Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -24,48 +24,12 @@ from google.oauth2 import service_account
|
|
24 |
from googleapiclient.discovery import build
|
25 |
import wget
|
26 |
import urllib.request
|
27 |
-
import sqlite3
|
28 |
-
import pandas as pd
|
29 |
-
import pandasql as ps
|
30 |
-
# import sounddevice as sd
|
31 |
-
# import soundfile as sf
|
32 |
|
33 |
-
def clean(value):
|
34 |
-
val = value.replace("'",'').replace("[",'').replace("]",'')
|
35 |
-
return val
|
36 |
|
37 |
def save_uploadedfile(uploadedfile):
|
38 |
with open(uploadedfile.name,"wb") as f:
|
39 |
f.write(uploadedfile.getbuffer())
|
40 |
|
41 |
-
def gpt3(texts):
|
42 |
-
# openai.api_key = os.environ["Secret"]
|
43 |
-
openai.api_key = st.secrets['OPENAI_KEY'] #'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'#'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' #'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'
|
44 |
-
response = openai.Completion.create(
|
45 |
-
engine="text-davinci-003",
|
46 |
-
prompt= texts,
|
47 |
-
temperature=temp,
|
48 |
-
max_tokens=750,
|
49 |
-
top_p=1,
|
50 |
-
frequency_penalty=0.0,
|
51 |
-
presence_penalty=0.0,
|
52 |
-
stop = (";", "/*", "</code>"))
|
53 |
-
x = response.choices[0].text
|
54 |
-
return x
|
55 |
-
|
56 |
-
def warning(sqlOutput):
|
57 |
-
dl = []
|
58 |
-
lst = ['DELETE','DROP','TRUNCATE','MERGE','ALTER','UPDATE','INSERT']
|
59 |
-
op2 = " ".join(sqlOutput.split())
|
60 |
-
op3 = op2.split(' ')
|
61 |
-
op4 = list(map(lambda x: x.upper(), op3))
|
62 |
-
for i in op4:
|
63 |
-
if i in lst:
|
64 |
-
dl.append(i)
|
65 |
-
for i in dl:
|
66 |
-
st.warning("This query will " + i + " the data ",icon="⚠️")
|
67 |
-
|
68 |
-
|
69 |
stability_api = client.StabilityInference(
|
70 |
key=st.secrets["STABILITY_KEY"], #os.environ("STABILITY_KEY"), # key=os.environ['STABILITY_KEY'], # API Key reference.
|
71 |
verbose=True, # Print debug messages.
|
@@ -253,47 +217,6 @@ def g_sheet_log(myinput, output):
|
|
253 |
).execute()
|
254 |
|
255 |
openai.api_key = st.secrets["OPENAI_KEY"]
|
256 |
-
# duration = 5
|
257 |
-
# fs = 44100
|
258 |
-
# channels = 1
|
259 |
-
# filename = "output.wav"
|
260 |
-
|
261 |
-
# def record_audio():
|
262 |
-
# myrecording = sd.rec(int(duration * fs), samplerate=fs, channels=channels)
|
263 |
-
# sd.wait()
|
264 |
-
# sf.write(filename, myrecording, fs)
|
265 |
-
# return filename
|
266 |
-
# p = pyaudio.PyAudio()
|
267 |
-
|
268 |
-
# # Open the microphone stream
|
269 |
-
# stream = p.open(format=FORMAT,
|
270 |
-
# channels=CHANNELS,
|
271 |
-
# rate=RATE,
|
272 |
-
# input=True,
|
273 |
-
# frames_per_buffer=CHUNK)
|
274 |
-
|
275 |
-
# # Record the audio
|
276 |
-
# frames = []
|
277 |
-
# for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
|
278 |
-
# data = stream.read(CHUNK)
|
279 |
-
# frames.append(data)
|
280 |
-
|
281 |
-
# # Close the microphone stream
|
282 |
-
# stream.stop_stream()
|
283 |
-
# stream.close()
|
284 |
-
# p.terminate()
|
285 |
-
|
286 |
-
# # Save the recorded audio to a WAV file
|
287 |
-
# wf = wave.open("output.mp3", "wb")
|
288 |
-
# wf.setnchannels(CHANNELS)
|
289 |
-
# wf.setsampwidth(p.get_sample_size(FORMAT))
|
290 |
-
# wf.setframerate(RATE)
|
291 |
-
# wf.writeframes(b"".join(frames))
|
292 |
-
# wf.close()
|
293 |
-
|
294 |
-
# # Return the path to the recorded audio file
|
295 |
-
# return "output.mp3"
|
296 |
-
|
297 |
|
298 |
def openai_response(PROMPT):
|
299 |
response = openai.Image.create(
|
@@ -306,392 +229,186 @@ def openai_response(PROMPT):
|
|
306 |
st.title("Hi! :red[HyperBot] here!!🤖⭐️")
|
307 |
st.title("Go on ask me anything!!")
