Spaces:
Sleeping
Sleeping
from ..libmp.backend import xrange | |
import warnings | |
# TODO: interpret list as vectors (for multiplication) | |
rowsep = '\n' | |
colsep = ' ' | |
class _matrix(object): | |
""" | |
Numerical matrix. | |
Specify the dimensions or the data as a nested list. | |
Elements default to zero. | |
Use a flat list to create a column vector easily. | |
The datatype of the context (mpf for mp, mpi for iv, and float for fp) is used to store the data. | |
Creating matrices | |
----------------- | |
Matrices in mpmath are implemented using dictionaries. Only non-zero values | |
are stored, so it is cheap to represent sparse matrices. | |
The most basic way to create one is to use the ``matrix`` class directly. | |
You can create an empty matrix specifying the dimensions: | |
>>> from mpmath import * | |
>>> mp.dps = 15 | |
>>> matrix(2) | |
matrix( | |
[['0.0', '0.0'], | |
['0.0', '0.0']]) | |
>>> matrix(2, 3) | |
matrix( | |
[['0.0', '0.0', '0.0'], | |
['0.0', '0.0', '0.0']]) | |
Calling ``matrix`` with one dimension will create a square matrix. | |
To access the dimensions of a matrix, use the ``rows`` or ``cols`` keyword: | |
>>> A = matrix(3, 2) | |
>>> A | |
matrix( | |
[['0.0', '0.0'], | |
['0.0', '0.0'], | |
['0.0', '0.0']]) | |
>>> A.rows | |
3 | |
>>> A.cols | |
2 | |
You can also change the dimension of an existing matrix. This will set the | |
new elements to 0. If the new dimension is smaller than before, the | |
concerning elements are discarded: | |
>>> A.rows = 2 | |
>>> A | |
matrix( | |
[['0.0', '0.0'], | |
['0.0', '0.0']]) | |
Internally ``mpmathify`` is used every time an element is set. This | |
is done using the syntax A[row,column], counting from 0: | |
>>> A = matrix(2) | |
>>> A[1,1] = 1 + 1j | |
>>> A | |
matrix( | |
[['0.0', '0.0'], | |
['0.0', mpc(real='1.0', imag='1.0')]]) | |
A more comfortable way to create a matrix lets you use nested lists: | |
>>> matrix([[1, 2], [3, 4]]) | |
matrix( | |
[['1.0', '2.0'], | |
['3.0', '4.0']]) | |
Convenient advanced functions are available for creating various standard | |
matrices, see ``zeros``, ``ones``, ``diag``, ``eye``, ``randmatrix`` and | |
``hilbert``. | |
Vectors | |
....... | |
Vectors may also be represented by the ``matrix`` class (with rows = 1 or cols = 1). | |
For vectors there are some things which make life easier. A column vector can | |
be created using a flat list, a row vectors using an almost flat nested list:: | |
>>> matrix([1, 2, 3]) | |
matrix( | |
[['1.0'], | |
['2.0'], | |
['3.0']]) | |
>>> matrix([[1, 2, 3]]) | |
matrix( | |
[['1.0', '2.0', '3.0']]) | |
Optionally vectors can be accessed like lists, using only a single index:: | |
>>> x = matrix([1, 2, 3]) | |
>>> x[1] | |
mpf('2.0') | |
>>> x[1,0] | |
mpf('2.0') | |
Other | |
..... | |
Like you probably expected, matrices can be printed:: | |
>>> print randmatrix(3) # doctest:+SKIP | |
[ 0.782963853573023 0.802057689719883 0.427895717335467] | |
[0.0541876859348597 0.708243266653103 0.615134039977379] | |
[ 0.856151514955773 0.544759264818486 0.686210904770947] | |
Use ``nstr`` or ``nprint`` to specify the number of digits to print:: | |
>>> nprint(randmatrix(5), 3) # doctest:+SKIP | |
[2.07e-1 1.66e-1 5.06e-1 1.89e-1 8.29e-1] | |
[6.62e-1 6.55e-1 4.47e-1 4.82e-1 2.06e-2] | |
[4.33e-1 7.75e-1 6.93e-2 2.86e-1 5.71e-1] | |
[1.01e-1 2.53e-1 6.13e-1 3.32e-1 2.59e-1] | |
