Spaces:
Paused
Paused
import sys | |
from typing import Any, Callable, Dict, Optional, Tuple, Type, Union, overload, TypeVar | |
from numpy import ( | |
bool_, | |
dtype, | |
float32, | |
float64, | |
int8, | |
int16, | |
int32, | |
int64, | |
int_, | |
ndarray, | |
uint, | |
uint8, | |
uint16, | |
uint32, | |
uint64, | |
) | |
from numpy.random import BitGenerator, SeedSequence | |
from numpy.typing import ( | |
ArrayLike, | |
_ArrayLikeFloat_co, | |
_ArrayLikeInt_co, | |
_DoubleCodes, | |
_DTypeLikeBool, | |
_DTypeLikeInt, | |
_DTypeLikeUInt, | |
_Float32Codes, | |
_Float64Codes, | |
_Int8Codes, | |
_Int16Codes, | |
_Int32Codes, | |
_Int64Codes, | |
_IntCodes, | |
_ShapeLike, | |
_SingleCodes, | |
_SupportsDType, | |
_UInt8Codes, | |
_UInt16Codes, | |
_UInt32Codes, | |
_UInt64Codes, | |
_UIntCodes, | |
) | |
if sys.version_info >= (3, 8): | |
from typing import Literal | |
else: | |
from typing_extensions import Literal | |
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any]) | |
_DTypeLikeFloat32 = Union[ | |
dtype[float32], | |
_SupportsDType[dtype[float32]], | |
Type[float32], | |
_Float32Codes, | |
_SingleCodes, | |
] | |
_DTypeLikeFloat64 = Union[ | |
dtype[float64], | |
_SupportsDType[dtype[float64]], | |
Type[float], | |
Type[float64], | |
_Float64Codes, | |
_DoubleCodes, | |
] | |
class Generator: | |
def __init__(self, bit_generator: BitGenerator) -> None: ... | |
def __repr__(self) -> str: ... | |
def __str__(self) -> str: ... | |
def __getstate__(self) -> Dict[str, Any]: ... | |
def __setstate__(self, state: Dict[str, Any]) -> None: ... | |
def __reduce__(self) -> Tuple[Callable[[str], Generator], Tuple[str], Dict[str, Any]]: ... | |
def bit_generator(self) -> BitGenerator: ... | |
def bytes(self, length: int) -> bytes: ... | |
def standard_normal( # type: ignore[misc] | |
self, | |
size: None = ..., | |
dtype: Union[_DTypeLikeFloat32, _DTypeLikeFloat64] = ..., | |
out: None = ..., | |
) -> float: ... | |
def standard_normal( # type: ignore[misc] | |
self, | |
size: _ShapeLike = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_normal( # type: ignore[misc] | |
self, | |
*, | |
out: ndarray[Any, dtype[float64]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_normal( # type: ignore[misc] | |
self, | |
size: _ShapeLike = ..., | |
dtype: _DTypeLikeFloat32 = ..., | |
out: Optional[ndarray[Any, dtype[float32]]] = ..., | |
) -> ndarray[Any, dtype[float32]]: ... | |
def standard_normal( # type: ignore[misc] | |
self, | |
size: _ShapeLike = ..., | |
dtype: _DTypeLikeFloat64 = ..., | |
out: Optional[ndarray[Any, dtype[float64]]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def permutation(self, x: int, axis: int = ...) -> ndarray[Any, dtype[int64]]: ... | |
def permutation(self, x: ArrayLike, axis: int = ...) -> ndarray[Any, Any]: ... | |
def standard_exponential( # type: ignore[misc] | |
self, | |
size: None = ..., | |
dtype: Union[_DTypeLikeFloat32, _DTypeLikeFloat64] = ..., | |
method: Literal["zig", "inv"] = ..., | |
out: None = ..., | |
) -> float: ... | |
def standard_exponential( | |
self, | |
size: _ShapeLike = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_exponential( | |
self, | |
*, | |
out: ndarray[Any, dtype[float64]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_exponential( | |
self, | |
size: _ShapeLike = ..., | |
*, | |
method: Literal["zig", "inv"] = ..., | |
out: Optional[ndarray[Any, dtype[float64]]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_exponential( | |
self, | |
size: _ShapeLike = ..., | |
dtype: _DTypeLikeFloat32 = ..., | |
method: Literal["zig", "inv"] = ..., | |
out: Optional[ndarray[Any, dtype[float32]]] = ..., | |
) -> ndarray[Any, dtype[float32]]: ... | |
def standard_exponential( | |
self, | |
size: _ShapeLike = ..., | |
dtype: _DTypeLikeFloat64 = ..., | |
method: Literal["zig", "inv"] = ..., | |
out: Optional[ndarray[Any, dtype[float64]]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def random( # type: ignore[misc] | |
self, | |
size: None = ..., | |
dtype: Union[_DTypeLikeFloat32, _DTypeLikeFloat64] = ..., | |
out: None = ..., | |
) -> float: ... | |
def random( | |
