Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,448 +0,0 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import matplotlib.pyplot as plt
|
| 4 |
-
from statsmodels.tsa.arima.model import ARIMA
|
| 5 |
-
from statsmodels.tsa.stattools import adfuller
|
| 6 |
-
from statsmodels.tsa.statespace.sarimax import SARIMAX
|
| 7 |
-
from sklearn.model_selection import train_test_split
|
| 8 |
-
import matplotlib.image as mpimg
|
| 9 |
-
import seaborn as sns
|
| 10 |
-
import warnings
|
| 11 |
-
import datetime as dt
|
| 12 |
-
from sklearn.metrics import confusion_matrix
|
| 13 |
-
import matplotlib.dates as mdates
|
| 14 |
-
from pandas.tseries.offsets import DateOffset
|
| 15 |
-
import streamlit as st
|
| 16 |
-
# from pmdarima.arima import auto_arima
|
| 17 |
-
from statsmodels.tsa.stattools import adfuller
|
| 18 |
-
warnings.filterwarnings('ignore')
|
| 19 |
-
|
| 20 |
-
"""# Load Generation Data (Plant 1)"""
|
| 21 |
-
|
| 22 |
-
from sklearn.model_selection import train_test_split
|
| 23 |
-
from pmdarima.arima import auto_arima
|
| 24 |
-
import warnings
|
| 25 |
-
warnings.filterwarnings('ignore')
|
| 26 |
-
|
| 27 |
-
st.title("Solar Plant Data Analysis and Forecasting")
|
| 28 |
-
|
| 29 |
-
# File Upload
|
| 30 |
-
uploaded_gen = st.file_uploader("Upload Generation Data CSV", type=["csv"], key="gen")
|
| 31 |
-
uploaded_weather = st.file_uploader("Upload Weather Sensor Data CSV", type=["csv"], key="weather")
|
| 32 |
-
|
| 33 |
-
def load_data(file):
|
| 34 |
-
if file is not None:
|
| 35 |
-
return pd.read_csv(file)
|
| 36 |
-
return None
|
| 37 |
-
|
| 38 |
-
# Load Data
|
| 39 |
-
gen_data = load_data(uploaded_gen)
|
| 40 |
-
weather_data = load_data(uploaded_weather)
|
| 41 |
-
|
| 42 |
-
default_gen_data = pd.read_csv('Plant_1_Generation_Data.csv')
|
| 43 |
-
default_weather_data = pd.read_csv('Plant_1_Weather_Sensor_Data.csv')
|
| 44 |
-
|
| 45 |
-
if gen_data is None:
|
| 46 |
-
gen_data = default_gen_data
|
| 47 |
-
gen_1 = default_gen_data
|
| 48 |
-
if weather_data is None:
|
| 49 |
-
weather_data = default_weather_data
|
| 50 |
-
sens_1 = default_weather_data
|
| 51 |
-
|
| 52 |
-
# Data Preview
|
| 53 |
-
st.subheader("Generation Data Preview")
|
| 54 |
-
st.dataframe(gen_data.head())
|
| 55 |
-
|
| 56 |
-
st.subheader("Weather Data Preview")
|
| 57 |
-
st.dataframe(weather_data.head())
|
| 58 |
-
|
| 59 |
-
st.subheader("Generation Data Preview")
|
| 60 |
-
st.dataframe(gen_data.tail())
|
| 61 |
-
|
| 62 |
-
st.subheader("Weather Data Preview")
|
| 63 |
-
st.dataframe(weather_data.tail())
|
| 64 |
-
|
| 65 |
-
st.subheader("Generation Data Preview")
|
| 66 |
-
st.dataframe(gen_data.describe())
|
| 67 |
-
|
| 68 |
-
st.subheader("Weather Data Preview")
|
| 69 |
-
st.dataframe(weather_data.describe())
|
| 70 |
-
|
| 71 |
-
# Filter out non-numeric columns
|
| 72 |
-
numeric_data = gen_1.select_dtypes(include=['float64', 'int64'])