[1.56e-1 7.27e-2 6.05e-1 6.67e-2 2.79e-1] | |
As matrices are mutable, you will need to copy them sometimes:: | |
>>> A = matrix(2) | |
>>> A | |
matrix( | |
[['0.0', '0.0'], | |
['0.0', '0.0']]) | |
>>> B = A.copy() | |
>>> B[0,0] = 1 | |
>>> B | |
matrix( | |
[['1.0', '0.0'], | |
['0.0', '0.0']]) | |
>>> A | |
matrix( | |
[['0.0', '0.0'], | |
['0.0', '0.0']]) | |
Finally, it is possible to convert a matrix to a nested list. This is very useful, | |
as most Python libraries involving matrices or arrays (namely NumPy or SymPy) | |
support this format:: | |
>>> B.tolist() | |
[[mpf('1.0'), mpf('0.0')], [mpf('0.0'), mpf('0.0')]] | |
Matrix operations | |
----------------- | |
You can add and subtract matrices of compatible dimensions:: | |
>>> A = matrix([[1, 2], [3, 4]]) | |
>>> B = matrix([[-2, 4], [5, 9]]) | |
>>> A + B | |
matrix( | |
[['-1.0', '6.0'], | |
['8.0', '13.0']]) | |
>>> A - B | |
matrix( | |
[['3.0', '-2.0'], | |
['-2.0', '-5.0']]) | |
>>> A + ones(3) # doctest:+ELLIPSIS | |
Traceback (most recent call last): | |
... | |
ValueError: incompatible dimensions for addition | |
It is possible to multiply or add matrices and scalars. In the latter case the | |
operation will be done element-wise:: | |
>>> A * 2 | |
matrix( | |
[['2.0', '4.0'], | |
['6.0', '8.0']]) | |
>>> A / 4 | |
matrix( | |
[['0.25', '0.5'], | |
['0.75', '1.0']]) | |
>>> A - 1 | |
matrix( | |
[['0.0', '1.0'], | |
['2.0', '3.0']]) | |
Of course you can perform matrix multiplication, if the dimensions are | |
compatible, using ``@`` (for Python >= 3.5) or ``*``. For clarity, ``@`` is | |
recommended (`PEP 465 <https://www.python.org/dev/peps/pep-0465/>`), because | |
the meaning of ``*`` is different in many other Python libraries such as NumPy. | |
>>> A @ B # doctest:+SKIP | |
matrix( | |
[['8.0', '22.0'], | |
['14.0', '48.0']]) | |
>>> A * B # same as A @ B | |
matrix( | |
[['8.0', '22.0'], | |
['14.0', '48.0']]) | |
>>> matrix([[1, 2, 3]]) * matrix([[-6], [7], [-2]]) | |
matrix( | |
[['2.0']]) | |
.. | |
COMMENT: TODO: the above "doctest:+SKIP" may be removed as soon as we | |
have dropped support for Python 3.5 and below. | |
You can raise powers of square matrices:: | |
>>> A**2 | |
matrix( | |
[['7.0', '10.0'], | |
['15.0', '22.0']]) | |
Negative powers will calculate the inverse:: | |
>>> A**-1 | |
matrix( | |
[['-2.0', '1.0'], | |
['1.5', '-0.5']]) | |
>>> A * A**-1 | |
matrix( | |
[['1.0', '1.0842021724855e-19'], | |
['-2.16840434497101e-19', '1.0']]) | |
Matrix transposition is straightforward:: | |
>>> A = ones(2, 3) | |
>>> A | |
matrix( | |
[['1.0', '1.0', '1.0'], | |
['1.0', '1.0', '1.0']]) | |
>>> A.T | |
matrix( | |
[['1.0', '1.0'], | |
['1.0', '1.0'], | |
['1.0', '1.0']]) | |
Norms | |
..... | |
Sometimes you need to know how "large" a matrix or vector is. Due to their | |
multidimensional nature it's not possible to compare them, but there are | |
several functions to map a matrix or a vector to a positive real number, the | |
so called norms. | |
For vectors the p-norm is intended, usually the 1-, the 2- and the oo-norm are | |
used. | |
>>> x = matrix([-10, 2, 100]) | |
>>> norm(x, 1) | |
mpf('112.0') | |
>>> norm(x, 2) | |
mpf('100.5186549850325') | |
>>> norm(x, inf) | |
mpf('100.0') | |
Please note that the 2-norm is the most used one, though it is more expensive | |
to calculate than the 1- or oo-norm. | |
It is possible to generalize some vector norms to matrix norm:: | |