|
308 |
|
309 |
-
st.
|
310 |
-
⭐️ HyperBot is your virtual assistant powered by Whisper /
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
315 |
''')
|
316 |
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
-
|
326 |
-
- How many cars were manufactured each year between 2000 to 2008?
|
327 |
-
''')
|
328 |
-
|
329 |
-
option = ['Sample_Cars_csv','Upload_csv']
|
330 |
-
res = st.selectbox('Select from below options:',option)
|
331 |
-
if res == 'Upload_csv':
|
332 |
-
uploaded_file = st.file_uploader("Add dataset (csv) ",type=['csv'])
|
333 |
-
if uploaded_file is not None:
|
334 |
-
st.write("File Uploaded")
|
335 |
-
file_name=uploaded_file.name
|
336 |
-
ext=file_name.split(".")[0]
|
337 |
-
st.write(ext)
|
338 |
-
df=pd.read_csv(uploaded_file)
|
339 |
-
save_uploadedfile(uploaded_file)
|
340 |
-
col= df.columns
|
341 |
try:
|
342 |
-
columns = str((df.columns).tolist())
|
343 |
-
column = clean(columns)
|
344 |
-
st.write('Columns:' )
|
345 |
-
st.text(col)
|
346 |
-
except:
|
347 |
-
pass
|
348 |
-
|
349 |
-
temp = st.slider('Temperature: ', 0.0, 1.0, 0.0)
|
350 |
-
|
351 |
-
with st.form("Form Layout Upload_csv"):
|
352 |
-
userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query')
|
353 |
-
submitButton = st.form_submit_button(label = 'Submit')
|
354 |
-
|
355 |
-
if submitButton:
|
356 |
-
try:
|
357 |
-
col_p ="Create SQL statement from instruction. "+ext+" " " (" + column +")." +" Request:" + userPrompt + "SQL statement:"
|
358 |
-
result = gpt3(col_p)
|
359 |
-
sqlOutput = result #st.text_area('SQL Query', value=gpt3(col_p))
|
360 |
-
warning(sqlOutput)
|
361 |
-
result_tab2=ps.sqldf(sqlOutput)
|
362 |
-
st.write(result_tab2)
|
363 |
-
with open("fewshot_matplot.txt", "r") as file:
|
364 |
-
text_plot = file.read()
|
365 |
-
|
366 |
-
result_tab = result_tab2.reset_index(drop=True)
|
367 |
-
result_tab_string = result_tab.to_string()
|
368 |
-
gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: "
|
369 |
-
|
370 |
-
if len(gr_prompt) > 4097:
|
371 |
-
st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^')
|
372 |
-
st.write('As of today, the NLP model text-davinci-003/gpt-3.5-turbo that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^')
|
373 |
-
|
374 |
-
elif len(result_tab2.columns) < 2:
|
375 |
-
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^")
|
376 |
-
|
377 |
-
else:
|
378 |
-
st.success("Plotting...")
|
379 |
-
response_graph = openai.Completion.create(
|
380 |
-
engine="text-davinci-003",
|
381 |
-
prompt = gr_prompt,
|
382 |
-
max_tokens=1024,
|
383 |
-
n=1,
|
384 |
-
stop=None,
|
385 |
-
temperature=0.5,
|
386 |
-
)
|
387 |
-
|
388 |
-
if response_graph['choices'][0]['text'] != "":
|
389 |
-
print(response_graph['choices'][0]['text'])
|
390 |
-
exec(response_graph['choices'][0]['text'])
|
391 |
-
|
392 |
-
else:
|
393 |
-
print('Retry! Graph could not be plotted *_*')
|
394 |
-
|
395 |
-
except:
|
396 |
-
results = gpt3(userPrompt)
|
397 |
-
st.success('loaded')
|
398 |
-
|
399 |
-
elif res == "Sample_Cars_csv":
|
400 |
-
df = pd.read_csv('cars.csv')
|
401 |
-
col= df.columns
|
402 |
-
try:
|
403 |
-
columns = str((df.columns).tolist())
|
404 |
-
column = clean(columns)
|
405 |
-
st.write('Columns:' )
|
406 |
-
st.text(col)
|
407 |
-
except:
|
408 |
-
pass
|
409 |
-
|
410 |
-
temp = st.slider('Temperature: ', 0.0, 1.0, 0.0)
|
411 |
-
|
412 |
-
with st.form("Form Layout Custom_csv"):
|
413 |
-
userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query')
|
414 |
-
submitButton = st.form_submit_button(label = 'Submit')
|
415 |
-
|
416 |
-
if submitButton:
|
417 |
try:
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
st.write(result_tab2)
|
424 |
-
|
425 |
-
with open("fewshot_matplot.txt", "r") as file:
|
426 |
-
text_plot = file.read()
|
427 |
-
|
428 |
-
result_tab = result_tab2.reset_index(drop=True)
|
429 |
-
result_tab_string = result_tab.to_string()
|
430 |
-
gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: "
|
431 |
-
|
432 |
-
if len(gr_prompt) > 4097:
|
433 |
-
st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^')
|
434 |
-
st.write('As of today, the NLP model text-davinci-003 that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^')
|
435 |
-
|
436 |
-
elif len(result_tab2.columns) < 2:
|
437 |
-
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^")
|
438 |
-
|
439 |
-
else:
|
440 |
-
st.success("Plotting...")
