Spaces:
Runtime error
Runtime error
import gradio as gr | |
from t5.t5_model import T5Model | |
from transformers import AutoTokenizer, T5ForConditionalGeneration | |
#tokenizer = AutoTokenizer.from_pretrained("CodeTed/traditional_CSC_t5") | |
#model = T5ForConditionalGeneration.from_pretrained("CodeTed/traditional_CSC_t5") | |
model = T5Model('t5', "CodeTed/Chinese_Spelling_Correction_T5", args={"eval_batch_size": 1}, cuda_device=-1, evaluate=True) | |
def cged_correction(sentence = '為了降低少子化,政府可以堆動獎勵生育的政策。'): | |
for _ in range(3): | |
outputs = model.predict(["糾正句子中的錯字:" + sentence + "_輸出句:"]) | |
sentence = outputs[0] | |
return outputs[0] | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# 中文錯別字校正 - Chinese Spelling Correction | |
### Find Spelling Error and get the correction! | |
Start typing below to see the correction. | |
""" | |
) | |
#設定輸入元件 | |
sent = gr.Textbox(label="Sentence", placeholder="input the sentence") | |
# 設定輸出元件 | |
output = gr.Textbox(label="Result", placeholder="correction") | |
#設定按鈕 | |
greet_btn = gr.Button("Correction") | |
#設定按鈕點選事件 | |
greet_btn.click(fn=cged_correction, inputs=sent, outputs=output) | |
demo.launch() |