Spaces:
Runtime error
Runtime error
import transformers | |
import gradio as gr | |
import tensorflow as tf | |
from official.nlp import optimization # to create AdamW optimizer | |
MODEL_DIRECTORY = 'save/modelV1' | |
PRETRAINED_MODEL_NAME = 'dbmdz/bert-base-german-cased' | |
TOKENIZER = transformers.BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME) | |
MAX_SEQUENCE_LENGTH = 256 | |
EPOCHS = 2 | |
OPTIMIZER = 'adamw' | |
INIT_LR = 3e-5 | |
LOSS = tf.keras.losses.BinaryCrossentropy(from_logits=False) | |
METRICS = tf.metrics.BinaryAccuracy() | |
def compile_model(model): | |
steps_per_epoch = 10 | |
num_train_steps = steps_per_epoch * EPOCHS | |
num_warmup_steps = int(0.1*num_train_steps) | |
optimizer = optimization.create_optimizer( | |
init_lr=INIT_LR, | |
num_train_steps=steps_per_epoch, | |
num_warmup_steps=num_warmup_steps, | |
optimizer_type=OPTIMIZER | |
) | |
model.compile(optimizer=optimizer, loss=LOSS, metrics=[METRICS]) | |
return model | |
hs_detection_model = tf.keras.models.load_model(MODEL_DIRECTORY, compile=False) #tf.keras.models.load_model('save/kerasmodel/model.h5') #tf.saved_model.load('save/model') #tf.keras.models.load_model('save/model') | |
compile_model(hs_detection_model) | |
def encode(sentences): | |
return TOKENIZER.batch_encode_plus( | |
sentences, | |
max_length=MAX_SEQUENCE_LENGTH, # set the length of the sequences | |
add_special_tokens=True, # add [CLS] and [SEP] tokens | |
return_attention_mask=True, | |
return_token_type_ids=False, # not needed for this type of ML task | |
pad_to_max_length=True, # add 0 pad tokens to the sequences less than max_length | |
return_tensors='tf' | |
) | |
def inference(sentence): | |
print(sentence) | |
encoded_sentence = encode([sentence]) | |
print(encoded_sentence) | |
predicition = hs_detection_model.predict(encoded_sentence.values()) | |
print(predicition) | |
return predicition | |
iface = gr.Interface(fn=inference, inputs="text", outputs="text") #, live=True) | |
iface.launch() |