|
import gradio as gr |
|
import pandas as pd |
|
|
|
def rf_predict(GDP,Unemployment,Medical_resources,Past_years_life_expectancy_growth_rate): |
|
|
|
with open('rf.pkl', 'rb') as f: |
|
rf = pickle.load(f) |
|
|
|
X_test = [GDP,Unemployment,Medical_resources,Past_years_life_expectancy_growth_rate] |
|
X_test = pd.DataFrame(X_test).T |
|
X_test.columns = ['GDP_per_capita','Unemployment_rate','Medical_resources_per_capita','Past_years_life_expectancy_growth_rate'] |
|
y_pred = rf.predict(X_test) |
|
return y_pred |
|
|
|
gr.Interface( |
|
fn=rf_predict |
|
inputs=[ |
|
gr_Textbox(label="GDP"), |
|
gr_Textbox(label="Unemployment_rate"), |
|
gr_Textbox(label="Medical_resources_per_capita"), |
|
gr_Textbox(label="Past_years_life_expectancy_growth_rate"), |
|
], |
|
outputs='number', |
|
title="Life" |
|
).launch() |