self, | |
*, | |
out: ndarray[Any, dtype[float64]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def random( | |
self, | |
size: _ShapeLike = ..., | |
*, | |
out: Optional[ndarray[Any, dtype[float64]]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def random( | |
self, | |
size: _ShapeLike = ..., | |
dtype: _DTypeLikeFloat32 = ..., | |
out: Optional[ndarray[Any, dtype[float32]]] = ..., | |
) -> ndarray[Any, dtype[float32]]: ... | |
def random( | |
self, | |
size: _ShapeLike = ..., | |
dtype: _DTypeLikeFloat64 = ..., | |
out: Optional[ndarray[Any, dtype[float64]]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def beta(self, a: float, b: float, size: None = ...) -> float: ... # type: ignore[misc] | |
def beta( | |
self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def exponential(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
def exponential( | |
self, scale: _ArrayLikeFloat_co = ..., size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: int, | |
high: Optional[int] = ..., | |
) -> int: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: int, | |
high: Optional[int] = ..., | |
size: None = ..., | |
dtype: _DTypeLikeBool = ..., | |
endpoint: bool = ..., | |
) -> bool: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: int, | |
high: Optional[int] = ..., | |
size: None = ..., | |
dtype: Union[_DTypeLikeInt, _DTypeLikeUInt] = ..., | |
endpoint: bool = ..., | |
) -> int: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: Optional[_ArrayLikeInt_co] = ..., | |
size: Optional[_ShapeLike] = ..., | |
) -> ndarray[Any, dtype[int64]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: Optional[_ArrayLikeInt_co] = ..., | |
size: Optional[_ShapeLike] = ..., | |
dtype: _DTypeLikeBool = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[bool_]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: Optional[_ArrayLikeInt_co] = ..., | |
size: Optional[_ShapeLike] = ..., | |
dtype: Union[dtype[int8], Type[int8], _Int8Codes, _SupportsDType[dtype[int8]]] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[int8]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: Optional[_ArrayLikeInt_co] = ..., | |
size: Optional[_ShapeLike] = ..., | |
dtype: Union[dtype[int16], Type[int16], _Int16Codes, _SupportsDType[dtype[int16]]] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[int16]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: Optional[_ArrayLikeInt_co] = ..., | |
size: Optional[_ShapeLike] = ..., | |
dtype: Union[dtype[int32], Type[int32], _Int32Codes, _SupportsDType[dtype[int32]]] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[Union[int32]]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: Optional[_ArrayLikeInt_co] = ..., | |
size: Optional[_ShapeLike] = ..., | |
dtype: Optional[ | |
Union[dtype[int64], Type[int64], _Int64Codes, _SupportsDType[dtype[int64]]] | |
] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[int64]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: Optional[_ArrayLikeInt_co] = ..., | |
size: Optional[_ShapeLike] = ..., | |
dtype: Union[dtype[uint8], Type[uint8], _UInt8Codes, _SupportsDType[dtype[uint8]]] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[uint8]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: Optional[_ArrayLikeInt_co] = ..., | |
size: Optional[_ShapeLike] = ..., | |
dtype: Union[ | |
dtype[uint16], Type[uint16], _UInt16Codes, _SupportsDType[dtype[uint16]] | |
] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[Union[uint16]]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: Optional[_ArrayLikeInt_co] = ..., | |
size: Optional[_ShapeLike] = ..., | |
dtype: Union[ | |
dtype[uint32], Type[uint32], _UInt32Codes, _SupportsDType[dtype[uint32]] | |
] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[uint32]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: Optional[_ArrayLikeInt_co] = ..., | |
size: Optional[_ShapeLike] = ..., | |
dtype: Union[ | |
dtype[uint64], Type[uint64], _UInt64Codes, _SupportsDType[dtype[uint64]] | |
] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[uint64]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: Optional[_ArrayLikeInt_co] = ..., | |