|
441 |
-
response_graph = openai.Completion.create(
|
442 |
-
engine="text-davinci-003",
|
443 |
-
prompt = gr_prompt,
|
444 |
-
max_tokens=1024,
|
445 |
-
n=1,
|
446 |
-
stop=None,
|
447 |
-
temperature=0.5,
|
448 |
-
)
|
449 |
-
|
450 |
-
if response_graph['choices'][0]['text'] != "":
|
451 |
-
print(response_graph['choices'][0]['text'])
|
452 |
-
exec(response_graph['choices'][0]['text'])
|
453 |
-
|
454 |
-
else:
|
455 |
-
print('Retry! Graph could not be plotted *_*')
|
456 |
-
except:
|
457 |
-
results = gpt3(userPrompt)
|
458 |
-
st.success('loaded')
|
459 |
-
|
460 |
-
|
461 |
-
elif Usage == 'Ask me anything!😊':
|
462 |
-
st.text('''You can ask me:
|
463 |
-
1. All the things you ask ChatGPT.
|
464 |
-
2. Generating paintings, drawings, abstract art.
|
465 |
-
3. Music or Videos
|
466 |
-
4. Weather
|
467 |
-
5. Stocks
|
468 |
-
6. Current Affairs and News.
|
469 |
-
7. Create or compose tweets or Linkedin posts or email.''')
|
470 |
-
|
471 |
-
Input_type = st.radio(
|
472 |
-
"**Input type:**",
|
473 |
-
('TEXT', 'SPEECH')
|
474 |
-
)
|
475 |
-
|
476 |
-
if Input_type == 'TEXT':
|
477 |
-
st.write('**You are now in Text input mode**')
|
478 |
-
mytext = st.text_input('**Go on! Ask me anything:**')
|
479 |
-
if st.button("SUBMIT"):
|
480 |
-
question=mytext
|
481 |
-
response = openai.Completion.create(
|
482 |
-
model="text-davinci-003",
|
483 |
-
prompt=f'''Your name is HyperBot and knowledge cutoff date is 2021-09, and you are not aware of any events after that time. if the
|
484 |
-
Answer to following questions is not from your knowledge base or in case of queries like weather
|
485 |
-
updates / stock updates / current news or people which requires you to have internet connection then print i don't have access to internet to answer your question,
|
486 |
-
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated")
|
487 |
-
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query")
|
488 |
-
if the question is related to operating home appliances then print ipython type output function home_app(" action(ON/Off),appliance(TV,Geaser,Fridge,Lights,fans,AC)") .
|
489 |
-
if question is realted to sending mail or sms then print ipython type output function messenger_app(" message of us ,messenger(email,sms)")
|
490 |
-
\nQuestion-{question}
|
491 |
-
\nAnswer -''',
|
492 |
-
temperature=0.49,
|
493 |
-
max_tokens=256,
|
494 |
-
top_p=1,
|
495 |
-
frequency_penalty=0,
|
496 |
-
presence_penalty=0
|
497 |
-
)
|
498 |
-
string_temp=response.choices[0].text
|
499 |
-
|
500 |
-
if ("gen_draw" in string_temp):
|
501 |
-
try:
|
502 |
-
try:
|
503 |
-
wget.download(openai_response(prompt))
|
504 |
-
img2 = Image.open(wget.download(openai_response(prompt)))
|
505 |
-
img2.show()
|
506 |
-
rx = 'Image returned'
|
507 |
-
g_sheet_log(mytext, rx)
|
508 |
-
except:
|
509 |
-
urllib.request.urlretrieve(openai_response(prompt),"img_ret.png")
|
510 |
-
img = Image.open("img_ret.png")
|
511 |
-
img.show()
|
512 |
-
rx = 'Image returned'
|
513 |
-
g_sheet_log(mytext, rx)
|
514 |
except:
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
warnings.warn(
|
539 |
-
"Your request activated the API's safety filters and could not be processed."