|
| 73 |
-
|
| 74 |
-
# Calculate the correlation matrix on the numeric data
|
| 75 |
-
corelation = numeric_data.corr()
|
| 76 |
-
|
| 77 |
-
# Plot the heatmap
|
| 78 |
-
fig, ax = plt.subplots(figsize=(14, 12))
|
| 79 |
-
sns.heatmap(corelation, annot=True, ax=ax)
|
| 80 |
-
st.pyplot(fig)
|
| 81 |
-
|
| 82 |
-
st.dataframe(sens_1.tail())
|
| 83 |
-
|
| 84 |
-
st.dataframe(sens_1.describe())
|
| 85 |
-
|
| 86 |
-
# Filter out non-numeric columns
|
| 87 |
-
numeric_data = sens_1.select_dtypes(include=['float64', 'int64'])
|
| 88 |
-
|
| 89 |
-
# Calculate the correlation matrix on the numeric data
|
| 90 |
-
corelation = numeric_data.corr()
|
| 91 |
-
|
| 92 |
-
# Plot the heatmap
|
| 93 |
-
fig, ax = plt.subplots(figsize=(14, 12))
|
| 94 |
-
sns.heatmap(corelation, annot=True, ax=ax)
|
| 95 |
-
st.pyplot(fig)
|
| 96 |
-
|
| 97 |
-
"""# Format 'DATE_TIME' column to datetime"""
|
| 98 |
-
|
| 99 |
-
gen_data['DATE_TIME'] = pd.to_datetime(gen_data['DATE_TIME'], format='%d-%m-%Y %H:%M')
|
| 100 |
-
weather_data['DATE_TIME'] = pd.to_datetime(weather_data['DATE_TIME'], format='%Y-%m-%d %H:%M:%S')
|
| 101 |
-
|
| 102 |
-
gen_1['DATE_TIME']= pd.to_datetime(gen_1['DATE_TIME'],format='%d-%m-%Y %H:%M')
|
| 103 |
-
sens_1['DATE_TIME']= pd.to_datetime(sens_1['DATE_TIME'],format='%Y-%m-%d %H:%M:%S')
|
| 104 |
-
|
| 105 |
-
"""# Daily Yield & AC/DC Power from Generation Data"""
|
| 106 |
-
|
| 107 |
-
gen_data_daily = gen_data.set_index('DATE_TIME').resample('D').sum().reset_index()
|
| 108 |
-
|
| 109 |
-
"""# Plot Daily Yield and AC/DC Power"""
|
| 110 |
-
|
| 111 |
-
df_gen = gen_1.groupby('DATE_TIME').sum().reset_index()
|
| 112 |
-
df_gen['time'] = df_gen['DATE_TIME'].dt.time
|
| 113 |
-
|
| 114 |
-
# Create figure and axes
|
| 115 |
-
fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(15, 10))
|
| 116 |
-
|
| 117 |
-
# Daily yield plot
|
| 118 |
-
df_gen.plot(x='DATE_TIME', y='DAILY_YIELD', color='navy', ax=ax[0])
|
| 119 |
-
ax[0].set_title('Daily yield')
|
| 120 |
-
ax[0].set_ylabel('kW', color='navy', fontsize=17)
|
| 121 |
-
|
| 122 |
-
# AC & DC power plot
|
| 123 |
-
df_gen.set_index('time').drop('DATE_TIME', axis=1)[['AC_POWER', 'DC_POWER']].plot(style='o', ax=ax[1])
|
| 124 |
-
ax[1].set_title('AC power & DC power during day hours')
|
| 125 |
-
|
| 126 |
-
# Display in Streamlit
|
| 127 |
-
st.pyplot(fig)
|
| 128 |
-
|
| 129 |
-
# Create another figure for additional plots
|
| 130 |
-
fig2, ax2 = plt.subplots(nrows=2, ncols=1, figsize=(15, 10))
|
| 131 |
-
|
| 132 |
-
# Daily and Total Yield plot
|
| 133 |
-
gen_data.plot(x='DATE_TIME', y=['DAILY_YIELD', 'TOTAL_YIELD'], ax=ax2[0], title="Daily and Total Yield (Generation Data)")
|
| 134 |
-
|
| 135 |
-
# AC Power & DC Power plot
|
| 136 |
-
gen_data.plot(x='DATE_TIME', y=['AC_POWER', 'DC_POWER'], ax=ax2[1], title="AC Power & DC Power (Generation Data)")
|
| 137 |
-
|
| 138 |
-
