DocWise / app.py
Codequestt's picture
Update app.py
096bf02 verified
raw
history blame
9.38 kB
import base64
import requests
import gradio as gr
import PyPDF2
import google.generativeai as genai
from langchain.text_splitter import RecursiveCharacterTextSplitter
from sentence_transformers import SentenceTransformer, util
import numpy as np
import os
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.documents import Document
# Retrieve API keys from environment variables
google_api_key = os.getenv("GOOGLE_API_KEY")
tavily_api_key = os.getenv("TAVILY_API_KEY")
# Configure Google Generative AI
genai.configure(api_key=google_api_key)
# Create the Gemini model
generation_config = {
"temperature": 0.7,
"top_p": 0.95,
"top_k": 64,
"max_output_tokens": 65536,
"response_mime_type": "text/plain",
}
model = genai.GenerativeModel(
model_name="gemini-2.0-flash-thinking-exp-01-21",
generation_config=generation_config,
)
chat_session = model.start_chat(history=[])
# Function to extract text from a PDF
def extract_text_from_pdf(file_path):
try:
with open(file_path, "rb") as file:
reader = PyPDF2.PdfReader(file)
text = "".join(page.extract_text() for page in reader.pages)
return text
except Exception as e:
return f"Error extracting text from PDF: {e}"
# Function to chunk the text
def chunk_text(text, chunk_size=500, chunk_overlap=50):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
# Function to embed the chunks
def embed_chunks(chunks, model_name="all-MiniLM-L6-v2"):
model = SentenceTransformer(model_name)
embeddings = model.encode(chunks, convert_to_tensor=True)
return embeddings, model
# Function to retrieve relevant chunks
def retrieve_relevant_chunks(query, chunks, embeddings, model, top_k=3):
query_embedding = model.encode(query, convert_to_tensor=True)
similarities = util.cos_sim(query_embedding, embeddings)[0]
top_k = min(top_k, len(chunks))
top_indices = np.argsort(similarities.cpu().numpy())[-top_k:][::-1]
relevant_chunks = [chunks[i] for i in top_indices]
return relevant_chunks
# Function to summarize the agreement using Gemini
def summarize_agreement_with_gemini(text):
try:
# Create a prompt for summarization
prompt = f"Summarize the following text in 3-5 sentences:\n\n{text}\n\nSummary:"
# Send the prompt to the Gemini model
response = chat_session.send_message(prompt)
return response.text
except Exception as e:
return f"Error summarizing text with Gemini: {e}"
# Configure Tavily API
os.environ["TAVILY_API_KEY"] = tavily_api_key
web_search_tool = TavilySearchResults(k=3)
def generate_response_with_rag(query, pdf_path, state):
if "chunks" not in state or "embeddings" not in state or "embedding_model" not in state:
text = extract_text_from_pdf(pdf_path)
chunks = chunk_text(text)
embeddings, embedding_model = embed_chunks(chunks)
state["chunks"] = chunks
state["embeddings"] = embeddings
state["embedding_model"] = embedding_model
else:
chunks = state["chunks"]
embeddings = state["embeddings"]
embedding_model = state["embedding_model"]
# Retrieve relevant chunks based on the query
relevant_chunks = retrieve_relevant_chunks(query, chunks, embeddings, embedding_model, top_k=5)
# Combine the relevant chunks into a single context
context = "\n\n".join(relevant_chunks)
# Create a prompt that instructs the model to answer only from the context
prompt = f"""
You are a helpful assistant that answers questions based on the provided context.
Use the context below to answer the question. If the context does not contain enough information to answer the question, respond with "I don't know."
**Context:**
{context}
**Question:**
{query}
**Answer:**
"""
# Send the prompt to the Gemini model
try:
response = chat_session.send_message(prompt)
initial_answer = response.text
# Check if the initial answer is "I don't know"
if "I don't know" in initial_answer or "i don't know" in initial_answer:
docs = web_search_tool.invoke({"query": query})
web_results = "\n".join([d["content"] for d in docs])
web_results = Document(page_content=web_results)
# Create a prompt that instructs the model to answer from the web search results
web_prompt = f"""
You are a helpful assistant that answers questions based on the provided context.