|
540 |
-
"Please modify the prompt and try again.")
|
541 |
-
if artifact.type == generation.ARTIFACT_IMAGE:
|
542 |
-
img = Image.open(io.BytesIO(artifact.binary))
|
543 |
-
st.image(img)
|
544 |
-
img.save(str(artifact.seed)+ ".png") # Save our generated images with their seed number as the filename.
|
545 |
-
rx = 'Image returned'
|
546 |
-
g_sheet_log(mytext, rx)
|
547 |
-
|
548 |
-
# except:
|
549 |
-
# st.write('image is being generated please wait...')
|
550 |
-
# def extract_image_description(input_string):
|
551 |
-
# return input_string.split('gen_draw("')[1].split('")')[0]
|
552 |
-
# prompt=extract_image_description(string_temp)
|
553 |
-
# # model_id = "CompVis/stable-diffusion-v1-4"
|
554 |
-
# model_id='runwayml/stable-diffusion-v1-5'
|
555 |
-
# device = "cuda"
|
556 |
-
|
557 |
-
|
558 |
-
# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
559 |
-
# pipe = pipe.to(device)
|
560 |
-
|
561 |
-
# # prompt = "a photo of an astronaut riding a horse on mars"
|
562 |
-
# image = pipe(prompt).images[0]
|
563 |
-
|
564 |
-
# image.save("astronaut_rides_horse.png")
|
565 |
-
# st.image(image)
|
566 |
-
# # image
|
567 |
-
|
568 |
-
elif ("vid_tube" in string_temp):
|
569 |
-
s = Search(mytext)
|
570 |
-
search_res = s.results
|
571 |
-
first_vid = search_res[0]
|
572 |
-
print(first_vid)
|
573 |
-
string = str(first_vid)
|
574 |
-
video_id = string[string.index('=') + 1:-1]
|
575 |
-
# print(video_id)
|
576 |
-
YoutubeURL = "https://www.youtube.com/watch?v="
|
577 |
-
OurURL = YoutubeURL + video_id
|
578 |
-
st.write(OurURL)
|
579 |
-
st_player(OurURL)
|
580 |
-
ry = 'Youtube link and video returned'
|
581 |
-
g_sheet_log(mytext, ry)
|
582 |
-
|
583 |
-
elif ("don't" in string_temp or "internet" in string_temp):
|
584 |
-
st.write('searching internet ')
|
585 |
-
search_internet(question)
|
586 |
-
rz = 'Internet result returned'
|
587 |
-
g_sheet_log(mytext, string_temp)
|
588 |
-
|
589 |
-
else:
|
590 |
-
st.write(string_temp)
|
591 |
-
g_sheet_log(mytext, string_temp)
|
592 |
-
|
593 |
-
elif Input_type == 'SPEECH':
|
594 |
-
option_speech = st.selectbox(
|
595 |
-
'Choose from below: (Options for Transcription)',
|
596 |
-
('Use Microphone', 'OpenAI Whisper (Upload audio file)')
|
597 |
-
)
|
598 |
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
615 |
}
|
616 |
}
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
key="listen",
|
624 |
-
refresh_on_update=False,
|
625 |
-
override_height=75,
|
626 |
-
debounce_time=0)
|
627 |
-
|
628 |
-
if result:
|
629 |
-
if "GET_TEXT" in result:
|
630 |
-
question = result.get("GET_TEXT")
|
631 |
-
response = openai.Completion.create(
|
632 |
-
model="text-davinci-003",
|
633 |
-
prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the
|
634 |
-
Answer to following questions is not from your knowledge base or in case of queries like weather
|
635 |
-
updates / stock updates / current news Etc which requires you to have internet connection then print i don't have access to internet to answer your question,
|
636 |
-
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated")
|
637 |
-
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query")
|
638 |
-
\nQuestion-{question}
|
639 |
-
\nAnswer -''',
|
640 |
-
temperature=0.49,
|
641 |
-
max_tokens=256,
|
642 |
-
top_p=1,
|
643 |
-
frequency_penalty=0,
|
644 |
-
presence_penalty=0
|
645 |
-
)
|
646 |
-
string_temp=response.choices[0].text
|
647 |
-
|
648 |
-
if ("gen_draw" in string_temp):
|
649 |
-
st.write('*image is being generated please wait..* ')
|
650 |
-
def extract_image_description(input_string):
|
651 |
-
return input_string.split('gen_draw("')[1].split('")')[0]
|
652 |
-
prompt=extract_image_description(string_temp)
|
653 |
-
# model_id = "CompVis/stable-diffusion-v1-4"
|
654 |
-
model_id='runwayml/stable-diffusion-v1-5'
|
655 |
-
device = "cuda"
|
656 |
-
|
657 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