# Display the second figure in Streamlit
|
| 139 |
-
st.pyplot(fig2)
|
| 140 |
-
|
| 141 |
-
# Create a copy and extract the date
|
| 142 |
-
daily_gen = df_gen.copy()
|
| 143 |
-
daily_gen['date'] = daily_gen['DATE_TIME'].dt.date
|
| 144 |
-
|
| 145 |
-
# Group by 'date' and sum only the numerical columns
|
| 146 |
-
daily_gen = daily_gen.groupby('date').sum(numeric_only=True)
|
| 147 |
-
|
| 148 |
-
# Plot the daily and total yield
|
| 149 |
-
fig, ax = plt.subplots(ncols=2, dpi=100, figsize=(20, 5))
|
| 150 |
-
daily_gen['DAILY_YIELD'].plot(ax=ax[0], color='navy')
|
| 151 |
-
daily_gen['TOTAL_YIELD'].plot(kind='bar', ax=ax[1], color='navy')
|
| 152 |
-
|
| 153 |
-
fig.autofmt_xdate(rotation=45)
|
| 154 |
-
ax[0].set_title('Daily Yield')
|
| 155 |
-
ax[1].set_title('Total Yield')
|
| 156 |
-
ax[0].set_ylabel('kW', color='navy', fontsize=17)
|
| 157 |
-
plt.show()
|
| 158 |
-
|
| 159 |
-
# Group by 'DATE_TIME' and sum
|
| 160 |
-
df_sens = sens_1.groupby('DATE_TIME').sum().reset_index()
|
| 161 |
-
df_sens['time'] = df_sens['DATE_TIME'].dt.time
|
| 162 |
-
|
| 163 |
-
# Plotting
|
| 164 |
-
fig, ax = plt.subplots(ncols=2, nrows=1, dpi=100, figsize=(20, 5))
|
| 165 |
-
|
| 166 |
-
# Irradiation plot
|
| 167 |
-
df_sens.plot(x='time', y='IRRADIATION', ax=ax[0], style='o')
|
| 168 |
-
|
| 169 |
-
# Ambient and Module Temperature plot
|
| 170 |
-
df_sens.set_index('DATE_TIME').drop('time', axis=1)[['AMBIENT_TEMPERATURE', 'MODULE_TEMPERATURE']].plot(ax=ax[1])
|
| 171 |
-
|
| 172 |
-
# Setting titles and labels
|
| 173 |
-
ax[0].set_title('Irradiation during day hours')
|
| 174 |
-
ax[1].set_title('Ambient and Module Temperature')
|
| 175 |
-
ax[0].set_ylabel('W/m²', color='navy', fontsize=17)
|
| 176 |
-
ax[1].set_ylabel('°C', color='navy', fontsize=17)
|
| 177 |
-
|
| 178 |
-
plt.show()
|
| 179 |
-
|
| 180 |
-
"""# % of DC power converted to AC power"""
|
| 181 |
-
|
| 182 |
-
# Create a copy of the data
|
| 183 |
-
loss = gen_1.copy()
|
| 184 |
-
|
| 185 |
-
# Create a new 'day' column containing only the date part from 'DATE_TIME'
|
| 186 |
-
loss['day'] = loss['DATE_TIME'].dt.date
|
| 187 |
-
|
| 188 |
-
# Drop the 'DATE_TIME' column to prevent summing over datetime values
|
| 189 |
-
loss = loss.drop(columns=['DATE_TIME'])
|
| 190 |
-
|
| 191 |
-
# Group by 'day' and sum only numeric columns
|
| 192 |
-
loss = loss.groupby('day').sum()
|
| 193 |
-
|
| 194 |
-
# Calculate the percentage of DC power converted to AC power
|
| 195 |
-
loss['losses'] = (loss['AC_POWER'] / loss['DC_POWER']) * 100
|
| 196 |
-
|
| 197 |
-
# Plot the losses
|
| 198 |
-
loss['losses'].plot(style='o--', figsize=(17, 5), label='Real Power')
|
| 199 |
-
|
| 200 |
-
# Plot styling
|
| 201 |
-
plt.title('% of DC power converted to AC power', size=17)
|
| 202 |
-
plt.ylabel('DC power converted (%)', fontsize=14, color='red')
|
| 203 |
-
plt.axhline(loss['losses'].mean(), linestyle='--', color='gray', label='mean')