>>> A = matrix([[1, -1000], [100, 50]]) | |
>>> mnorm(A, 1) | |
mpf('1050.0') | |
>>> mnorm(A, inf) | |
mpf('1001.0') | |
>>> mnorm(A, 'F') | |
mpf('1006.2310867787777') | |
The last norm (the "Frobenius-norm") is an approximation for the 2-norm, which | |
is hard to calculate and not available. The Frobenius-norm lacks some | |
mathematical properties you might expect from a norm. | |
""" | |
def __init__(self, *args, **kwargs): | |
self.__data = {} | |
# LU decompostion cache, this is useful when solving the same system | |
# multiple times, when calculating the inverse and when calculating the | |
# determinant | |
self._LU = None | |
if "force_type" in kwargs: | |
warnings.warn("The force_type argument was removed, it did not work" | |
" properly anyway. If you want to force floating-point or" | |
" interval computations, use the respective methods from `fp`" | |
" or `mp` instead, e.g., `fp.matrix()` or `iv.matrix()`." | |
" If you want to truncate values to integer, use .apply(int) instead.") | |
if isinstance(args[0], (list, tuple)): | |
if isinstance(args[0][0], (list, tuple)): | |
# interpret nested list as matrix | |
A = args[0] | |
self.__rows = len(A) | |
self.__cols = len(A[0]) | |
for i, row in enumerate(A): | |
for j, a in enumerate(row): | |
# note: this will call __setitem__ which will call self.ctx.convert() to convert the datatype. | |
self[i, j] = a | |
else: | |
# interpret list as row vector | |
v = args[0] | |
self.__rows = len(v) | |
self.__cols = 1 | |
for i, e in enumerate(v): | |
self[i, 0] = e | |
elif isinstance(args[0], int): | |
# create empty matrix of given dimensions | |
if len(args) == 1: | |
self.__rows = self.__cols = args[0] | |
else: | |
if not isinstance(args[1], int): | |
raise TypeError("expected int") | |
self.__rows = args[0] | |
self.__cols = args[1] | |
elif isinstance(args[0], _matrix): | |
A = args[0] | |
self.__rows = A._matrix__rows | |
self.__cols = A._matrix__cols | |
for i in xrange(A.__rows): | |
for j in xrange(A.__cols): | |
self[i, j] = A[i, j] | |
elif hasattr(args[0], 'tolist'): | |
A = self.ctx.matrix(args[0].tolist()) | |
self.__data = A._matrix__data | |
self.__rows = A._matrix__rows | |
self.__cols = A._matrix__cols | |
else: | |
raise TypeError('could not interpret given arguments') | |
def apply(self, f): | |
""" | |
Return a copy of self with the function `f` applied elementwise. | |
""" | |
new = self.ctx.matrix(self.__rows, self.__cols) | |
for i in xrange(self.__rows): | |
for j in xrange(self.__cols): | |
new[i,j] = f(self[i,j]) | |
return new | |
def __nstr__(self, n=None, **kwargs): | |
# Build table of string representations of the elements | |
res = [] | |
# Track per-column max lengths for pretty alignment | |
maxlen = [0] * self.cols | |
for i in range(self.rows): | |
res.append([]) | |
for j in range(self.cols): | |
if n: | |
string = self.ctx.nstr(self[i,j], n, **kwargs) | |
else: | |
string = str(self[i,j]) | |
res[-1].append(string) | |
maxlen[j] = max(len(string), maxlen[j]) | |
# Patch strings together | |
for i, row in enumerate(res): | |
for j, elem in enumerate(row): | |
# Pad each element up to maxlen so the columns line up | |
row[j] = elem.rjust(maxlen[j]) | |
res[i] = "[" + colsep.join(row) + "]" | |
return rowsep.join(res) | |
def __str__(self): | |
return self.__nstr__() | |
def _toliststr(self, avoid_type=False): | |
""" | |
Create a list string from a matrix. | |
