Spaces:
Runtime error
Runtime error
import gradio as gr | |
from bs4 import BeautifulSoup | |
import requests | |
from acogsphere import acf | |
from bcogsphere import bcf | |
import math | |
import sqlite3 | |
import huggingface_hub | |
import pandas as pd | |
import shutil | |
import os | |
import datetime | |
from apscheduler.schedulers.background import BackgroundScheduler | |
import random | |
import time | |
DB_FILE = "./reviews.db" | |
TOKEN = os.environ.get('HF_KEY') | |
repo = huggingface_hub.Repository( | |
local_dir="data", | |
repo_type="dataset", | |
clone_from="CognitiveScience/csdhdata", | |
use_auth_token=TOKEN | |
) | |
repo.git_pull() | |
# Set db to latest | |
shutil.copyfile("./data/reviews.db", DB_FILE) | |
# Create table if it doesn't already exist | |
db = sqlite3.connect(DB_FILE) | |
try: | |
db.execute("SELECT * FROM reviews").fetchall() | |
db.close() | |
except sqlite3.OperationalError: | |
db.execute( | |
''' | |
CREATE TABLE reviews (id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, | |
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL, | |
name TEXT, review INTEGER, comments TEXT) | |
''') | |
db.commit() | |
db.close() | |
def get_latest_reviews(db: sqlite3.Connection): | |
reviews = db.execute("SELECT * FROM reviews ORDER BY id DESC limit 10").fetchall() | |
total_reviews = db.execute("Select COUNT(id) from reviews").fetchone()[0] | |
reviews = pd.DataFrame(reviews, columns=["id", "date_created", "name", "review", "comments"]) | |
return reviews, total_reviews | |
def add_review(name: str, review: int, comments: str): | |
db = sqlite3.connect(DB_FILE) | |
cursor = db.cursor() | |
cursor.execute("INSERT INTO reviews(name, review, comments) VALUES(?,?,?)", [name, review, comments]) | |
db.commit() | |
reviews, total_reviews = get_latest_reviews(db) | |
db.close() | |
#demo.load() | |
return reviews, total_reviews | |
def load_data(): | |
db = sqlite3.connect(DB_FILE) | |
reviews, total_reviews = get_latest_reviews(db) | |
db.close() | |
return reviews, total_reviews | |
with gr.Blocks(api_name="/iccs") as demo: | |
with gr.Row(): | |
with gr.Column(): | |
#with gr.Box(): | |
#gr.Markdown("Based on dataset [here](https://huggingface.co/datasets/freddyaboulton/gradio-reviews)") | |
data = gr.Dataframe() | |
count = gr.Number(label="Rates!") | |
with gr.Row(): | |
with gr.Column(): | |
name = gr.Textbox(label="a") #, placeholder="What is your name?") | |
review = gr.Textbox(label="b") #, placeholder="What is your name?") #gr.Radio(label="How satisfied are you with using gradio?", choices=[1, 2, 3, 4, 5]) | |
comments = gr.Textbox(label="c") #, lines=10, placeholder="Do you have any feedback on gradio?") | |
submit = gr.Button(value=".") | |
submit.click(add_review, [name, review, comments], [data, count]) | |
#demo.load(load_data, None, [data, count]) | |
def backup_db(): | |
shutil.copyfile(DB_FILE, "./data/reviews.db") | |
db = sqlite3.connect(DB_FILE) | |
reviews = db.execute("SELECT * FROM reviews").fetchall() | |
pd.DataFrame(reviews).to_csv("./data/reviews.csv", index=False) | |
print("updating db") | |
repo.push_to_hub(blocking=False, commit_message=f"Updating data at {datetime.datetime.now()}") | |
def load_data2(): | |
db = sqlite3.connect(DB_FILE) | |
reviews, total_reviews = get_latest_reviews(db) | |
db.close() | |
return reviews, total_reviews | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(func=backup_db, trigger="interval", seconds=60) | |
scheduler.start() | |
#scheduler2 = BackgroundScheduler() | |
#scheduler2.add_job(func=load_data2, trigger="interval", seconds=3) | |
#scheduler2.start() | |
demo.launch() |