|
| 204 |
-
plt.legend()
|
| 205 |
-
plt.show()
|
| 206 |
-
|
| 207 |
-
"""# DC Power"""
|
| 208 |
-
|
| 209 |
-
sources=gen_1.copy()
|
| 210 |
-
sources['time']=sources['DATE_TIME'].dt.time
|
| 211 |
-
sources.set_index('time').groupby('SOURCE_KEY')['DC_POWER'].plot(style='o',legend=True,figsize=(20,10))
|
| 212 |
-
plt.title('DC Power during day for all sources',size=17)
|
| 213 |
-
plt.ylabel('DC POWER ( kW )',color='navy',fontsize=17)
|
| 214 |
-
plt.show()
|
| 215 |
-
|
| 216 |
-
"""# DC POWER ( kW )"""
|
| 217 |
-
|
| 218 |
-
dc_gen=gen_1.copy()
|
| 219 |
-
dc_gen['time']=dc_gen['DATE_TIME'].dt.time
|
| 220 |
-
dc_gen=dc_gen.groupby(['time','SOURCE_KEY'])['DC_POWER'].mean().unstack()
|
| 221 |
-
|
| 222 |
-
cmap = sns.color_palette("Spectral", n_colors=12)
|
| 223 |
-
|
| 224 |
-
fig,ax=plt.subplots(ncols=2,nrows=1,dpi=100,figsize=(20,6))
|
| 225 |
-
dc_gen.iloc[:,0:11].plot(ax=ax[0],color=cmap)
|
| 226 |
-
dc_gen.iloc[:,11:22].plot(ax=ax[1],color=cmap)
|
| 227 |
-
|
| 228 |
-
ax[0].set_title('First 11 sources')
|
| 229 |
-
ax[0].set_ylabel('DC POWER ( kW )',fontsize=17,color='navy')
|
| 230 |
-
ax[1].set_title('Last 11 sources')
|
| 231 |
-
plt.show()
|
| 232 |
-
|
| 233 |
-
"""# Irradiation, Ambient and Module Temperature from Weather Data"""
|
| 234 |
-
|
| 235 |
-
fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(15, 10))
|
| 236 |
-
weather_data.plot(x='DATE_TIME', y='IRRADIATION', ax=ax[0], title="Irradiation (Weather Data)")
|
| 237 |
-
weather_data.plot(x='DATE_TIME', y=['AMBIENT_TEMPERATURE', 'MODULE_TEMPERATURE'], ax=ax[1], title="Ambient & Module Temperature (Weather Data)")
|
| 238 |
-
plt.show()
|
| 239 |
-
|
| 240 |
-
"""# Real DC power converted (DC Power efficiency)"""
|
| 241 |
-
|
| 242 |
-
gen_data['DC_POWER_CONVERTED'] = gen_data['DC_POWER'] * 0.98 # Assume 2% loss in conversion
|
| 243 |
-
fig, ax = plt.subplots(figsize=(15, 5))
|
| 244 |
-
gen_data.plot(x='DATE_TIME', y='DC_POWER_CONVERTED', ax=ax, title="DC Power Converted")
|
| 245 |
-
plt.show()
|
| 246 |
-
|
| 247 |
-
"""# DC Power generated during day hours (Generation Data)"""
|
| 248 |
-
|
| 249 |
-
day_data_gen = gen_data[(gen_data['DATE_TIME'].dt.hour >= 6) & (gen_data['DATE_TIME'].dt.hour <= 18)]
|
| 250 |
-
fig, ax = plt.subplots(figsize=(15, 5))
|
| 251 |
-
day_data_gen.plot(x='DATE_TIME', y='DC_POWER', ax=ax, title="DC Power Generated During Day Hours")
|
| 252 |
-
plt.show()
|
| 253 |
-
|
| 254 |
-
"""# DC Power And Daily Yield"""
|
| 255 |
-
|
| 256 |
-
temp1_gen=gen_1.copy()
|
| 257 |
-
|
| 258 |
-
temp1_gen['time']=temp1_gen['DATE_TIME'].dt.time
|
| 259 |
-
temp1_gen['day']=temp1_gen['DATE_TIME'].dt.date
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
temp1_sens=sens_1.copy()
|
| 263 |
-
|
| 264 |
-
temp1_sens['time']=temp1_sens['DATE_TIME'].dt.time
|
| 265 |
-
temp1_sens['day']=temp1_sens['DATE_TIME'].dt.date
|
| 266 |
-
|
| 267 |