658 |
-
pipe = pipe.to(device)
|
659 |
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
elif ("vid_tube" in string_temp):
|
668 |
-
s = Search(question)
|
669 |
-
search_res = s.results
|
670 |
-
first_vid = search_res[0]
|
671 |
-
print(first_vid)
|
672 |
-
string = str(first_vid)
|
673 |
-
video_id = string[string.index('=') + 1:-1]
|
674 |
-
# print(video_id)
|
675 |
-
YoutubeURL = "https://www.youtube.com/watch?v="
|
676 |
-
OurURL = YoutubeURL + video_id
|
677 |
-
st.write(OurURL)
|
678 |
-
st_player(OurURL)
|
679 |
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
else:
|
684 |
-
st.write(string_temp)
|
685 |
-
|
686 |
-
elif option_speech == 'OpenAI Whisper (Upload audio file)':
|
687 |
-
audio_file = st.file_uploader("Upload Audio file",type=['wav', 'mp3'])
|
688 |
-
if audio_file is not None:
|
689 |
-
# file = open(audio_file, "rb")
|
690 |
-
st.audio(audio_file)
|
691 |
-
transcription = openai.Audio.transcribe("whisper-1", audio_file)
|
692 |
-
st.write(transcription["text"])
|
693 |
-
result = transcription["text"]
|
694 |
-
question = result
|
695 |
response = openai.Completion.create(
|
696 |
model="text-davinci-003",
|
697 |
prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the
|
@@ -707,7 +424,6 @@ elif Usage == 'Ask me anything!😊':
|
|
707 |
frequency_penalty=0,
|
708 |
presence_penalty=0
|
709 |
)
|
710 |
-
|
711 |
string_temp=response.choices[0].text
|
712 |
|
713 |
if ("gen_draw" in string_temp):
|
@@ -747,77 +463,70 @@ elif Usage == 'Ask me anything!😊':
|
|
747 |
search_internet(question)
|
748 |
else:
|
749 |
st.write(string_temp)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
750 |
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
762 |
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
# presence_penalty=0
|
782 |
-
# )
|
783 |
-
# string_temp=response.choices[0].text
|
784 |
-
|
785 |
-
# if ("gen_draw" in string_temp):
|
786 |
-
# st.write('*image is being generated please wait..* ')
|
787 |
-
# def extract_image_description(input_string):
|
788 |
-
# return input_string.split('gen_draw("')[1].split('")')[0]
|
789 |
-
# prompt=extract_image_description(string_temp)
|
790 |
-
# # model_id = "CompVis/stable-diffusion-v1-4"
|
791 |
-
# model_id='runwayml/stable-diffusion-v1-5'
|
792 |
-
# device = "cuda"
|
793 |
-
|
794 |
-
# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
795 |
-
# pipe = pipe.to(device)
|
796 |
-
|
797 |
-
# # prompt = "a photo of an astronaut riding a horse on mars"
|
798 |
-
# image = pipe(prompt).images[0]
|
799 |
-
|
800 |
-
# image.save("astronaut_rides_horse.png")
|
801 |
-
# st.image(image)
|
802 |
-
# # image
|
803 |
-
|
804 |
-
# elif ("vid_tube" in string_temp):
|
805 |
-
# s = Search(question)
|
806 |
-
# search_res = s.results
|
807 |
-
# first_vid = search_res[0]
|
808 |
-
# print(first_vid)
|
809 |
-
# string = str(first_vid)
|
810 |
-
# video_id = string[string.index('=') + 1:-1]
|
811 |
-
# # print(video_id)
|
812 |
-
# YoutubeURL = "https://www.youtube.com/watch?v="
|
813 |
-
# OurURL = YoutubeURL + video_id
|
814 |
-
# st.write(OurURL)
|
815 |
-
# st_player(OurURL)
|
816 |
-
|
817 |
-
# elif ("don't" in string_temp or "internet" in string_temp ):
|
818 |
-
# st.write('*searching internet*')
|
819 |
-
# search_internet(question)
|
820 |
-
# else:
|
821 |
-
# st.write(string_temp)
|
822 |
else:
|
823 |
pass
|
|
|
24 |
from googleapiclient.discovery import build
|
25 |
import wget
|
26 |
import urllib.request
|
|
|
|
|
|
|
|
|
|
|
27 |
|
|
|
|
|
|
|
28 |
|
29 |
def save_uploadedfile(uploadedfile):
|
30 |
with open(uploadedfile.name,"wb") as f:
|
31 |
f.write(uploadedfile.getbuffer())
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
stability_api = client.StabilityInference(
|
34 |
key=st.secrets["STABILITY_KEY"], #os.environ("STABILITY_KEY"), # key=os.environ['STABILITY_KEY'], # API Key reference.