If avoid_type: avoid multiple 'mpf's. | |
""" | |
# XXX: should be something like self.ctx._types | |
typ = self.ctx.mpf | |
s = '[' | |
for i in xrange(self.__rows): | |
s += '[' | |
for j in xrange(self.__cols): | |
if not avoid_type or not isinstance(self[i,j], typ): | |
a = repr(self[i,j]) | |
else: | |
a = "'" + str(self[i,j]) + "'" | |
s += a + ', ' | |
s = s[:-2] | |
s += '],\n ' | |
s = s[:-3] | |
s += ']' | |
return s | |
def tolist(self): | |
""" | |
Convert the matrix to a nested list. | |
""" | |
return [[self[i,j] for j in range(self.__cols)] for i in range(self.__rows)] | |
def __repr__(self): | |
if self.ctx.pretty: | |
return self.__str__() | |
s = 'matrix(\n' | |
s += self._toliststr(avoid_type=True) + ')' | |
return s | |
def __get_element(self, key): | |
''' | |
Fast extraction of the i,j element from the matrix | |
This function is for private use only because is unsafe: | |
1. Does not check on the value of key it expects key to be a integer tuple (i,j) | |
2. Does not check bounds | |
''' | |
if key in self.__data: | |
return self.__data[key] | |
else: | |
return self.ctx.zero | |
def __set_element(self, key, value): | |
''' | |
Fast assignment of the i,j element in the matrix | |
This function is unsafe: | |
1. Does not check on the value of key it expects key to be a integer tuple (i,j) | |
2. Does not check bounds | |
3. Does not check the value type | |
4. Does not reset the LU cache | |
''' | |
if value: # only store non-zeros | |
self.__data[key] = value | |
elif key in self.__data: | |
del self.__data[key] | |
def __getitem__(self, key): | |
''' | |
Getitem function for mp matrix class with slice index enabled | |
it allows the following assingments | |
scalar to a slice of the matrix | |
B = A[:,2:6] | |
''' | |
# Convert vector to matrix indexing | |
if isinstance(key, int) or isinstance(key,slice): | |
# only sufficent for vectors | |
if self.__rows == 1: | |
key = (0, key) | |
elif self.__cols == 1: | |
key = (key, 0) | |
else: | |
raise IndexError('insufficient indices for matrix') | |
if isinstance(key[0],slice) or isinstance(key[1],slice): | |
#Rows | |
if isinstance(key[0],slice): | |
#Check bounds | |
if (key[0].start is None or key[0].start >= 0) and \ | |
(key[0].stop is None or key[0].stop <= self.__rows+1): | |
# Generate indices | |
rows = xrange(*key[0].indices(self.__rows)) | |
else: | |
raise IndexError('Row index out of bounds') | |
else: | |
# Single row | |
rows = [key[0]] | |
# Columns | |
if isinstance(key[1],slice): | |
# Check bounds | |
if (key[1].start is None or key[1].start >= 0) and \ | |
(key[1].stop is None or key[1].stop <= self.__cols+1): | |
# Generate indices | |
columns = xrange(*key[1].indices(self.__cols)) | |
else: | |
raise IndexError('Column index out of bounds') | |
else: | |
# Single column | |
columns = [key[1]] | |
# Create matrix slice | |
m = self.ctx.matrix(len(rows),len(columns)) | |
# Assign elements to the output matrix | |
for i,x in enumerate(rows): | |
for j,y in enumerate(columns): | |
m.__set_element((i,j),self.__get_element((x,y))) | |
return m | |
else: | |
# single element extraction | |
if key[0] >= self.__rows or key[1] >= self.__cols: | |
raise IndexError('matrix index out of range') | |
if key in self.__data: | |
return self.__data[key] | |
else: | |
return self.ctx.zero | |
def __setitem__(self, key, value): | |
