aCogSphere / app.py
CognitiveScience's picture
Update app.py
f198d13
raw
history blame
3.64 kB
import gradio as gr
from bs4 import BeautifulSoup
import requests
from acogsphere import acf
from bcogsphere import bcf
import math
import sqlite3
import huggingface_hub
import pandas as pd
import shutil
import os
import datetime
from apscheduler.schedulers.background import BackgroundScheduler
import random
import time
DB_FILE = "./reviews.db"
TOKEN = os.environ.get('HF_KEY')
repo = huggingface_hub.Repository(
local_dir="data",
repo_type="dataset",
clone_from="CognitiveScience/csdhdata",
use_auth_token=TOKEN
)
repo.git_pull()
# Set db to latest
shutil.copyfile("./data/reviews.db", DB_FILE)
# Create table if it doesn't already exist
db = sqlite3.connect(DB_FILE)
try:
db.execute("SELECT * FROM reviews").fetchall()
db.close()
except sqlite3.OperationalError:
db.execute(
'''
CREATE TABLE reviews (id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
name TEXT, review INTEGER, comments TEXT)
''')
db.commit()
db.close()
def get_latest_reviews(db: sqlite3.Connection):
reviews = db.execute("SELECT * FROM reviews ORDER BY id DESC limit 10").fetchall()
total_reviews = db.execute("Select COUNT(id) from reviews").fetchone()[0]
reviews = pd.DataFrame(reviews, columns=["id", "date_created", "name", "review", "comments"])
return reviews, total_reviews
def ccogsphere(name: str, review: int, comments: str):
db = sqlite3.connect(DB_FILE)
cursor = db.cursor()
cursor.execute("INSERT INTO reviews(name, review, comments) VALUES(?,?,?)", [name, review, comments])
db.commit()
reviews, total_reviews = get_latest_reviews(db)
db.close()
#demo.load()
return reviews, total_reviews
def load_data():
db = sqlite3.connect(DB_FILE)
reviews, total_reviews = get_latest_reviews(db)
db.close()
return reviews, total_reviews
with gr.Blocks(api_name=["/ccogsphere"]) as demo:
with gr.Row():
with gr.Column():
#with gr.Box():
#gr.Markdown("Based on dataset [here](https://huggingface.co/datasets/freddyaboulton/gradio-reviews)")
data = gr.Dataframe()
count = gr.Number(label="Rates!")
with gr.Row():
with gr.Column():
name = gr.Textbox(label="a") #, placeholder="What is your name?")
review = gr.Textbox(label="b") #, placeholder="What is your name?") #gr.Radio(label="How satisfied are you with using gradio?", choices=[1, 2, 3, 4, 5])
comments = gr.Textbox(label="c") #, lines=10, placeholder="Do you have any feedback on gradio?")
submit = gr.Button(value=".")
submit.click(ccogsphere, [name, review, comments], [data, count])
#demo.load(load_data, None, [data, count])
def backup_db():
shutil.copyfile(DB_FILE, "./data/reviews.db")
db = sqlite3.connect(DB_FILE)
reviews = db.execute("SELECT * FROM reviews").fetchall()
pd.DataFrame(reviews).to_csv("./data/reviews.csv", index=False)
print("updating db")
repo.push_to_hub(blocking=False, commit_message=f"Updating data at {datetime.datetime.now()}")
def load_data2():
db = sqlite3.connect(DB_FILE)
reviews, total_reviews = get_latest_reviews(db)
db.close()
return reviews, total_reviews
scheduler = BackgroundScheduler()
scheduler.add_job(func=backup_db, trigger="interval", seconds=60)
scheduler.start()
#scheduler2 = BackgroundScheduler()
#scheduler2.add_job(func=load_data2, trigger="interval", seconds=3)
#scheduler2.start()
demo.launch(show_api="False")