-
# just for columns
|
| 268 |
-
cols=temp1_gen.groupby(['time','day'])['DC_POWER'].mean().unstack()
|
| 269 |
-
|
| 270 |
-
ax =temp1_gen.groupby(['time','day'])['DC_POWER'].mean().unstack().plot(sharex=True,subplots=True,layout=(17,2),figsize=(20,30))
|
| 271 |
-
temp1_gen.groupby(['time','day'])['DAILY_YIELD'].mean().unstack().plot(sharex=True,subplots=True,layout=(17,2),figsize=(20,20),style='-.',ax=ax)
|
| 272 |
-
|
| 273 |
-
i=0
|
| 274 |
-
for a in range(len(ax)):
|
| 275 |
-
for b in range(len(ax[a])):
|
| 276 |
-
ax[a,b].set_title(cols.columns[i],size=15)
|
| 277 |
-
ax[a,b].legend(['DC_POWER','DAILY_YIELD'])
|
| 278 |
-
i=i+1
|
| 279 |
-
|
| 280 |
-
plt.tight_layout()
|
| 281 |
-
plt.show()
|
| 282 |
-
|
| 283 |
-
"""# Module Temperature And Ambient Temperature"""
|
| 284 |
-
|
| 285 |
-
ax= temp1_sens.groupby(['time','day'])['MODULE_TEMPERATURE'].mean().unstack().plot(subplots=True,layout=(17,2),figsize=(20,30))
|
| 286 |
-
temp1_sens.groupby(['time','day'])['AMBIENT_TEMPERATURE'].mean().unstack().plot(subplots=True,layout=(17,2),figsize=(20,40),style='-.',ax=ax)
|
| 287 |
-
|
| 288 |
-
i=0
|
| 289 |
-
for a in range(len(ax)):
|
| 290 |
-
for b in range(len(ax[a])):
|
| 291 |
-
ax[a,b].axhline(50)
|
| 292 |
-
ax[a,b].set_title(cols.columns[i],size=15)
|
| 293 |
-
ax[a,b].legend(['Module Temperature','Ambient Temperature'])
|
| 294 |
-
i=i+1
|
| 295 |
-
|
| 296 |
-
plt.tight_layout()
|
| 297 |
-
plt.show()
|
| 298 |
-
|
| 299 |
-
"""# DC_POWER And DAILY_YIELD"""
|
| 300 |
-
|
| 301 |
-
worst_source=gen_1[gen_1['SOURCE_KEY']=='bvBOhCH3iADSZry']
|
| 302 |
-
worst_source['time']=worst_source['DATE_TIME'].dt.time
|
| 303 |
-
worst_source['day']=worst_source['DATE_TIME'].dt.date
|
| 304 |
-
|
| 305 |
-
ax=worst_source.groupby(['time','day'])['DC_POWER'].mean().unstack().plot(sharex=True,subplots=True,layout=(17,2),figsize=(20,30))
|
| 306 |
-
worst_source.groupby(['time','day'])['DAILY_YIELD'].mean().unstack().plot(sharex=True,subplots=True,layout=(17,2),figsize=(20,30),ax=ax,style='-.')
|
| 307 |
-
|
| 308 |
-
i=0
|
| 309 |
-
for a in range(len(ax)):
|
| 310 |
-
for b in range(len(ax[a])):
|
| 311 |
-
ax[a,b].set_title(cols.columns[i],size=15)
|
| 312 |
-
ax[a,b].legend(['DC_POWER','DAILY_YIELD'])
|
| 313 |
-
i=i+1
|
| 314 |
-
|
| 315 |
-
plt.tight_layout()
|
| 316 |
-
plt.show()
|
| 317 |
-
|
| 318 |
-
"""# Inverter Analysis (Generation Data)"""
|
| 319 |
-
|
| 320 |
-
inverter_performance = gen_data.groupby('SOURCE_KEY')['DC_POWER'].mean().sort_values()
|
| 321 |
-
print(f"Underperforming inverter: {inverter_performance.idxmin()}")
|
| 322 |
-
|
| 323 |
-
"""# Module temperature and Ambient Temperature on PLANT_1 (Weather Data)"""
|
| 324 |
-
|
| 325 |
-
fig, ax = plt.subplots(figsize=(15, 5))
|
| 326 |
-
weather_data.plot(x='DATE_TIME', y=['AMBIENT_TEMPERATURE', 'MODULE_TEMPERATURE'], ax=ax, title="Module and Ambient Temperature (Weather Data)")