|
35 |
verbose=True, # Print debug messages.
|
|
|
217 |
).execute()
|
218 |
|
219 |
openai.api_key = st.secrets["OPENAI_KEY"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
def openai_response(PROMPT):
|
222 |
response = openai.Image.create(
|
|
|
229 |
st.title("Hi! :red[HyperBot] here!!🤖⭐️")
|
230 |
st.title("Go on ask me anything!!")
|
231 |
|
232 |
+
st.write('''
|
233 |
+
⭐️ HyperBot is your virtual assistant powered by Whisper /
|
234 |
+
chatgpt / internet / Dall-E / OpenAI embeddings - the perfect
|
235 |
+
companion for you. With HyperBot, you can ask anything you ask
|
236 |
+
internet everyday . Get answers to questions about the weather,
|
237 |
+
stocks 📈, news📰, and more! Plus, you can also generate 🖌️
|
238 |
+
paintings, drawings, abstract art 🎨, play music 🎵 or videos,
|
239 |
+
create tweets 🐦 and posts 📝, and compose emails 📧 - all with
|
240 |
+
the help of HyperBot! 🤖 ✨
|
241 |
''')
|
242 |
|
243 |
+
st.text('''You can ask me:
|
244 |
+
1. All the things you ask ChatGPT.
|
245 |
+
2. Generating paintings, drawings, abstract art.
|
246 |
+
3. Music or Videos
|
247 |
+
4. Weather
|
248 |
+
5. Stocks
|
249 |
+
6. Current Affairs and News.
|
250 |
+
7. Create or compose tweets or Linkedin posts or email.''')
|
251 |
+
|
252 |
+
Input_type = st.radio(
|
253 |
+
"**Input type:**",
|
254 |
+
('TEXT', 'SPEECH')
|
255 |
+
)
|
256 |
+
|
257 |
+
if Input_type == 'TEXT':
|
258 |
+
st.write('**You are now in Text input mode**')
|
259 |
+
mytext = st.text_input('**Go on! Ask me anything:**')
|
260 |
+
if st.button("SUBMIT"):
|
261 |
+
question=mytext
|
262 |
+
response = openai.Completion.create(
|
263 |
+
model="text-davinci-003",
|
264 |
+
prompt=f'''Your name is HyperBot and knowledge cutoff date is 2021-09, and you are not aware of any events after that time. if the
|
265 |
+
Answer to following questions is not from your knowledge base or in case of queries like weather
|
266 |
+
updates / stock updates / current news or people which requires you to have internet connection then print i don't have access to internet to answer your question,
|
267 |
+
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated")
|
268 |
+
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query")
|
269 |
+
if the question is related to operating home appliances then print ipython type output function home_app(" action(ON/Off),appliance(TV,Geaser,Fridge,Lights,fans,AC)") .
|
270 |
+
if question is realted to sending mail or sms then print ipython type output function messenger_app(" message of us ,messenger(email,sms)")
|
271 |
+
\nQuestion-{question}
|
272 |
+
\nAnswer -''',
|
273 |
+
temperature=0.49,
|
274 |
+
max_tokens=256,
|
275 |
+
top_p=1,
|
276 |
+
frequency_penalty=0,
|
277 |
+
presence_penalty=0
|
278 |
+
)
|
279 |
+
string_temp=response.choices[0].text
|
280 |
|
281 |
+
if ("gen_draw" in string_temp):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
try:
|
284 |
+
wget.download(openai_response(prompt))
|
285 |
+
img2 = Image.open(wget.download(openai_response(prompt)))
|
286 |
+
img2.show()
|
287 |
+
rx = 'Image returned'
|
288 |
+
g_sheet_log(mytext, rx)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
except:
|
290 |
+
urllib.request.urlretrieve(openai_response(prompt),"img_ret.png")
|
291 |
+
img = Image.open("img_ret.png")
|
292 |
+
img.show()
|
293 |
+
rx = 'Image returned'
|
294 |
+
g_sheet_log(mytext, rx)
|
295 |
+
except:
|
296 |
+
# Set up our initial generation parameters.
|
297 |
+
answers = stability_api.generate(
|
298 |
+
prompt = mytext,
|
299 |
+
seed=992446758, # If a seed is provided, the resulting generated image will be deterministic.