# setitem function for mp matrix class with slice index enabled | |
# it allows the following assingments | |
# scalar to a slice of the matrix | |
# A[:,2:6] = 2.5 | |
# submatrix to matrix (the value matrix should be the same size as the slice size) | |
# A[3,:] = B where A is n x m and B is n x 1 | |
# Convert vector to matrix indexing | |
if isinstance(key, int) or isinstance(key,slice): | |
# only sufficent for vectors | |
if self.__rows == 1: | |
key = (0, key) | |
elif self.__cols == 1: | |
key = (key, 0) | |
else: | |
raise IndexError('insufficient indices for matrix') | |
# Slice indexing | |
if isinstance(key[0],slice) or isinstance(key[1],slice): | |
# Rows | |
if isinstance(key[0],slice): | |
# Check bounds | |
if (key[0].start is None or key[0].start >= 0) and \ | |
(key[0].stop is None or key[0].stop <= self.__rows+1): | |
# generate row indices | |
rows = xrange(*key[0].indices(self.__rows)) | |
else: | |
raise IndexError('Row index out of bounds') | |
else: | |
# Single row | |
rows = [key[0]] | |
# Columns | |
if isinstance(key[1],slice): | |
# Check bounds | |
if (key[1].start is None or key[1].start >= 0) and \ | |
(key[1].stop is None or key[1].stop <= self.__cols+1): | |
# Generate column indices | |
columns = xrange(*key[1].indices(self.__cols)) | |
else: | |
raise IndexError('Column index out of bounds') | |
else: | |
# Single column | |
columns = [key[1]] | |
# Assign slice with a scalar | |
if isinstance(value,self.ctx.matrix): | |
# Assign elements to matrix if input and output dimensions match | |
if len(rows) == value.rows and len(columns) == value.cols: | |
for i,x in enumerate(rows): | |
for j,y in enumerate(columns): | |
self.__set_element((x,y), value.__get_element((i,j))) | |
else: | |
raise ValueError('Dimensions do not match') | |
else: | |
# Assign slice with scalars | |
value = self.ctx.convert(value) | |
for i in rows: | |
for j in columns: | |
self.__set_element((i,j), value) | |
else: | |
# Single element assingment | |
# Check bounds | |
if key[0] >= self.__rows or key[1] >= self.__cols: | |
raise IndexError('matrix index out of range') | |
# Convert and store value | |
value = self.ctx.convert(value) | |
if value: # only store non-zeros | |
self.__data[key] = value | |
elif key in self.__data: | |
del self.__data[key] | |
if self._LU: | |
self._LU = None | |
return | |
def __iter__(self): | |
for i in xrange(self.__rows): | |
for j in xrange(self.__cols): | |
yield self[i,j] | |
def __mul__(self, other): | |
if isinstance(other, self.ctx.matrix): | |
# dot multiplication | |
if self.__cols != other.__rows: | |
raise ValueError('dimensions not compatible for multiplication') | |
new = self.ctx.matrix(self.__rows, other.__cols) | |
self_zero = self.ctx.zero | |
self_get = self.__data.get | |
other_zero = other.ctx.zero | |
other_get = other.__data.get | |
for i in xrange(self.__rows): | |
for j in xrange(other.__cols): | |
new[i, j] = self.ctx.fdot((self_get((i,k), self_zero), other_get((k,j), other_zero)) | |
for k in xrange(other.__rows)) | |
return new | |
else: | |
# try scalar multiplication | |
new = self.ctx.matrix(self.__rows, self.__cols) | |
for i in xrange(self.__rows): | |
for j in xrange(self.__cols): | |
new[i, j] = other * self[i, j] | |
return new | |
def __matmul__(self, other): | |
return self.__mul__(other) | |
def __rmul__(self, other): | |
# assume other is scalar and thus commutative | |
if isinstance(other, self.ctx.matrix): | |