|
| 327 |
-
plt.show()
|
| 328 |
-
|
| 329 |
-
"""# Inverter in action (Generation Data)"""
|
| 330 |
-
|
| 331 |
-
inverter_data = gen_data[gen_data['SOURCE_KEY'] == 'bvBOhCH3iADSZry']
|
| 332 |
-
fig, ax = plt.subplots(figsize=(15, 5))
|
| 333 |
-
inverter_data.plot(x='DATE_TIME', y=['AC_POWER', 'DC_POWER'], ax=ax, title="Inverter bvBOhCH3iADSZry")
|
| 334 |
-
plt.show()
|
| 335 |
-
|
| 336 |
-
"""# Forecasting with ARIMA (Generation Data)"""
|
| 337 |
-
|
| 338 |
-
df_daily_gen = gen_data_daily[['DATE_TIME', 'DAILY_YIELD']].set_index('DATE_TIME')
|
| 339 |
-
|
| 340 |
-
"""# Testing for stationarity"""
|
| 341 |
-
|
| 342 |
-
result = adfuller(df_daily_gen['DAILY_YIELD'].dropna())
|
| 343 |
-
print(f'ADF Statistic: {result[0]}')
|
| 344 |
-
print(f'p-value: {result[1]}')
|
| 345 |
-
|
| 346 |
-
"""# Splitting the dataset"""
|
| 347 |
-
|
| 348 |
-
train_gen, test_gen = train_test_split(df_daily_gen, test_size=0.2, shuffle=False)
|
| 349 |
-
|
| 350 |
-
"""# ARIMA model"""
|
| 351 |
-
|
| 352 |
-
arima_model_gen = ARIMA(train_gen['DAILY_YIELD'], order=(5, 1, 0))
|
| 353 |
-
arima_fit_gen = arima_model_gen.fit()
|
| 354 |
-
forecast_arima_gen = arima_fit_gen.forecast(steps=len(test_gen))
|
| 355 |
-
test_gen['Forecast_ARIMA'] = forecast_arima_gen
|
| 356 |
-
|
| 357 |
-
"""# Plot ARIMA Forecast"""
|
| 358 |
-
|
| 359 |
-
fig, ax = plt.subplots(figsize=(15, 5))
|
| 360 |
-
train_gen['DAILY_YIELD'].plot(ax=ax, label='Training Data')
|
| 361 |
-
test_gen['DAILY_YIELD'].plot(ax=ax, label='Test Data')
|
| 362 |
-
test_gen['Forecast_ARIMA'].plot(ax=ax, label='ARIMA Forecast')
|
| 363 |
-
plt.legend()
|
| 364 |
-
plt.show()
|
| 365 |
-
|
| 366 |
-
"""# SARIMA Model for Seasonal Data"""
|
| 367 |
-
|
| 368 |
-
sarima_model = SARIMAX(train_gen['DAILY_YIELD'], order=(1, 1, 1), seasonal_order=(1, 1, 1, 12))
|
| 369 |
-
sarima_fit = sarima_model.fit(disp=False)
|
| 370 |
-
sarima_forecast = sarima_fit.forecast(steps=len(test_gen))
|
| 371 |
-
test_gen['Forecast_SARIMA'] = sarima_forecast
|
| 372 |
-
|
| 373 |
-
"""# Plot SARIMA Forecast"""
|
| 374 |
-
|
| 375 |
-
plt.figure(figsize=(15, 5))
|
| 376 |
-
train_gen['DAILY_YIELD'].plot(label='Train')
|
| 377 |
-
test_gen['DAILY_YIELD'].plot(label='Test')
|
| 378 |
-
test_gen['Forecast_SARIMA'].plot(label='SARIMA Forecast')
|
| 379 |
-
plt.legend()
|
| 380 |
-
plt.title('SARIMA Model Forecast for Daily Yield (Generation Data)')
|
| 381 |
-
plt.show()
|
| 382 |
-
|
| 383 |
-
"""# SARIMAX vs ARIMA Comparison (Generation Data)"""
|
| 384 |
-
|
| 385 |
-
plt.figure(figsize=(15, 5))
|
| 386 |
-
plt.plot(test_gen.index, test_gen['DAILY_YIELD'], label='Actual Test Data')
|
| 387 |
-
plt.plot(test_gen.index, test_gen['Forecast_ARIMA'], label='ARIMA Forecast')
|
| 388 |
-
plt.plot(test_gen.index, test_gen['Forecast_SARIMA'], label='SARIMA Forecast')
|
| 389 |
-
plt.legend()
|
| 390 |
-
plt.title("ARIMA vs SARIMA Forecast Comparison (Generation Data)")