size: Optional[_ShapeLike] = ..., | |
dtype: Union[ | |
dtype[int_], Type[int], Type[int_], _IntCodes, _SupportsDType[dtype[int_]] | |
] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[int_]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: Optional[_ArrayLikeInt_co] = ..., | |
size: Optional[_ShapeLike] = ..., | |
dtype: Union[dtype[uint], Type[uint], _UIntCodes, _SupportsDType[dtype[uint]]] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[uint]]: ... | |
# TODO: Use a TypeVar _T here to get away from Any output? Should be int->ndarray[Any,dtype[int64]], ArrayLike[_T] -> Union[_T, ndarray[Any,Any]] | |
def choice( | |
self, | |
a: int, | |
size: None = ..., | |
replace: bool = ..., | |
p: Optional[_ArrayLikeFloat_co] = ..., | |
axis: int = ..., | |
shuffle: bool = ..., | |
) -> int: ... | |
def choice( | |
self, | |
a: int, | |
size: _ShapeLike = ..., | |
replace: bool = ..., | |
p: Optional[_ArrayLikeFloat_co] = ..., | |
axis: int = ..., | |
shuffle: bool = ..., | |
) -> ndarray[Any, dtype[int64]]: ... | |
def choice( | |
self, | |
a: ArrayLike, | |
size: None = ..., | |
replace: bool = ..., | |
p: Optional[_ArrayLikeFloat_co] = ..., | |
axis: int = ..., | |
shuffle: bool = ..., | |
) -> Any: ... | |
def choice( | |
self, | |
a: ArrayLike, | |
size: _ShapeLike = ..., | |
replace: bool = ..., | |
p: Optional[_ArrayLikeFloat_co] = ..., | |
axis: int = ..., | |
shuffle: bool = ..., | |
) -> ndarray[Any, Any]: ... | |
def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
def uniform( | |
self, | |
low: _ArrayLikeFloat_co = ..., | |
high: _ArrayLikeFloat_co = ..., | |
size: Optional[_ShapeLike] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
def normal( | |
self, | |
loc: _ArrayLikeFloat_co = ..., | |
scale: _ArrayLikeFloat_co = ..., | |
size: Optional[_ShapeLike] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_gamma( # type: ignore[misc] | |
self, | |
shape: float, | |
size: None = ..., | |
dtype: Union[_DTypeLikeFloat32, _DTypeLikeFloat64] = ..., | |
out: None = ..., | |
) -> float: ... | |
def standard_gamma( | |
self, | |
shape: _ArrayLikeFloat_co, | |
size: Optional[_ShapeLike] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_gamma( | |
self, | |
shape: _ArrayLikeFloat_co, | |
*, | |
out: ndarray[Any, dtype[float64]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_gamma( | |
self, | |
shape: _ArrayLikeFloat_co, | |
size: Optional[_ShapeLike] = ..., | |
dtype: _DTypeLikeFloat32 = ..., | |
out: Optional[ndarray[Any, dtype[float32]]] = ..., | |
) -> ndarray[Any, dtype[float32]]: ... | |
def standard_gamma( | |
self, | |
shape: _ArrayLikeFloat_co, | |
size: Optional[_ShapeLike] = ..., | |
dtype: _DTypeLikeFloat64 = ..., | |
out: Optional[ndarray[Any, dtype[float64]]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
def gamma( | |
self, | |
shape: _ArrayLikeFloat_co, | |
scale: _ArrayLikeFloat_co = ..., | |
size: Optional[_ShapeLike] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ... # type: ignore[misc] | |
def f( | |
self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc] | |
def noncentral_f( | |
self, | |
dfnum: _ArrayLikeFloat_co, | |
dfden: _ArrayLikeFloat_co, | |
nonc: _ArrayLikeFloat_co, | |
size: Optional[_ShapeLike] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def chisquare(self, df: float, size: None = ...) -> float: ... # type: ignore[misc] | |
def chisquare( | |
self, df: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc] | |
def noncentral_chisquare( | |
self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_t(self, df: float, size: None = ...) -> float: ... # type: ignore[misc] | |
def standard_t( | |
self, df: _ArrayLikeFloat_co, size: None = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_t( | |
self, df: _ArrayLikeFloat_co, size: _ShapeLike = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ... # type: ignore[misc] | |
def vonmises( | |
self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def pareto(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] | |
def pareto( | |
self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def weibull(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] | |
