Spaces:
Paused
Paused
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from qdrant_client import QdrantClient | |
from langchain_openai.embeddings import OpenAIEmbeddings | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.globals import set_llm_cache | |
from langchain_openai import ChatOpenAI | |
from langchain_core.caches import InMemoryCache | |
from operator import itemgetter | |
from langchain_core.runnables.passthrough import RunnablePassthrough | |
from langchain_qdrant import QdrantVectorStore, Qdrant | |
import uuid | |
import chainlit as cl | |
import os | |
chat_model = ChatOpenAI(model="gpt-4o-mini") | |
te3_small = OpenAIEmbeddings(model="text-embedding-3-small") | |
set_llm_cache(InMemoryCache()) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
rag_system_prompt_template = """\ | |
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context. | |
""" | |
rag_message_list = [{"role" : "system", "content" : rag_system_prompt_template},] | |
rag_user_prompt_template = """\ | |
Question: | |
{question} | |
Context: | |
{context} | |
""" | |
chat_prompt = ChatPromptTemplate.from_messages([("system", rag_system_prompt_template), ("human", rag_user_prompt_template)]) | |
async def on_chat_start(): | |
qdrant_client = QdrantClient(url=os.environ["QDRANT_ENDPOINT"], api_key=os.environ["QDRANT_API_KEY"]) | |
qdrant_store = Qdrant( | |
client=qdrant_client, | |
collection_name="kai_test_docs", | |
embeddings=te3_small | |
) | |
retriever = qdrant_store.as_retriever() | |
global retrieval_augmented_qa_chain | |
retrieval_augmented_qa_chain = ( | |
{"context": itemgetter("question") | retriever, "question": itemgetter("question")} | |
| RunnablePassthrough.assign(context=itemgetter("context")) | |
| chat_prompt | |
| chat_model | |
) | |
await cl.Message(content="YAsk away!").send() | |
def rename(orig_author: str): | |
return "AI Assistant" | |
async def main(message: cl.Message): | |
response = retrieval_augmented_qa_chain.invoke({"question": message.content}) | |
await cl.Message(content=response.content).send() |