSeedBehavior", | |
| category="latent/advanced", | |
| inputs=[ | |
| io.Latent.Input("samples"), | |
| io.Combo.Input("seed_behavior", options=["random", "fixed"], default="fixed"), | |
| ], | |
| outputs=[ | |
| io.Latent.Output(), | |
| ], | |
| ) | |
| def execute(cls, samples, seed_behavior) -> io.NodeOutput: | |
| samples_out = samples.copy() | |
| latent = samples["samples"] | |
| if seed_behavior == "random": | |
| if 'batch_index' in samples_out: | |
| samples_out.pop('batch_index') | |
| elif seed_behavior == "fixed": | |
| batch_number = samples_out.get("batch_index", [0])[0] | |
| samples_out["batch_index"] = [batch_number] * latent.shape[0] | |
| return io.NodeOutput(samples_out) | |
| class LatentApplyOperation(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="LatentApplyOperation", | |
| category="latent/advanced/operations", | |
| is_experimental=True, | |
| inputs=[ | |
| io.Latent.Input("samples"), | |
| io.LatentOperation.Input("operation"), | |
| ], | |
| outputs=[ | |
| io.Latent.Output(), | |
| ], | |
| ) | |
| def execute(cls, samples, operation) -> io.NodeOutput: | |
| samples_out = samples.copy() | |
| s1 = samples["samples"] | |
| samples_out["samples"] = operation(latent=s1) | |
| return io.NodeOutput(samples_out) | |
| class LatentApplyOperationCFG(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="LatentApplyOperationCFG", | |
| category="latent/advanced/operations", | |
| is_experimental=True, | |
| inputs=[ | |
| io.Model.Input("model"), | |
| io.LatentOperation.Input("operation"), | |
| ], | |
| outputs=[ | |
| io.Model.Output(), | |
| ], | |
| ) | |
| def execute(cls, model, operation) -> io.NodeOutput: | |
| m = model.clone() | |
| def pre_cfg_function(args): | |
| conds_out = args["conds_out"] | |
| if len(conds_out) == 2: | |
| conds_out[0] = operation(latent=(conds_out[0] - conds_out[1])) + conds_out[1] | |
| else: | |
| conds_out[0] = operation(latent=conds_out[0]) | |
| return conds_out | |
| m.set_model_sampler_pre_cfg_function(pre_cfg_function) | |
| return io.NodeOutput(m) | |
| class LatentOperationTonemapReinhard(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="LatentOperationTonemapReinhard", | |
| category="latent/advanced/operations", | |
| is_experimental=True, | |
| inputs=[ | |
| io.Float.Input("multiplier", default=1.0, min=0.0, max=100.0, step=0.01), | |
| ], | |
| outputs=[ | |
| io.LatentOperation.Output(), | |
| ], | |
| ) | |
| def execute(cls, multiplier) -> io.NodeOutput: | |
| def tonemap_reinhard(latent, **kwargs): | |
| latent_vector_magnitude = (torch.linalg.vector_norm(latent, dim=(1)) + 0.0000000001)[:,None] | |
| normalized_latent = latent / latent_vector_magnitude | |
| mean = torch.mean(latent_vector_magnitude, dim=(1,2,3), keepdim=True) | |
| std = torch.std(latent_vector_magnitude, dim=(1,2,3), keepdim=True) | |
| top = (std * 5 + mean) * multiplier | |
| #reinhard | |
| latent_vector_magnitude *= (1.0 / top) | |
| new_magnitude = latent_vector_magnitude / (latent_vector_magnitude + 1.0) | |
| new_magnitude *= top | |
| return normalized_latent * new_magnitude | |
| return io.NodeOutput(tonemap_reinhard) | |
| class LatentOperationSharpen(io.ComfyNode): | |
| def define_schema(cls): | |
| return io.Schema( | |
| node_id="LatentOperationSharpen", | |
| category="latent/advanced/operations", | |
| is_experimental=True, | |
| inputs=[ | |
| io.Int.Input("sharpen_radius", default=9, min=1, max=31, step=1), | |
| io.Float.Input("sigma", default=1.0, min=0.1, max=10.0, step=0.1), | |
| io.Float.Input("alpha", default=0.1, min=0.0, max=5.0, step=0.01), | |
| ], | |
| outputs=[ | |
| io.LatentOperation.Output(), | |
| ], | |
| ) | |
| def execute(cls, sharpen_radius, sigma, alpha) -> io.NodeOutput: | |
| def sharpen(latent, **kwargs): | |
| luminance = (torch.linalg.vector_norm(latent, dim=(1)) + 1e-6)[:,None] | |
| normalized_latent = latent / luminance | |
| channels = latent.shape[1] | |
| kernel_size = sharpen_radius * 2 + 1 | |
| kernel = comfy_extras.nodes_post_processing.gaussian_kernel(kernel_size, sigma, device=luminance.device) | |
| center = kernel_size // 2 | |
| kernel *= alpha * -10 | |
| kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0 | |
| padded_image = torch.nn.functional.pad(normalized_latent, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect') | |
| sharpened = torch.nn.functional.conv2d(padded_image, kernel.repeat(channels, 1, 1).unsqueeze(1), padding=kernel_size // 2, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius] | |
| return luminance * sharpened | |
| return io.NodeOutput(sharpen) | |
| class LatentExtension(ComfyExtension): | |
| async def get_node_list(self) -> list[type[io.ComfyNode]]: | |
| return [ | |
| LatentAdd, | |
| LatentSubtract, | |
| LatentMultiply, | |
| LatentInterpolate, | |
| LatentConcat, | |
| LatentCut, | |
| LatentBatch, | |
| LatentBatchSeedBehavior, | |
| LatentApplyOperation, | |
| LatentApplyOperationCFG, | |
| LatentOperationTonemapReinhard, | |
| LatentOperationSharpen, | |
| ] | |
| async def comfy_entrypoint() -> LatentExtension: | |
| return LatentExtension() | |