def weibull( | |
self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def power(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] | |
def power( | |
self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc] | |
def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ... | |
def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
def laplace( | |
self, | |
loc: _ArrayLikeFloat_co = ..., | |
scale: _ArrayLikeFloat_co = ..., | |
size: Optional[_ShapeLike] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
def gumbel( | |
self, | |
loc: _ArrayLikeFloat_co = ..., | |
scale: _ArrayLikeFloat_co = ..., | |
size: Optional[_ShapeLike] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
def logistic( | |
self, | |
loc: _ArrayLikeFloat_co = ..., | |
scale: _ArrayLikeFloat_co = ..., | |
size: Optional[_ShapeLike] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
def lognormal( | |
self, | |
mean: _ArrayLikeFloat_co = ..., | |
sigma: _ArrayLikeFloat_co = ..., | |
size: Optional[_ShapeLike] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def rayleigh(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
def rayleigh( | |
self, scale: _ArrayLikeFloat_co = ..., size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def wald(self, mean: float, scale: float, size: None = ...) -> float: ... # type: ignore[misc] | |
def wald( | |
self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ... # type: ignore[misc] | |
def triangular( | |
self, | |
left: _ArrayLikeFloat_co, | |
mode: _ArrayLikeFloat_co, | |
right: _ArrayLikeFloat_co, | |
size: Optional[_ShapeLike] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def binomial(self, n: int, p: float, size: None = ...) -> int: ... # type: ignore[misc] | |
def binomial( | |
self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[int64]]: ... | |
def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ... # type: ignore[misc] | |
def negative_binomial( | |
self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[int64]]: ... | |
def poisson(self, lam: float = ..., size: None = ...) -> int: ... # type: ignore[misc] | |
def poisson( | |
self, lam: _ArrayLikeFloat_co = ..., size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[int64]]: ... | |
def zipf(self, a: float, size: None = ...) -> int: ... # type: ignore[misc] | |
def zipf( | |
self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[int64]]: ... | |
def geometric(self, p: float, size: None = ...) -> int: ... # type: ignore[misc] | |
def geometric( | |
self, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[int64]]: ... | |
def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc] | |
def hypergeometric( | |
self, | |
ngood: _ArrayLikeInt_co, | |
nbad: _ArrayLikeInt_co, | |
nsample: _ArrayLikeInt_co, | |
size: Optional[_ShapeLike] = ..., | |
) -> ndarray[Any, dtype[int64]]: ... | |
def logseries(self, p: float, size: None = ...) -> int: ... # type: ignore[misc] | |
def logseries( | |
self, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[int64]]: ... | |
def multivariate_normal( | |
self, | |
mean: _ArrayLikeFloat_co, | |
cov: _ArrayLikeFloat_co, | |
size: Optional[_ShapeLike] = ..., | |
check_valid: Literal["warn", "raise", "ignore"] = ..., | |
tol: float = ..., | |
*, | |
method: Literal["svd", "eigh", "cholesky"] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def multinomial( | |
self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[int64]]: ... | |
def multivariate_hypergeometric( | |
self, | |
colors: _ArrayLikeInt_co, | |
nsample: int, | |
size: Optional[_ShapeLike] = ..., | |
method: Literal["marginals", "count"] = ..., | |
) -> ndarray[Any, dtype[int64]]: ... | |
def dirichlet( | |
self, alpha: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def permuted( | |
self, x: ArrayLike, *, axis: Optional[int] = ..., out: Optional[ndarray[Any, Any]] = ... | |
) -> ndarray[Any, Any]: ... | |
def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ... | |
def default_rng( | |
seed: Union[None, _ArrayLikeInt_co, SeedSequence, BitGenerator, Generator] = ... | |
) -> Generator: ... | |