CodeTed's picture
Update app.py
3c97636
raw
history blame
1.26 kB
import gradio as gr
from t5.t5_model import T5Model
from transformers import AutoTokenizer, T5ForConditionalGeneration
#tokenizer = AutoTokenizer.from_pretrained("CodeTed/traditional_CSC_t5")
#model = T5ForConditionalGeneration.from_pretrained("CodeTed/traditional_CSC_t5")
model = T5Model('t5', "CodeTed/Chinese_Spelling_Correction_T5", args={"eval_batch_size": 1}, cuda_device=-1, evaluate=True)
def cged_correction(sentence = '為了降低少子化,政府可以堆動獎勵生育的政策。'):
for _ in range(3):
outputs = model.predict(["糾正句子中的錯字:" + sentence + "_輸出句:"])
sentence = outputs[0]
return outputs[0]
with gr.Blocks() as demo:
gr.Markdown(
"""
# 中文錯別字校正 - Chinese Spelling Correction
### Find Spelling Error and get the correction!
Start typing below to see the correction.
"""
)
#設定輸入元件
sent = gr.Textbox(label="Sentence", placeholder="input the sentence")
# 設定輸出元件
output = gr.Textbox(label="Result", placeholder="correction")
#設定按鈕
greet_btn = gr.Button("Correction")
#設定按鈕點選事件
greet_btn.click(fn=cged_correction, inputs=sent, outputs=output)
demo.launch()