The context below is from a web search. Use the context to answer the question. If the context does not contain enough information to answer the question, respond with "I don't know."
**Context:**
{web_results.page_content}
**Question:**
{query}
**Answer:**
"""
web_response = chat_session.send_message(web_prompt)
return f"{web_response.text}\n\n*Note: This answer is based on a web search.*"
else:
return initial_answer
except Exception as e:
return f"Error generating response: {e}"
# Function to process the agreement
def process_agreement(file, state):
try:
text = extract_text_from_pdf(file.name)
if text.startswith("Error"):
return text, {}, state
# Use Gemini for summarization
summary = summarize_agreement_with_gemini(text)
if summary.startswith("Error"):
return summary, {}, state
return summary, {}, state
except Exception as e:
return f"Error: {e}", {}, state
# Gradio interface
def main_interface(file, question, state):
if file is not None:
state["file"] = file
state["text"] = extract_text_from_pdf(file.name)
state["chat_history"] = [] # Initialize chat history
summary_output = ""
chatbot_output = ""
if "file" in state:
summary_output, _, state = process_agreement(state["file"], state)
if question:
chatbot_output = generate_response_with_rag(question, state["file"].name, state)
state["chat_history"].append((question, chatbot_output))
return summary_output, chatbot_output, state
# CSS for styling
css = """
.gradio-container {
background-image: url('https://huggingface.co/spaces/Nadaazakaria/DocWise/resolve/main/DALL%C2%B7E%202025-01-26%2011.43.33%20-%20A%20futuristic%20and%20sleek%20magical%20animated%20GIF-style%20icon%20design%20for%20%27DocWise%27%2C%20representing%20knowledge%2C%20documents%2C%20and%20wisdom.%20The%20design%20includes%20a%20glow.jpg');
background-size: cover;
background-position: center;
background-repeat: no-repeat;
}
.gradio-container h1,
.gradio-container .tabs > .tab-nav > .tab-button {
color: #FFF5E1 !important;
text-shadow: 0 0 5px rgba(255, 245, 225, 0.5);
}
.tabs {
background-color: #f0f0f0 !important;
border-radius: 10px !important;
padding: 20px !important;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1) !important;
}
.tabs > .tab-nav {
background-color: #e0e0e0 !important;
border-radius: 5px !important;
margin-bottom: 15px !important;
}
.tabs > .tab-nav > .tab-button {
color: black !important;
font-weight: bold !important;
}
.tabs > .tab-nav > .tab-button.selected {
background-color: #d0d0d0 !important;
color: black !important;
}
#process-button, #chatbot-button {
background-color: white !important;
color: black !important;
border: 1px solid #ccc !important;
padding: 10px 20px !important;
border-radius: 5px !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1) !important;
transition: background-color 0.3s ease !important;
}
#process-button:hover, #chatbot-button:hover {
background-color: #f0f0f0 !important;
}
"""
# Gradio app
with gr.Blocks(css=css) as app:
gr.Markdown(
"""
<div style="text-align: center;">
<h1 id="main-title">
DocWise (Agreement Analyzer with Chatbot)
Upload your agreement to get a full view of its important parts and chat with it for better understanding.
</h1>
</div>
""",
)
state = gr.State({})
file_input = gr.File(label="Upload Agreement (PDF)")
with gr.Tab("Document Processing", elem_id="processing-tab"):
summary_output = gr.Textbox(label="Document Summary")
process_button = gr.Button("Process Document", elem_id="process-button")
with gr.Tab("Chatbot", elem_id="chatbot-tab"):
chatbot_question_input = gr.Textbox(label="Ask a Question")
chatbot_answer_output = gr.Textbox(label="Answer")
chatbot_button = gr.Button("Ask", elem_id="chatbot-button")
process_button.click(
main_interface,
inputs=[file_input, gr.State(), state],
outputs=[summary_output, chatbot_answer_output, state]
)
chatbot_button.click(
main_interface,
inputs=[file_input, chatbot_question_input, state],
outputs=[summary_output, chatbot_answer_output, state]
)
app.launch(debug=True)