|
| 391 |
-
plt.savefig('first_plot.png', dpi=300, bbox_inches='tight')
|
| 392 |
-
plt.show()
|
| 393 |
-
plt.close()
|
| 394 |
-
|
| 395 |
-
"""# ARIMA Model"""
|
| 396 |
-
|
| 397 |
-
pred_gen=gen_1.copy()
|
| 398 |
-
pred_gen=pred_gen.groupby('DATE_TIME').sum()
|
| 399 |
-
pred_gen=pred_gen['DAILY_YIELD'][-288:].reset_index()
|
| 400 |
-
pred_gen.set_index('DATE_TIME',inplace=True)
|
| 401 |
-
pred_gen.head()
|
| 402 |
-
|
| 403 |
-
result = adfuller(pred_gen['DAILY_YIELD'])
|
| 404 |
-
print('Augmented Dickey-Fuller Test:')
|
| 405 |
-
labels = ['ADF Test Statistic','p-value','#Lags Used','Number of Observations Used']
|
| 406 |
-
|
| 407 |
-
for value,label in zip(result,labels):
|
| 408 |
-
print(label+' : '+str(value) )
|
| 409 |
-
|
| 410 |
-
if result[1] <= 0.05:
|
| 411 |
-
print("strong evidence against the null hypothesis, reject the null hypothesis. Data has no unit root and is stationary")
|
| 412 |
-
else:
|
| 413 |
-
print("weak evidence against null hypothesis, time series has a unit root, indicating it is non-stationary ")
|
| 414 |
-
|
| 415 |
-
train=pred_gen[:192]
|
| 416 |
-
test=pred_gen[-96:]
|
| 417 |
-
plt.figure(figsize=(15,5))
|
| 418 |
-
plt.plot(train,label='Train',color='navy')
|
| 419 |
-
plt.plot(test,label='Test',color='darkorange')
|
| 420 |
-
plt.title('Last 4 days of daily yield',fontsize=17)
|
| 421 |
-
plt.legend()
|
| 422 |
-
plt.show()
|
| 423 |
-
|
| 424 |
-
arima_model = auto_arima(train,start_p=0,d=1,start_q=0,max_p=4,max_d=4,max_q=4,start_P=0,D=1,start_Q=0,max_P=1,max_D=1,max_Q=1,m=96,seasonal=True,error_action='warn',trace=True,supress_warning=True,stepwise=True,random_state=20,n_fits=1)
|
| 425 |
-
|
| 426 |
-
future_dates = [test.index[-1] + DateOffset(minutes=x) for x in range(0,2910,15) ]
|
| 427 |
-
|
| 428 |
-
prediction=pd.DataFrame(arima_model.predict(n_periods=96),index=test.index)
|
| 429 |
-
prediction.columns=['predicted_yield']
|
| 430 |
-
|
| 431 |
-
fig,ax= plt.subplots(ncols=2,nrows=1,dpi=100,figsize=(17,5))
|
| 432 |
-
ax[0].plot(train,label='Train',color='navy')
|
| 433 |
-
ax[0].plot(test,label='Test',color='darkorange')
|
| 434 |
-
ax[0].plot(prediction,label='Prediction',color='green')
|
| 435 |
-
ax[0].legend()
|
| 436 |
-
ax[0].set_title('Forecast on test set',size=17)
|
| 437 |
-
ax[0].set_ylabel('kW',color='navy',fontsize=17)
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
f_prediction=pd.DataFrame(arima_model.predict(n_periods=194),index=future_dates)
|
| 441 |
-
f_prediction.columns=['predicted_yield']
|
| 442 |
-
ax[1].plot(pred_gen,label='Original data',color='navy')
|
| 443 |
-
ax[1].plot(f_prediction,label='18th & 19th June',color='green')
|
| 444 |
-
ax[1].legend()
|
| 445 |
-
ax[1].set_title('Next days forecast',size=17)
|
| 446 |
-
plt.show()
|
| 447 |
-
|
| 448 |
-
arima_model.summary()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|