|
import io |
|
import random |
|
from typing import List, Tuple |
|
|
|
import aiohttp |
|
import panel as pn |
|
from PIL import Image |
|
from transformers import CLIPModel, CLIPProcessor |
|
|
|
pn.extension(design="bootstrap", sizing_mode="stretch_width") |
|
|
|
ICON_URLS = { |
|
"brand-github": "https://github.com/holoviz/panel", |
|
"brand-twitter": "https://twitter.com/Panel_Org", |
|
"brand-linkedin": "https://www.linkedin.com/company/panel-org", |
|
"message-circle": "https://discourse.holoviz.org/", |
|
"brand-discord": "https://discord.gg/AXRHnJU6sP", |
|
} |
|
|
|
|
|
async def random_url(_): |
|
pet = random.choice(["cat", "dog"]) |
|
api_url = f"https://api.the{pet}api.com/v1/images/search" |
|
async with aiohttp.ClientSession() as session: |
|
async with session.get(api_url) as resp: |
|
return (await resp.json())[0]["url"] |
|
|
|
|
|
@pn.cache |
|
def load_processor_model( |
|
processor_name: str, model_name: str |
|
) -> Tuple[CLIPProcessor, CLIPModel]: |
|
processor = CLIPProcessor.from_pretrained(processor_name) |
|
model = CLIPModel.from_pretrained(model_name) |
|
return processor, model |
|
|
|
|
|
async def open_image_url(image_url: str) -> Image: |
|
async with aiohttp.ClientSession() as session: |
|
async with session.get(image_url) as resp: |
|
return Image.open(io.BytesIO(await resp.read())) |
|
|
|
|
|
def get_similarity_scores(class_items: List[str], image: Image) -> List[float]: |
|
processor, model = load_processor_model( |
|
"openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32" |
|
) |
|
inputs = processor( |
|
text=class_items, |
|
images=[image], |
|
return_tensors="pt", |
|
) |
|
outputs = model(**inputs) |
|
logits_per_image = outputs.logits_per_image |
|
class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy() |
|
return class_likelihoods[0] |
|
|
|
|
|
async def process_inputs(class_names: List[str], image_url: str): |
|
""" |
|
High level function that takes in the user inputs and returns the |
|
classification results as panel objects. |
|
""" |
|
try: |
|
main.disabled = True |
|
if not image_url: |
|
yield "##### β οΈ Provide an image URL" |
|
return |
|
|
|
yield "##### β Fetching image and running model..." |
|
try: |
|
pil_img = await open_image_url(image_url) |
|
img = pn.pane.Image(pil_img, height=400, align="center") |
|
except Exception as e: |
|
yield f"##### π Something went wrong, please try a different URL!" |
|
return |
|
|
|
class_items = class_names.split(",") |
|
class_likelihoods = get_similarity_scores(class_items, pil_img) |
|
|
|
|
|
results = pn.Column("##### π Here are the results!", img) |
|
|
|
for class_item, class_likelihood in zip(class_items, class_likelihoods): |
|
row_label = pn.widgets.StaticText( |
|
name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center" |
|
) |
|
row_bar = pn.indicators.Progress( |
|
value=int(class_likelihood * 100), |
|
sizing_mode="stretch_width", |
|
bar_color="secondary", |
|
margin=(0, 10), |
|
design=pn.theme.Material, |
|
) |
|
results.append(pn.Column(row_label, row_bar)) |
|
yield results |
|
finally: |
|
main.disabled = False |
|
|
|
|
|
|
|
randomize_url = pn.widgets.Button(name="Randomize URL", align="end") |
|
|
|
image_url = pn.widgets.TextInput( |
|
name="Image URL to classify", |
|
value=pn.bind(random_url, randomize_url), |
|
) |
|
class_names = pn.widgets.TextInput( |
|
name="Comma separated class names", |
|
placeholder="Enter possible class names, e.g. cat, dog", |
|
value="cat, dog, parrot", |
|
) |
|
|
|
input_widgets = pn.Column( |
|
"##### π Click randomize or paste a URL to start classifying!", |
|
pn.Row(image_url, randomize_url), |
|
class_names, |
|
) |
|
|
|
|
|
interactive_result = pn.panel( |
|
pn.bind(process_inputs, image_url=image_url, class_names=class_names), |
|
height=600, |
|
) |
|
|
|
|
|
footer_row = pn.Row(pn.Spacer(), align="center") |
|
for icon, url in ICON_URLS.items(): |
|
href_button = pn.widgets.Button(icon=icon, width=35, height=35) |
|
href_button.js_on_click(code=f"window.open('{url}')") |
|
footer_row.append(href_button) |
|
footer_row.append(pn.Spacer()) |
|
|
|
|
|
main = pn.WidgetBox( |
|
input_widgets, |
|
interactive_result, |
|
footer_row, |
|
) |
|
|
|
title = "Panel Demo - Image Classification" |
|
pn.template.BootstrapTemplate( |
|
title=title, |
|
main=main, |
|
main_max_width="min(50%, 698px)", |
|
header_background="#F08080", |
|
).servable(title=title) |