raise TypeError("other should not be type of ctx.matrix") | |
return self.__mul__(other) | |
def __pow__(self, other): | |
# avoid cyclic import problems | |
#from linalg import inverse | |
if not isinstance(other, int): | |
raise ValueError('only integer exponents are supported') | |
if not self.__rows == self.__cols: | |
raise ValueError('only powers of square matrices are defined') | |
n = other | |
if n == 0: | |
return self.ctx.eye(self.__rows) | |
if n < 0: | |
n = -n | |
neg = True | |
else: | |
neg = False | |
i = n | |
y = 1 | |
z = self.copy() | |
while i != 0: | |
if i % 2 == 1: | |
y = y * z | |
z = z*z | |
i = i // 2 | |
if neg: | |
y = self.ctx.inverse(y) | |
return y | |
def __div__(self, other): | |
# assume other is scalar and do element-wise divison | |
assert not isinstance(other, self.ctx.matrix) | |
new = self.ctx.matrix(self.__rows, self.__cols) | |
for i in xrange(self.__rows): | |
for j in xrange(self.__cols): | |
new[i,j] = self[i,j] / other | |
return new | |
__truediv__ = __div__ | |
def __add__(self, other): | |
if isinstance(other, self.ctx.matrix): | |
if not (self.__rows == other.__rows and self.__cols == other.__cols): | |
raise ValueError('incompatible dimensions for addition') | |
new = self.ctx.matrix(self.__rows, self.__cols) | |
for i in xrange(self.__rows): | |
for j in xrange(self.__cols): | |
new[i,j] = self[i,j] + other[i,j] | |
return new | |
else: | |
# assume other is scalar and add element-wise | |
new = self.ctx.matrix(self.__rows, self.__cols) | |
for i in xrange(self.__rows): | |
for j in xrange(self.__cols): | |
new[i,j] += self[i,j] + other | |
return new | |
def __radd__(self, other): | |
return self.__add__(other) | |
def __sub__(self, other): | |
if isinstance(other, self.ctx.matrix) and not (self.__rows == other.__rows | |
and self.__cols == other.__cols): | |
raise ValueError('incompatible dimensions for subtraction') | |
return self.__add__(other * (-1)) | |
def __pos__(self): | |
""" | |
+M returns a copy of M, rounded to current working precision. | |
""" | |
return (+1) * self | |
def __neg__(self): | |
return (-1) * self | |
def __rsub__(self, other): | |
return -self + other | |
def __eq__(self, other): | |
return self.__rows == other.__rows and self.__cols == other.__cols \ | |
and self.__data == other.__data | |
def __len__(self): | |
if self.rows == 1: | |
return self.cols | |
elif self.cols == 1: | |
return self.rows | |
else: | |
return self.rows # do it like numpy | |
def __getrows(self): | |
return self.__rows | |
def __setrows(self, value): | |
for key in self.__data.copy(): | |
if key[0] >= value: | |
del self.__data[key] | |
self.__rows = value | |
rows = property(__getrows, __setrows, doc='number of rows') | |
def __getcols(self): | |
return self.__cols | |
def __setcols(self, value): | |
for key in self.__data.copy(): | |
if key[1] >= value: | |
del self.__data[key] | |
self.__cols = value | |
cols = property(__getcols, __setcols, doc='number of columns') | |
def transpose(self): | |
new = self.ctx.matrix(self.__cols, self.__rows) | |
for i in xrange(self.__rows): | |
for j in xrange(self.__cols): | |
new[j,i] = self[i,j] | |
return new | |
T = property(transpose) | |
def conjugate(self): | |
return self.apply(self.ctx.conj) | |
def transpose_conj(self): | |
return self.conjugate().transpose() | |
H = property(transpose_conj) | |
def copy(self): | |