|
300 |
+
# What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again.
|
301 |
+
# Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook.
|
302 |
+
steps=30, # Amount of inference steps performed on image generation. Defaults to 30.
|
303 |
+
cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt.
|
304 |
+
# Setting this value higher increases the strength in which it tries to match your prompt.
|
305 |
+
# Defaults to 7.0 if not specified.
|
306 |
+
width=512, # Generation width, defaults to 512 if not included.
|
307 |
+
height=512, # Generation height, defaults to 512 if not included.
|
308 |
+
samples=1, # Number of images to generate, defaults to 1 if not included.
|
309 |
+
sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with.
|
310 |
+
# Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers.
|
311 |
+
# (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m)
|
312 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
+
# Set up our warning to print to the console if the adult content classifier is tripped.
|
315 |
+
# If adult content classifier is not tripped, save generated images.
|
316 |
+
for resp in answers:
|
317 |
+
for artifact in resp.artifacts:
|
318 |
+
if artifact.finish_reason == generation.FILTER:
|
319 |
+
warnings.warn(
|
320 |
+
"Your request activated the API's safety filters and could not be processed."
|
321 |
+
"Please modify the prompt and try again.")
|
322 |
+
if artifact.type == generation.ARTIFACT_IMAGE:
|
323 |
+
img = Image.open(io.BytesIO(artifact.binary))
|
324 |
+
st.image(img)
|
325 |
+
img.save(str(artifact.seed)+ ".png") # Save our generated images with their seed number as the filename.
|
326 |
+
rx = 'Image returned'
|
327 |
+
g_sheet_log(mytext, rx)
|
328 |
+
|
329 |
+
# except:
|
330 |
+
# st.write('image is being generated please wait...')
|
331 |
+
# def extract_image_description(input_string):
|
332 |
+
# return input_string.split('gen_draw("')[1].split('")')[0]
|
333 |
+
# prompt=extract_image_description(string_temp)
|
334 |
+
# # model_id = "CompVis/stable-diffusion-v1-4"
|
335 |
+
# model_id='runwayml/stable-diffusion-v1-5'
|
336 |
+
# device = "cuda"
|
337 |
+
|
338 |
+
|
339 |
+
# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
340 |
+
# pipe = pipe.to(device)
|
341 |
+
|
342 |
+
# # prompt = "a photo of an astronaut riding a horse on mars"
|
343 |
+
# image = pipe(prompt).images[0]
|
344 |
+
|
345 |
+
# image.save("astronaut_rides_horse.png")
|
346 |
+
# st.image(image)
|
347 |
+
# # image
|
348 |
+
|
349 |
+
elif ("vid_tube" in string_temp):
|
350 |
+
s = Search(mytext)
|
351 |
+
search_res = s.results
|
352 |
+
first_vid = search_res[0]
|
353 |
+
print(first_vid)
|
354 |
+
string = str(first_vid)
|
355 |
+
video_id = string[string.index('=') + 1:-1]
|
356 |
+
# print(video_id)
|
357 |
+
YoutubeURL = "https://www.youtube.com/watch?v="
|
358 |
+
OurURL = YoutubeURL + video_id
|
359 |
+
st.write(OurURL)
|
360 |
+
st_player(OurURL)
|
361 |
+
ry = 'Youtube link and video returned'
|
362 |
+
g_sheet_log(mytext, ry)
|
363 |
+
|
364 |
+
elif ("don't" in string_temp or "internet" in string_temp):
|
365 |
+
st.write('searching internet ')
|
366 |
+
search_internet(question)
|
367 |
+
rz = 'Internet result returned'
|
368 |
+
g_sheet_log(mytext, string_temp)
|
369 |
+
|
370 |
+
else:
|
371 |
+
st.write(string_temp)
|
372 |
+
g_sheet_log(mytext, string_temp)
|
373 |
+
|
374 |
+
elif Input_type == 'SPEECH':
|
375 |
+
option_speech = st.selectbox(
|
376 |
+
'Choose from below: (Options for Transcription)',
|
377 |
+
('Use Microphone', 'OpenAI Whisper (Upload audio file)')
|
378 |
+
)
|
379 |
+
|
380 |
+
if option_speech == 'Use Microphone':
|
381 |
+
stt_button = Button(label="Speak", width=100)
|
382 |
+
stt_button.js_on_event("button_click", CustomJS(code="""
|
383 |
+
var recognition = new webkitSpeechRecognition();
|
384 |
+
recognition.continuous = true;
|
385 |
+
recognition.interimResults = true;
|
386 |
+
|
387 |
+
recognition.onresult = function (e) {
