angry-meow commited on
Commit
b2f993e
·
1 Parent(s): 05201cc

commenting out unused stuff

Browse files
Files changed (3) hide show
  1. agents.py +1 -1
  2. models.py +37 -37
  3. tools.py +17 -3
agents.py CHANGED
@@ -55,7 +55,7 @@ voice_editor_agent = create_team_agent(
55
 
56
  simple_rag_chain = (
57
  {
58
- "context": itemgetter("question") | models.semantic_tuned_retrieverretriever,
59
  "question": itemgetter("question"),
60
  "writing_style_guide": lambda _: prompts.style_guide_text
61
  }
 
55
 
56
  simple_rag_chain = (
57
  {
58
+ "context": itemgetter("question") | models.semantic_tuned_retriever,
59
  "question": itemgetter("question"),
60
  "writing_style_guide": lambda _: prompts.style_guide_text
61
  }
models.py CHANGED
@@ -28,20 +28,20 @@ callback_manager = CallbackManager([tracer])
28
  ### Chat Models ###
29
  ########################
30
 
31
- opus3 = ChatAnthropic(
32
- api_key=constants.ANTRHOPIC_API_KEY,
33
- temperature=0,
34
- model='claude-3-opus-20240229',
35
- callbacks=callback_manager
36
- )
37
-
38
- sonnet35 = ChatAnthropic(
39
- api_key=constants.ANTRHOPIC_API_KEY,
40
- temperature=0,
41
- model='claude-3-5-sonnet-20240620',
42
- max_tokens=4096,
43
- callbacks=callback_manager
44
- )
45
 
46
  gpt4 = ChatOpenAI(
47
  model="gpt-4",
@@ -77,20 +77,20 @@ gpt4o_mini = ChatOpenAI(
77
  ### Embedding Models ###
78
  ########################
79
 
80
- basic_embeddings = HuggingFaceEmbeddings(model_name="snowflake/snowflake-arctic-embed-l")
81
 
82
  tuned_embeddings = HuggingFaceEmbeddings(model_name="CoExperiences/snowflake-l-marketing-tuned")
83
 
84
- te3_small = OpenAIEmbeddings(api_key=constants.OPENAI_API_KEY, model="text-embedding-3-small")
85
 
86
  #######################
87
  ### Text Splitters ###
88
  #######################
89
 
90
- semanticChunker = SemanticChunker(
91
- te3_small,
92
- breakpoint_threshold_type="percentile"
93
- )
94
 
95
  semanticChunker_tuned = SemanticChunker(
96
  tuned_embeddings,
@@ -98,12 +98,12 @@ semanticChunker_tuned = SemanticChunker(
98
  breakpoint_threshold_amount=85
99
  )
100
 
101
- RCTS = RecursiveCharacterTextSplitter(
102
- # Set a really small chunk size, just to show.
103
- chunk_size=500,
104
- chunk_overlap=25,
105
- length_function=len,
106
- )
107
 
108
  #######################
109
  ### Vector Stores ###
@@ -111,17 +111,17 @@ RCTS = RecursiveCharacterTextSplitter(
111
 
112
  qdrant_client = QdrantClient(url=constants.QDRANT_ENDPOINT, api_key=constants.QDRANT_API_KEY)
113
 
114
- semantic_Qdrant_vs = QdrantVectorStore(
115
- client=qdrant_client,
116
- collection_name="docs_from_ripped_urls",
117
- embedding=te3_small
118
- )
119
-
120
- rcts_Qdrant_vs = QdrantVectorStore(
121
- client=qdrant_client,
122
- collection_name="docs_from_ripped_urls_recursive",
123
- embedding=te3_small
124
- )
125
 
126
  semantic_tuned_Qdrant_vs = QdrantVectorStore(
127
  client=qdrant_client,
 
28
  ### Chat Models ###
29
  ########################
30
 
31
+ #opus3 = ChatAnthropic(
32
+ # api_key=constants.ANTRHOPIC_API_KEY,
33
+ # temperature=0,
34
+ # model='claude-3-opus-20240229',
35
+ # callbacks=callback_manager
36
+ #)
37
+ #
38
+ #sonnet35 = ChatAnthropic(
39
+ # api_key=constants.ANTRHOPIC_API_KEY,
40
+ # temperature=0,
41
+ # model='claude-3-5-sonnet-20240620',
42
+ # max_tokens=4096,
43
+ # callbacks=callback_manager
44
+ #)
45
 