new = self.ctx.matrix(self.__rows, self.__cols) | |
new.__data = self.__data.copy() | |
return new | |
__copy__ = copy | |
def column(self, n): | |
m = self.ctx.matrix(self.rows, 1) | |
for i in range(self.rows): | |
m[i] = self[i,n] | |
return m | |
class MatrixMethods(object): | |
def __init__(ctx): | |
# XXX: subclass | |
ctx.matrix = type('matrix', (_matrix,), {}) | |
ctx.matrix.ctx = ctx | |
ctx.matrix.convert = ctx.convert | |
def eye(ctx, n, **kwargs): | |
""" | |
Create square identity matrix n x n. | |
""" | |
A = ctx.matrix(n, **kwargs) | |
for i in xrange(n): | |
A[i,i] = 1 | |
return A | |
def diag(ctx, diagonal, **kwargs): | |
""" | |
Create square diagonal matrix using given list. | |
Example: | |
>>> from mpmath import diag, mp | |
>>> mp.pretty = False | |
>>> diag([1, 2, 3]) | |
matrix( | |
[['1.0', '0.0', '0.0'], | |
['0.0', '2.0', '0.0'], | |
['0.0', '0.0', '3.0']]) | |
""" | |
A = ctx.matrix(len(diagonal), **kwargs) | |
for i in xrange(len(diagonal)): | |
A[i,i] = diagonal[i] | |
return A | |
def zeros(ctx, *args, **kwargs): | |
""" | |
Create matrix m x n filled with zeros. | |
One given dimension will create square matrix n x n. | |
Example: | |
>>> from mpmath import zeros, mp | |
>>> mp.pretty = False | |
>>> zeros(2) | |
matrix( | |
[['0.0', '0.0'], | |
['0.0', '0.0']]) | |
""" | |
if len(args) == 1: | |
m = n = args[0] | |
elif len(args) == 2: | |
m = args[0] | |
n = args[1] | |
else: | |
raise TypeError('zeros expected at most 2 arguments, got %i' % len(args)) | |
A = ctx.matrix(m, n, **kwargs) | |
for i in xrange(m): | |
for j in xrange(n): | |
A[i,j] = 0 | |
return A | |
def ones(ctx, *args, **kwargs): | |
""" | |
Create matrix m x n filled with ones. | |
One given dimension will create square matrix n x n. | |
Example: | |
>>> from mpmath import ones, mp | |
>>> mp.pretty = False | |
>>> ones(2) | |
matrix( | |
[['1.0', '1.0'], | |
['1.0', '1.0']]) | |
""" | |
if len(args) == 1: | |
m = n = args[0] | |
elif len(args) == 2: | |
m = args[0] | |
n = args[1] | |
else: | |
raise TypeError('ones expected at most 2 arguments, got %i' % len(args)) | |
A = ctx.matrix(m, n, **kwargs) | |
for i in xrange(m): | |
for j in xrange(n): | |
A[i,j] = 1 | |
return A | |
def hilbert(ctx, m, n=None): | |
""" | |
Create (pseudo) hilbert matrix m x n. | |
One given dimension will create hilbert matrix n x n. | |
The matrix is very ill-conditioned and symmetric, positive definite if | |
square. | |
""" | |
if n is None: | |
n = m | |
A = ctx.matrix(m, n) | |
for i in xrange(m): | |
for j in xrange(n): | |
A[i,j] = ctx.one / (i + j + 1) | |
return A | |
def randmatrix(ctx, m, n=None, min=0, max=1, **kwargs): | |
""" | |
Create a random m x n matrix. | |
All values are >= min and <max. | |
n defaults to m. | |
Example: | |
>>> from mpmath import randmatrix | |
>>> randmatrix(2) # doctest:+SKIP | |
matrix( | |
[['0.53491598236191806', '0.57195669543302752'], | |
['0.85589992269513615', '0.82444367501382143']]) | |
""" | |
if not n: | |
n = m | |
A = ctx.matrix(m, n, **kwargs) | |
for i in xrange(m): | |
for j in xrange(n): | |
A[i,j] = ctx.rand() * (max - min) + min | |
return A | |
def swap_row(ctx, A, i, j): | |
""" | |
Swap row i with row j. | |
""" | |
if i == j: | |
return | |
if isinstance(A, ctx.matrix): | |
for k in xrange(A.cols): | |
A[i,k], A[j,k] = A[j,k], A[i,k] | |
elif isinstance(A, list): | |
A[i], A[j] = A[j], A[i] | |
else: | |
