Spaces:
Sleeping
Sleeping
from random import shuffle | |
import torch | |
import csv, os | |
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, Dataset, SequentialSampler | |
from sklearn.model_selection import train_test_split | |
from torchvision.io import read_image | |
import torch.nn as nn | |
from torchvision import transforms | |
import pandas as pd | |
import numpy as np | |
from PIL import Image | |
import math | |
from transformers import AutoImageProcessor | |
class imgDataset(Dataset): | |
def __init__(self, path, mode='train', use_processor=True): | |
self.path = path | |
self.mode = mode | |
self.use_processor = use_processor | |
self.image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") | |
self.transform = { | |
'train': transforms.Compose([ | |
transforms.RandomResizedCrop(224), | |
transforms.RandomHorizontalFlip(), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]), | |
'val': transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
} | |
self.trans = self.transform[mode] | |
self.data = self.get_data() | |
def convert_body_to_int(self, pos, file_name_list): | |
body_str = file_name_list[1].split('-')[pos] | |
if not body_str: body_str = '62' | |
body = int(body_str[1:3]) if not body_str.isdigit() else int(body_str) | |
body = 100+body if body <= 25 else body | |
return body | |
def get_data(self): | |
data = [] | |
with open(self.path, 'r', encoding='utf-8') as f: | |
for line in f.readlines(): | |
file_name_list = line.split(' ') | |
if not self.mode in file_name_list:continue | |
label, h = 0 if file_name_list[2]=="big" else 1, float(file_name_list[3]) | |
b = self.convert_body_to_int(0, file_name_list) | |
w = self.convert_body_to_int(1, file_name_list) | |
hh = self.convert_body_to_int(2, file_name_list) | |
data.append([os.path.join('images', file_name_list[0], file_name_list[2], file_name_list[1]), label, h, b, w, hh]) | |
return data | |
def __len__(self): | |
return len(self.data) | |
def __getitem__(self, idx): | |
img_path, label, h, b, w, hh = self.data[idx] | |
inp_img = Image.open(img_path).convert("RGB") | |
if not self.use_processor: image_tensor = self.trans(inp_img) | |
else:image_tensor = self.image_processor(images=inp_img, return_tensors="pt") | |
return image_tensor, label, torch.tensor(h, dtype=torch.float), torch.tensor(b, dtype=torch.float), torch.tensor(w, dtype=torch.float), torch.tensor(hh, dtype=torch.float) | |
if __name__ == "__main__": | |
train_dataset = imgDataset('labels.txt', mode='train') | |
test_dataset = imgDataset('labels.txt', mode='val') | |
train_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=True) | |
print(len(train_dataset), len(test_dataset)) | |
print(next(iter(train_dataloader))) |