Tzktz's picture
Upload 5 files
c1ae314 verified
raw
history blame
5.3 kB
import cv2
from PIL import Image
import numpy as np
from rembg import remove
import os
import shutil
import glob
import moviepy.editor as mp
from moviepy.editor import *
def cv_to_pil(img):
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGRA2RGBA))
def pil_to_cv(img):
return cv2.cvtColor(np.array(img), cv2.COLOR_RGBA2BGRA)
def video_to_images(video_path, images_path):
# Open video
cam = cv2.VideoCapture(video_path)
# Get FPS
fps = cam.get(cv2.CAP_PROP_FPS)
# Extract audio
clip = mp.VideoFileClip(video_path)
clip.audio.write_audiofile("./audio.mp3")
# Create folder for images
if not os.path.exists(images_path):
os.makedirs(images_path)
else:
shutil.rmtree(images_path)
os.makedirs(images_path)
# Go through frames of video
frameno = 0
while (True):
ret, frame = cam.read()
if ret:
# if video is still left continue creating images
name = images_path + str(frameno).zfill(5) + '.png'
print('new frame captured... ', frameno)
# Save frame
cv2.imwrite(name, frame, [int(cv2.IMWRITE_PNG_COMPRESSION), 0])
frameno += 1
else:
break
# Close video
cam.release()
cv2.destroyAllWindows()
return fps
def images_to_video(images_path, video_export_path, fps):
# Get a list of PNG images on the "test_images" folder
images = glob.glob(images_path + "*.png")
# Sort images by name
images = sorted(images)
# Read the first image to get the frame size
frame = cv2.imread(images[0])
height, width, layers = frame.shape
temp_video_path = './temp-video.mp4'
# Codec
# fourcc = cv2.VideoWriter_fourcc(*"mp4v")
fourcc = cv2.VideoWriter_fourcc(*'XVID')
# fourcc = cv2.VideoWriter_fourcc(*'MPEG')
# Create final video
video = cv2.VideoWriter(filename=temp_video_path, fourcc=fourcc, fps=fps, frameSize=(width, height))
# Read each image and write it to the video
for i, image in enumerate(images):
print("Writing frame to video ", i, '/', len(images))
# Read the image using OpenCV
frame = cv2.imread(image)
# Write frame to video
video.write(frame)
# Exit the video writer
video.release()
# Open final video
videoclip = VideoFileClip(temp_video_path)
# Add audio to final video
audioclip = AudioFileClip("./audio.mp3")
new_audioclip = CompositeAudioClip([audioclip])
videoclip.audio = new_audioclip
# Save final video
videoclip.write_videofile(video_export_path, audio_codec='aac', codec='libx264')
# Delete temp files
os.remove(temp_video_path)
os.remove("./audio.mp3")
def motion_blur(img, distance, amount):
# Convert to RGBA
img = img.convert('RGBA')
# Convert pil to cv
cv_img = pil_to_cv(img)
# Generating the kernel
kernel_motion_blur = np.zeros((distance, distance))
kernel_motion_blur[int((distance - 1) / 2), :] = np.ones(distance)
kernel_motion_blur = kernel_motion_blur / distance
# Applying the kernel to the input image
output = cv2.filter2D(cv_img, -1, kernel_motion_blur)
# Convert cv to pil
blur_img = cv_to_pil(output).convert('RGBA')
# Blend the original image and the blur image
final_img = Image.blend(img, blur_img, amount)
return final_img
def background_motion_blur(background, distance_blur, amount_blur):
# Remove background
subject = remove(background)
amount_subject = 1
# Blur the background
background_blur = motion_blur(background, distance_blur, amount_blur)
# Put the subject on top of the blur background
subject_on_blur_background = background_blur.copy()
subject_on_blur_background.paste(background, (0, 0), subject)
# Blend the subject and the blur background
result = Image.blend(background_blur, subject_on_blur_background, amount_subject)
return result
def video_motion_blur(video_path, export_video_path, distance_blur, amount_blur, amount_subject):
# Image folder
images_path = './images/'
# Convert video to images and save FPS
fps = video_to_images(video_path, images_path)
# Create list of images
image_path_list = glob.glob(images_path + "*.png")
# Sort images by name
image_path_list = sorted(image_path_list)
# Create folder for blur images
blur_images_path = './blur_images/'
if not os.path.exists(blur_images_path):
os.makedirs(blur_images_path)
else:
shutil.rmtree(blur_images_path)
os.makedirs(blur_images_path)
# Go through image folder
count = 0
for filename in image_path_list:
# Open image an PIL image
img = Image.open(filename)
# Motion blur image
blur_img = background_motion_blur(img, distance_blur, amount_blur, amount_subject)
# Save blurred image
blur_img.save(blur_images_path + str(count).zfill(5) + '.png')
print('motion blur', str(count), '/', len(image_path_list))
count += 1
# Convert blurred images to final video
images_to_video(blur_images_path, export_video_path, fps)
# Delete temp folders
shutil.rmtree(images_path)
shutil.rmtree(blur_images_path)