raise TypeError('could not interpret type') | |
def extend(ctx, A, b): | |
""" | |
Extend matrix A with column b and return result. | |
""" | |
if not isinstance(A, ctx.matrix): | |
raise TypeError("A should be a type of ctx.matrix") | |
if A.rows != len(b): | |
raise ValueError("Value should be equal to len(b)") | |
A = A.copy() | |
A.cols += 1 | |
for i in xrange(A.rows): | |
A[i, A.cols-1] = b[i] | |
return A | |
def norm(ctx, x, p=2): | |
r""" | |
Gives the entrywise `p`-norm of an iterable *x*, i.e. the vector norm | |
`\left(\sum_k |x_k|^p\right)^{1/p}`, for any given `1 \le p \le \infty`. | |
Special cases: | |
If *x* is not iterable, this just returns ``absmax(x)``. | |
``p=1`` gives the sum of absolute values. | |
``p=2`` is the standard Euclidean vector norm. | |
``p=inf`` gives the magnitude of the largest element. | |
For *x* a matrix, ``p=2`` is the Frobenius norm. | |
For operator matrix norms, use :func:`~mpmath.mnorm` instead. | |
You can use the string 'inf' as well as float('inf') or mpf('inf') | |
to specify the infinity norm. | |
**Examples** | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = False | |
>>> x = matrix([-10, 2, 100]) | |
>>> norm(x, 1) | |
mpf('112.0') | |
>>> norm(x, 2) | |
mpf('100.5186549850325') | |
>>> norm(x, inf) | |
mpf('100.0') | |
""" | |
try: | |
iter(x) | |
except TypeError: | |
return ctx.absmax(x) | |
if type(p) is not int: | |
p = ctx.convert(p) | |
if p == ctx.inf: | |
return max(ctx.absmax(i) for i in x) | |
elif p == 1: | |
return ctx.fsum(x, absolute=1) | |
elif p == 2: | |
return ctx.sqrt(ctx.fsum(x, absolute=1, squared=1)) | |
elif p > 1: | |
return ctx.nthroot(ctx.fsum(abs(i)**p for i in x), p) | |
else: | |
raise ValueError('p has to be >= 1') | |
def mnorm(ctx, A, p=1): | |
r""" | |
Gives the matrix (operator) `p`-norm of A. Currently ``p=1`` and ``p=inf`` | |
are supported: | |
``p=1`` gives the 1-norm (maximal column sum) | |
``p=inf`` gives the `\infty`-norm (maximal row sum). | |
You can use the string 'inf' as well as float('inf') or mpf('inf') | |
``p=2`` (not implemented) for a square matrix is the usual spectral | |
matrix norm, i.e. the largest singular value. | |
``p='f'`` (or 'F', 'fro', 'Frobenius, 'frobenius') gives the | |
Frobenius norm, which is the elementwise 2-norm. The Frobenius norm is an | |
approximation of the spectral norm and satisfies | |
.. math :: | |
\frac{1}{\sqrt{\mathrm{rank}(A)}} \|A\|_F \le \|A\|_2 \le \|A\|_F | |
The Frobenius norm lacks some mathematical properties that might | |
be expected of a norm. | |
For general elementwise `p`-norms, use :func:`~mpmath.norm` instead. | |
**Examples** | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = False | |
>>> A = matrix([[1, -1000], [100, 50]]) | |
>>> mnorm(A, 1) | |
mpf('1050.0') | |
>>> mnorm(A, inf) | |
mpf('1001.0') | |
>>> mnorm(A, 'F') | |
mpf('1006.2310867787777') | |
""" | |
A = ctx.matrix(A) | |
if type(p) is not int: | |
if type(p) is str and 'frobenius'.startswith(p.lower()): | |
return ctx.norm(A, 2) | |
p = ctx.convert(p) | |
m, n = A.rows, A.cols | |
if p == 1: | |
return max(ctx.fsum((A[i,j] for i in xrange(m)), absolute=1) for j in xrange(n)) | |
elif p == ctx.inf: | |
return max(ctx.fsum((A[i,j] for j in xrange(n)), absolute=1) for i in xrange(m)) | |
else: | |
raise NotImplementedError("matrix p-norm for arbitrary p") | |
if __name__ == '__main__': | |
import doctest | |
doctest.testmod() | |