|
388 |
+
var value = "";
|
389 |
+
for (var i = e.resultIndex; i < e.results.length; ++i) {
|
390 |
+
if (e.results[i].isFinal) {
|
391 |
+
value += e.results[i][0].transcript;
|
392 |
}
|
393 |
}
|
394 |
+
if ( value != "") {
|
395 |
+
document.dispatchEvent(new CustomEvent("GET_TEXT", {detail: value}));
|
396 |
+
}
|
397 |
+
}
|
398 |
+
recognition.start();
|
399 |
+
"""))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
+
result = streamlit_bokeh_events(
|
402 |
+
stt_button,
|
403 |
+
events="GET_TEXT",
|
404 |
+
key="listen",
|
405 |
+
refresh_on_update=False,
|
406 |
+
override_height=75,
|
407 |
+
debounce_time=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
|
409 |
+
if result:
|
410 |
+
if "GET_TEXT" in result:
|
411 |
+
question = result.get("GET_TEXT")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
response = openai.Completion.create(
|
413 |
model="text-davinci-003",
|
414 |
prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the
|
|
|
424 |
frequency_penalty=0,
|
425 |
presence_penalty=0
|
426 |
)
|
|
|
427 |
string_temp=response.choices[0].text
|
428 |
|
429 |
if ("gen_draw" in string_temp):
|
|
|
463 |
search_internet(question)
|
464 |
else:
|
465 |
st.write(string_temp)
|
466 |
+
|
467 |
+
elif option_speech == 'OpenAI Whisper (Upload audio file)':
|
468 |
+
audio_file = st.file_uploader("Upload Audio file",type=['wav', 'mp3'])
|
469 |
+
if audio_file is not None:
|
470 |
+
# file = open(audio_file, "rb")
|
471 |
+
st.audio(audio_file)
|
472 |
+
transcription = openai.Audio.transcribe("whisper-1", audio_file)
|
473 |
+
st.write(transcription["text"])
|
474 |
+
result = transcription["text"]
|
475 |
+
question = result
|
476 |
+
response = openai.Completion.create(
|
477 |
+
model="text-davinci-003",
|
478 |
+
prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the
|
479 |
+
Answer to following questions is not from your knowledge base or in case of queries like weather
|
480 |
+
updates / stock updates / current news Etc which requires you to have internet connection then print i don't have access to internet to answer your question,
|
481 |
+
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated")
|
482 |
+
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query")
|
483 |
+
\nQuestion-{question}
|
484 |
+
\nAnswer -''',
|
485 |
+
temperature=0.49,
|
486 |
+
max_tokens=256,
|
487 |
+
top_p=1,
|
488 |
+
frequency_penalty=0,
|
489 |
+
presence_penalty=0
|
490 |
+
)
|
491 |
|
492 |
+
string_temp=response.choices[0].text
|
493 |
+
|
494 |
+
if ("gen_draw" in string_temp):
|
495 |
+
st.write('*image is being generated please wait..* ')
|
496 |
+
def extract_image_description(input_string):
|
497 |
+
return input_string.split('gen_draw("')[1].split('")')[0]
|
498 |
+
prompt=extract_image_description(string_temp)
|
499 |
+
# model_id = "CompVis/stable-diffusion-v1-4"
|
500 |
+
model_id='runwayml/stable-diffusion-v1-5'
|
501 |
+
device = "cuda"
|
502 |
+
|
503 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
504 |
+
pipe = pipe.to(device)
|
505 |
+
|
506 |
+
# prompt = "a photo of an astronaut riding a horse on mars"
|
507 |
+
image = pipe(prompt).images[0]
|
508 |
+
|
509 |
+
image.save("astronaut_rides_horse.png")
|
510 |
+
st.image(image)
|
511 |
+
# image
|
512 |
|
513 |
+
elif ("vid_tube" in string_temp):
|
514 |
+
s = Search(question)
|
515 |
+
search_res = s.results
|
516 |
+
first_vid = search_res[0]
|
517 |
+
print(first_vid)
|
518 |
+
string = str(first_vid)
|
519 |
+
video_id = string[string.index('=') + 1:-1]
|
520 |
+
# print(video_id)
|
521 |
+
YoutubeURL = "https://www.youtube.com/watch?v="
|
522 |
+
OurURL = YoutubeURL + video_id
|
523 |
+
st.write(OurURL)
|
524 |
+
st_player(OurURL)
|
525 |
+
|
526 |
+
elif ("don't" in string_temp or "internet" in string_temp ):
|
527 |
+
st.write('*searching internet*')
|
528 |
+
search_internet(question)
|
529 |
+
else:
|
530 |
+
st.write(string_temp)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
531 |
else:
|
532 |
pass
|