46
  gpt4 = ChatOpenAI(
47
  model="gpt-4",
 
77
  ### Embedding Models ###
78
  ########################
79
 
80
+ #basic_embeddings = HuggingFaceEmbeddings(model_name="snowflake/snowflake-arctic-embed-l")
81
 
82
  tuned_embeddings = HuggingFaceEmbeddings(model_name="CoExperiences/snowflake-l-marketing-tuned")
83
 
84
+ #te3_small = OpenAIEmbeddings(api_key=constants.OPENAI_API_KEY, model="text-embedding-3-small")
85
 
86
  #######################
87
  ### Text Splitters ###
88
  #######################
89
 
90
+ #semanticChunker = SemanticChunker(
91
+ # te3_small,
92
+ # breakpoint_threshold_type="percentile"
93
+ #)
94
 
95
  semanticChunker_tuned = SemanticChunker(
96
  tuned_embeddings,
 
98
  breakpoint_threshold_amount=85
99
  )
100
 
101
+ #RCTS = RecursiveCharacterTextSplitter(
102
+ # # Set a really small chunk size, just to show.
103
+ # chunk_size=500,
104
+ # chunk_overlap=25,
105
+ # length_function=len,
106
+ #)
107
 
108
  #######################
109
  ### Vector Stores ###
 
111
 
112
  qdrant_client = QdrantClient(url=constants.QDRANT_ENDPOINT, api_key=constants.QDRANT_API_KEY)
113
 
114
+ #semantic_Qdrant_vs = QdrantVectorStore(
115
+ # client=qdrant_client,
116
+ # collection_name="docs_from_ripped_urls",
117
+ # embedding=te3_small
118
+ #)
119
+ #
120
+ #rcts_Qdrant_vs = QdrantVectorStore(
121
+ # client=qdrant_client,
122
+ # collection_name="docs_from_ripped_urls_recursive",
123
+ # embedding=te3_small
124
+ #)
125
 
126
  semantic_tuned_Qdrant_vs = QdrantVectorStore(
127
  client=qdrant_client,
tools.py CHANGED
@@ -1,20 +1,34 @@
1
  from pathlib import Path
2
- from typing import Annotated, Optional
3
  from langchain_community.tools.tavily_search import TavilySearchResults
4
  from langchain_core.tools import tool
5
- from agents import simple_rag_chain
 
 
 
6
 
7
  WORKING_DIRECTORY = Path("/tmp/content/data")
8
  WORKING_DIRECTORY.mkdir(parents=True, exist_ok=True)
9
 
10
  tavily_tool = TavilySearchResults(max_results=5)
11
 
 
 
 
 
 
 
 
 
 
 
 
12
  @tool
13
  def retrieve_information(
14
  query: Annotated[str, "query to ask the retrieve information tool"]
15
  ):
16
  """Use Retrieval Augmented Generation to retrieve information about the 'Extending Llama-3’s Context Ten-Fold Overnight' paper."""
17
- return simple_rag_chain.invoke({"question" : query})
18
 
19
  @tool
20
  def create_outline(points: List[str], file_name: str) -> str:
 
1
  from pathlib import Path
2
+ from typing import Annotated, Dict, List, Optional
3
  from langchain_community.tools.tavily_search import TavilySearchResults
4
  from langchain_core.tools import tool
5
+ import prompts
6
+ import models
7
+ from operator import itemgetter
8
+ from langchain_core.runnables.passthrough import RunnablePassthrough
9
 
10
  WORKING_DIRECTORY = Path("/tmp/content/data")
11
  WORKING_DIRECTORY.mkdir(parents=True, exist_ok=True)
12
 
13
  tavily_tool = TavilySearchResults(max_results=5)
14
 
15
+ tool_chain = (
16
+ {
17
+ "context": itemgetter("question") | models.semantic_tuned_retriever,
18
+ "question": itemgetter("question"),
19
+ "writing_style_guide": lambda _: prompts.style_guide_text
20
+ }
21
+ | RunnablePassthrough.assign(context=itemgetter("context"))
22
+ | prompts.chat_prompt
23
+ | models.gpt4o
24
+ )
25
+
26
  @tool
27
  def retrieve_information(
28
  query: Annotated[str, "query to ask the retrieve information tool"]
29
  ):
30
  """Use Retrieval Augmented Generation to retrieve information about the 'Extending Llama-3’s Context Ten-Fold Overnight' paper."""
31
+ return tool_chain.invoke({"question" : query})
32
 
33
  @tool
34
  def create_outline(points: List[str], file_name: str) -> str: