diegulio commited on
Commit
42ad559
·
1 Parent(s): 23662b6
cedula/best.pt → best.pt RENAMED
File without changes
cedula/.DS_Store CHANGED
Binary files a/cedula/.DS_Store and b/cedula/.DS_Store differ
 
cedula/models/common.py DELETED
@@ -1,2019 +0,0 @@
1
- import math
2
- from copy import copy
3
- from pathlib import Path
4
-
5
- import numpy as np
6
- import pandas as pd
7
- import requests
8
- import torch
9
- import torch.nn as nn
10
- import torch.nn.functional as F
11
- from torchvision.ops import DeformConv2d
12
- from PIL import Image
13
- from torch.cuda import amp
14
-
15
- from utils.datasets import letterbox
16
- from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh
17
- from utils.plots import color_list, plot_one_box
18
- from utils.torch_utils import time_synchronized
19
-
20
-
21
- # #### basic ####
22
-
23
- def autopad(k, p=None): # kernel, padding
24
- # Pad to 'same'
25
- if p is None:
26
- p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
27
- return p
28
-
29
-
30
- class MP(nn.Module):
31
- def __init__(self, k=2):
32
- super(MP, self).__init__()
33
- self.m = nn.MaxPool2d(kernel_size=k, stride=k)
34
-
35
- def forward(self, x):
36
- return self.m(x)
37
-
38
-
39
- class SP(nn.Module):
40
- def __init__(self, k=3, s=1):
41
- super(SP, self).__init__()
42
- self.m = nn.MaxPool2d(kernel_size=k, stride=s, padding=k // 2)
43
-
44
- def forward(self, x):
45
- return self.m(x)
46
-
47
-
48
- class ReOrg(nn.Module):
49
- def __init__(self):
50
- super(ReOrg, self).__init__()
51
-
52
- def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
53
- return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
54
-
55
-
56
- class Concat(nn.Module):
57
- def __init__(self, dimension=1):
58
- super(Concat, self).__init__()
59
- self.d = dimension
60
-
61
- def forward(self, x):
62
- return torch.cat(x, self.d)
63
-
64
-
65
- class Chuncat(nn.Module):
66
- def __init__(self, dimension=1):
67
- super(Chuncat, self).__init__()
68
- self.d = dimension
69
-
70
- def forward(self, x):
71
- x1 = []
72
- x2 = []
73
- for xi in x:
74
- xi1, xi2 = xi.chunk(2, self.d)
75
- x1.append(xi1)
76
- x2.append(xi2)
77
- return torch.cat(x1+x2, self.d)
78
-
79
-
80
- class Shortcut(nn.Module):
81
- def __init__(self, dimension=0):
82
- super(Shortcut, self).__init__()
83
- self.d = dimension
84
-
85
- def forward(self, x):
86
- return x[0]+x[1]
87
-
88
-
89
- class Foldcut(nn.Module):
90
- def __init__(self, dimension=0):
91
- super(Foldcut, self).__init__()
92
- self.d = dimension
93
-
94
- def forward(self, x):
95
- x1, x2 = x.chunk(2, self.d)
96
- return x1+x2
97
-
98
-
99
- class Conv(nn.Module):
100
- # Standard convolution
101
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
102
- super(Conv, self).__init__()
103
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
104
- self.bn = nn.BatchNorm2d(c2)
105
- self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
106
-
107
- def forward(self, x):
108
- return self.act(self.bn(self.conv(x)))
109
-
110
- def fuseforward(self, x):
111
- return self.act(self.conv(x))
112
-
113
-
114
- class RobustConv(nn.Module):
115
- # Robust convolution (use high kernel size 7-11 for: downsampling and other layers). Train for 300 - 450 epochs.
116
- def __init__(self, c1, c2, k=7, s=1, p=None, g=1, act=True, layer_scale_init_value=1e-6): # ch_in, ch_out, kernel, stride, padding, groups
117
- super(RobustConv, self).__init__()
118
- self.conv_dw = Conv(c1, c1, k=k, s=s, p=p, g=c1, act=act)
119
- self.conv1x1 = nn.Conv2d(c1, c2, 1, 1, 0, groups=1, bias=True)
120
- self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(c2)) if layer_scale_init_value > 0 else None
121
-
122
- def forward(self, x):
123
- x = x.to(memory_format=torch.channels_last)
124
- x = self.conv1x1(self.conv_dw(x))
125
- if self.gamma is not None:
126
- x = x.mul(self.gamma.reshape(1, -1, 1, 1))
127
- return x
128
-
129
-
130
- class RobustConv2(nn.Module):
131
- # Robust convolution 2 (use [32, 5, 2] or [32, 7, 4] or [32, 11, 8] for one of the paths in CSP).
132
- def __init__(self, c1, c2, k=7, s=4, p=None, g=1, act=True, layer_scale_init_value=1e-6): # ch_in, ch_out, kernel, stride, padding, groups
133
- super(RobustConv2, self).__init__()
134
- self.conv_strided = Conv(c1, c1, k=k, s=s, p=p, g=c1, act=act)
135
- self.conv_deconv = nn.ConvTranspose2d(in_channels=c1, out_channels=c2, kernel_size=s, stride=s,
136
- padding=0, bias=True, dilation=1, groups=1
137
- )
138
- self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(c2)) if layer_scale_init_value > 0 else None
139
-
140
- def forward(self, x):
141
- x = self.conv_deconv(self.conv_strided(x))
142
- if self.gamma is not None:
143
- x = x.mul(self.gamma.reshape(1, -1, 1, 1))
144
- return x
145
-
146
-
147
- def DWConv(c1, c2, k=1, s=1, act=True):
148
- # Depthwise convolution
149
- return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
150
-
151
-
152
- class GhostConv(nn.Module):
153
- # Ghost Convolution https://github.com/huawei-noah/ghostnet
154
- def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
155
- super(GhostConv, self).__init__()
156
- c_ = c2 // 2 # hidden channels
157
- self.cv1 = Conv(c1, c_, k, s, None, g, act)
158
- self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
159
-
160
- def forward(self, x):
161
- y = self.cv1(x)
162
- return torch.cat([y, self.cv2(y)], 1)
163
-
164
-
165
- class Stem(nn.Module):
166
- # Stem
167
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
168
- super(Stem, self).__init__()
169
- c_ = int(c2/2) # hidden channels
170
- self.cv1 = Conv(c1, c_, 3, 2)
171
- self.cv2 = Conv(c_, c_, 1, 1)
172
- self.cv3 = Conv(c_, c_, 3, 2)
173
- self.pool = torch.nn.MaxPool2d(2, stride=2)
174
- self.cv4 = Conv(2 * c_, c2, 1, 1)
175
-
176
- def forward(self, x):
177
- x = self.cv1(x)
178
- return self.cv4(torch.cat((self.cv3(self.cv2(x)), self.pool(x)), dim=1))
179
-
180
-
181
- class DownC(nn.Module):
182
- # Spatial pyramid pooling layer used in YOLOv3-SPP
183
- def __init__(self, c1, c2, n=1, k=2):
184
- super(DownC, self).__init__()
185
- c_ = int(c1) # hidden channels
186
- self.cv1 = Conv(c1, c_, 1, 1)
187
- self.cv2 = Conv(c_, c2//2, 3, k)
188
- self.cv3 = Conv(c1, c2//2, 1, 1)
189
- self.mp = nn.MaxPool2d(kernel_size=k, stride=k)
190
-
191
- def forward(self, x):
192
- return torch.cat((self.cv2(self.cv1(x)), self.cv3(self.mp(x))), dim=1)
193
-
194
-
195
- class SPP(nn.Module):
196
- # Spatial pyramid pooling layer used in YOLOv3-SPP
197
- def __init__(self, c1, c2, k=(5, 9, 13)):
198
- super(SPP, self).__init__()
199
- c_ = c1 // 2 # hidden channels
200
- self.cv1 = Conv(c1, c_, 1, 1)
201
- self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
202
- self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
203
-
204
- def forward(self, x):
205
- x = self.cv1(x)
206
- return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
207
-
208
-
209
- class Bottleneck(nn.Module):
210
- # Darknet bottleneck
211
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
212
- super(Bottleneck, self).__init__()
213
- c_ = int(c2 * e) # hidden channels
214
- self.cv1 = Conv(c1, c_, 1, 1)
215
- self.cv2 = Conv(c_, c2, 3, 1, g=g)
216
- self.add = shortcut and c1 == c2
217
-
218
- def forward(self, x):
219
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
220
-
221
-
222
- class Res(nn.Module):
223
- # ResNet bottleneck
224
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
225
- super(Res, self).__init__()
226
- c_ = int(c2 * e) # hidden channels
227
- self.cv1 = Conv(c1, c_, 1, 1)
228
- self.cv2 = Conv(c_, c_, 3, 1, g=g)
229
- self.cv3 = Conv(c_, c2, 1, 1)
230
- self.add = shortcut and c1 == c2
231
-
232
- def forward(self, x):
233
- return x + self.cv3(self.cv2(self.cv1(x))) if self.add else self.cv3(self.cv2(self.cv1(x)))
234
-
235
-
236
- class ResX(Res):
237
- # ResNet bottleneck
238
- def __init__(self, c1, c2, shortcut=True, g=32, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
239
- super().__init__(c1, c2, shortcut, g, e)
240
- c_ = int(c2 * e) # hidden channels
241
-
242
-
243
- class Ghost(nn.Module):
244
- # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
245
- def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
246
- super(Ghost, self).__init__()
247
- c_ = c2 // 2
248
- self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
249
- DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
250
- GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
251
- self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
252
- Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
253
-
254
- def forward(self, x):
255
- return self.conv(x) + self.shortcut(x)
256
-
257
- # #### end of basic #####
258
-
259
-
260
- # #### cspnet #####
261
-
262
- class SPPCSPC(nn.Module):
263
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
264
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
265
- super(SPPCSPC, self).__init__()
266
- c_ = int(2 * c2 * e) # hidden channels
267
- self.cv1 = Conv(c1, c_, 1, 1)
268
- self.cv2 = Conv(c1, c_, 1, 1)
269
- self.cv3 = Conv(c_, c_, 3, 1)
270
- self.cv4 = Conv(c_, c_, 1, 1)
271
- self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
272
- self.cv5 = Conv(4 * c_, c_, 1, 1)
273
- self.cv6 = Conv(c_, c_, 3, 1)
274
- self.cv7 = Conv(2 * c_, c2, 1, 1)
275
-
276
- def forward(self, x):
277
- x1 = self.cv4(self.cv3(self.cv1(x)))
278
- y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
279
- y2 = self.cv2(x)
280
- return self.cv7(torch.cat((y1, y2), dim=1))
281
-
282
- class GhostSPPCSPC(SPPCSPC):
283
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
284
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
285
- super().__init__(c1, c2, n, shortcut, g, e, k)
286
- c_ = int(2 * c2 * e) # hidden channels
287
- self.cv1 = GhostConv(c1, c_, 1, 1)
288
- self.cv2 = GhostConv(c1, c_, 1, 1)
289
- self.cv3 = GhostConv(c_, c_, 3, 1)
290
- self.cv4 = GhostConv(c_, c_, 1, 1)
291
- self.cv5 = GhostConv(4 * c_, c_, 1, 1)
292
- self.cv6 = GhostConv(c_, c_, 3, 1)
293
- self.cv7 = GhostConv(2 * c_, c2, 1, 1)
294
-
295
-
296
- class GhostStem(Stem):
297
- # Stem
298
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
299
- super().__init__(c1, c2, k, s, p, g, act)
300
- c_ = int(c2/2) # hidden channels
301
- self.cv1 = GhostConv(c1, c_, 3, 2)
302
- self.cv2 = GhostConv(c_, c_, 1, 1)
303
- self.cv3 = GhostConv(c_, c_, 3, 2)
304
- self.cv4 = GhostConv(2 * c_, c2, 1, 1)
305
-
306
-
307
- class BottleneckCSPA(nn.Module):
308
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
309
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
310
- super(BottleneckCSPA, self).__init__()
311
- c_ = int(c2 * e) # hidden channels
312
- self.cv1 = Conv(c1, c_, 1, 1)
313
- self.cv2 = Conv(c1, c_, 1, 1)
314
- self.cv3 = Conv(2 * c_, c2, 1, 1)
315
- self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
316
-
317
- def forward(self, x):
318
- y1 = self.m(self.cv1(x))
319
- y2 = self.cv2(x)
320
- return self.cv3(torch.cat((y1, y2), dim=1))
321
-
322
-
323
- class BottleneckCSPB(nn.Module):
324
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
325
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
326
- super(BottleneckCSPB, self).__init__()
327
- c_ = int(c2) # hidden channels
328
- self.cv1 = Conv(c1, c_, 1, 1)
329
- self.cv2 = Conv(c_, c_, 1, 1)
330
- self.cv3 = Conv(2 * c_, c2, 1, 1)
331
- self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
332
-
333
- def forward(self, x):
334
- x1 = self.cv1(x)
335
- y1 = self.m(x1)
336
- y2 = self.cv2(x1)
337
- return self.cv3(torch.cat((y1, y2), dim=1))
338
-
339
-
340
- class BottleneckCSPC(nn.Module):
341
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
342
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
343
- super(BottleneckCSPC, self).__init__()
344
- c_ = int(c2 * e) # hidden channels
345
- self.cv1 = Conv(c1, c_, 1, 1)
346
- self.cv2 = Conv(c1, c_, 1, 1)
347
- self.cv3 = Conv(c_, c_, 1, 1)
348
- self.cv4 = Conv(2 * c_, c2, 1, 1)
349
- self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
350
-
351
- def forward(self, x):
352
- y1 = self.cv3(self.m(self.cv1(x)))
353
- y2 = self.cv2(x)
354
- return self.cv4(torch.cat((y1, y2), dim=1))
355
-
356
-
357
- class ResCSPA(BottleneckCSPA):
358
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
359
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
360
- super().__init__(c1, c2, n, shortcut, g, e)
361
- c_ = int(c2 * e) # hidden channels
362
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
363
-
364
-
365
- class ResCSPB(BottleneckCSPB):
366
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
367
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
368
- super().__init__(c1, c2, n, shortcut, g, e)
369
- c_ = int(c2) # hidden channels
370
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
371
-
372
-
373
- class ResCSPC(BottleneckCSPC):
374
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
375
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
376
- super().__init__(c1, c2, n, shortcut, g, e)
377
- c_ = int(c2 * e) # hidden channels
378
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
379
-
380
-
381
- class ResXCSPA(ResCSPA):
382
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
383
- def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
384
- super().__init__(c1, c2, n, shortcut, g, e)
385
- c_ = int(c2 * e) # hidden channels
386
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
387
-
388
-
389
- class ResXCSPB(ResCSPB):
390
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
391
- def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
392
- super().__init__(c1, c2, n, shortcut, g, e)
393
- c_ = int(c2) # hidden channels
394
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
395
-
396
-
397
- class ResXCSPC(ResCSPC):
398
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
399
- def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
400
- super().__init__(c1, c2, n, shortcut, g, e)
401
- c_ = int(c2 * e) # hidden channels
402
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
403
-
404
-
405
- class GhostCSPA(BottleneckCSPA):
406
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
407
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
408
- super().__init__(c1, c2, n, shortcut, g, e)
409
- c_ = int(c2 * e) # hidden channels
410
- self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
411
-
412
-
413
- class GhostCSPB(BottleneckCSPB):
414
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
415
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
416
- super().__init__(c1, c2, n, shortcut, g, e)
417
- c_ = int(c2) # hidden channels
418
- self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
419
-
420
-
421
- class GhostCSPC(BottleneckCSPC):
422
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
423
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
424
- super().__init__(c1, c2, n, shortcut, g, e)
425
- c_ = int(c2 * e) # hidden channels
426
- self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
427
-
428
- # #### end of cspnet #####
429
-
430
-
431
- # #### yolor #####
432
-
433
- class ImplicitA(nn.Module):
434
- def __init__(self, channel, mean=0., std=.02):
435
- super(ImplicitA, self).__init__()
436
- self.channel = channel
437
- self.mean = mean
438
- self.std = std
439
- self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
440
- nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
441
-
442
- def forward(self, x):
443
- return self.implicit + x
444
-
445
-
446
- class ImplicitM(nn.Module):
447
- def __init__(self, channel, mean=1., std=.02):
448
- super(ImplicitM, self).__init__()
449
- self.channel = channel
450
- self.mean = mean
451
- self.std = std
452
- self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))
453
- nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
454
-
455
- def forward(self, x):
456
- return self.implicit * x
457
-
458
- # #### end of yolor #####
459
-
460
-
461
- # #### repvgg #####
462
-
463
- class RepConv(nn.Module):
464
- # Represented convolution
465
- # https://arxiv.org/abs/2101.03697
466
-
467
- def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True, deploy=False):
468
- super(RepConv, self).__init__()
469
-
470
- self.deploy = deploy
471
- self.groups = g
472
- self.in_channels = c1
473
- self.out_channels = c2
474
-
475
- assert k == 3
476
- assert autopad(k, p) == 1
477
-
478
- padding_11 = autopad(k, p) - k // 2
479
-
480
- self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
481
-
482
- if deploy:
483
- self.rbr_reparam = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=True)
484
-
485
- else:
486
- self.rbr_identity = (nn.BatchNorm2d(num_features=c1) if c2 == c1 and s == 1 else None)
487
-
488
- self.rbr_dense = nn.Sequential(
489
- nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False),
490
- nn.BatchNorm2d(num_features=c2),
491
- )
492
-
493
- self.rbr_1x1 = nn.Sequential(
494
- nn.Conv2d( c1, c2, 1, s, padding_11, groups=g, bias=False),
495
- nn.BatchNorm2d(num_features=c2),
496
- )
497
-
498
- def forward(self, inputs):
499
- if hasattr(self, "rbr_reparam"):
500
- return self.act(self.rbr_reparam(inputs))
501
-
502
- if self.rbr_identity is None:
503
- id_out = 0
504
- else:
505
- id_out = self.rbr_identity(inputs)
506
-
507
- return self.act(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)
508
-
509
- def get_equivalent_kernel_bias(self):
510
- kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
511
- kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
512
- kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
513
- return (
514
- kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid,
515
- bias3x3 + bias1x1 + biasid,
516
- )
517
-
518
- def _pad_1x1_to_3x3_tensor(self, kernel1x1):
519
- if kernel1x1 is None:
520
- return 0
521
- else:
522
- return nn.functional.pad(kernel1x1, [1, 1, 1, 1])
523
-
524
- def _fuse_bn_tensor(self, branch):
525
- if branch is None:
526
- return 0, 0
527
- if isinstance(branch, nn.Sequential):
528
- kernel = branch[0].weight
529
- running_mean = branch[1].running_mean
530
- running_var = branch[1].running_var
531
- gamma = branch[1].weight
532
- beta = branch[1].bias
533
- eps = branch[1].eps
534
- else:
535
- assert isinstance(branch, nn.BatchNorm2d)
536
- if not hasattr(self, "id_tensor"):
537
- input_dim = self.in_channels // self.groups
538
- kernel_value = np.zeros(
539
- (self.in_channels, input_dim, 3, 3), dtype=np.float32
540
- )
541
- for i in range(self.in_channels):
542
- kernel_value[i, i % input_dim, 1, 1] = 1
543
- self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
544
- kernel = self.id_tensor
545
- running_mean = branch.running_mean
546
- running_var = branch.running_var
547
- gamma = branch.weight
548
- beta = branch.bias
549
- eps = branch.eps
550
- std = (running_var + eps).sqrt()
551
- t = (gamma / std).reshape(-1, 1, 1, 1)
552
- return kernel * t, beta - running_mean * gamma / std
553
-
554
- def repvgg_convert(self):
555
- kernel, bias = self.get_equivalent_kernel_bias()
556
- return (
557
- kernel.detach().cpu().numpy(),
558
- bias.detach().cpu().numpy(),
559
- )
560
-
561
- def fuse_conv_bn(self, conv, bn):
562
-
563
- std = (bn.running_var + bn.eps).sqrt()
564
- bias = bn.bias - bn.running_mean * bn.weight / std
565
-
566
- t = (bn.weight / std).reshape(-1, 1, 1, 1)
567
- weights = conv.weight * t
568
-
569
- bn = nn.Identity()
570
- conv = nn.Conv2d(in_channels = conv.in_channels,
571
- out_channels = conv.out_channels,
572
- kernel_size = conv.kernel_size,
573
- stride=conv.stride,
574
- padding = conv.padding,
575
- dilation = conv.dilation,
576
- groups = conv.groups,
577
- bias = True,
578
- padding_mode = conv.padding_mode)
579
-
580
- conv.weight = torch.nn.Parameter(weights)
581
- conv.bias = torch.nn.Parameter(bias)
582
- return conv
583
-
584
- def fuse_repvgg_block(self):
585
- if self.deploy:
586
- return
587
- print(f"RepConv.fuse_repvgg_block")
588
-
589
- self.rbr_dense = self.fuse_conv_bn(self.rbr_dense[0], self.rbr_dense[1])
590
-
591
- self.rbr_1x1 = self.fuse_conv_bn(self.rbr_1x1[0], self.rbr_1x1[1])
592
- rbr_1x1_bias = self.rbr_1x1.bias
593
- weight_1x1_expanded = torch.nn.functional.pad(self.rbr_1x1.weight, [1, 1, 1, 1])
594
-
595
- # Fuse self.rbr_identity
596
- if (isinstance(self.rbr_identity, nn.BatchNorm2d) or isinstance(self.rbr_identity, nn.modules.batchnorm.SyncBatchNorm)):
597
- # print(f"fuse: rbr_identity == BatchNorm2d or SyncBatchNorm")
598
- identity_conv_1x1 = nn.Conv2d(
599
- in_channels=self.in_channels,
600
- out_channels=self.out_channels,
601
- kernel_size=1,
602
- stride=1,
603
- padding=0,
604
- groups=self.groups,
605
- bias=False)
606
- identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.to(self.rbr_1x1.weight.data.device)
607
- identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.squeeze().squeeze()
608
- # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
609
- identity_conv_1x1.weight.data.fill_(0.0)
610
- identity_conv_1x1.weight.data.fill_diagonal_(1.0)
611
- identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.unsqueeze(2).unsqueeze(3)
612
- # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
613
-
614
- identity_conv_1x1 = self.fuse_conv_bn(identity_conv_1x1, self.rbr_identity)
615
- bias_identity_expanded = identity_conv_1x1.bias
616
- weight_identity_expanded = torch.nn.functional.pad(identity_conv_1x1.weight, [1, 1, 1, 1])
617
- else:
618
- # print(f"fuse: rbr_identity != BatchNorm2d, rbr_identity = {self.rbr_identity}")
619
- bias_identity_expanded = torch.nn.Parameter( torch.zeros_like(rbr_1x1_bias) )
620
- weight_identity_expanded = torch.nn.Parameter( torch.zeros_like(weight_1x1_expanded) )
621
-
622
-
623
- #print(f"self.rbr_1x1.weight = {self.rbr_1x1.weight.shape}, ")
624
- #print(f"weight_1x1_expanded = {weight_1x1_expanded.shape}, ")
625
- #print(f"self.rbr_dense.weight = {self.rbr_dense.weight.shape}, ")
626
-
627
- self.rbr_dense.weight = torch.nn.Parameter(self.rbr_dense.weight + weight_1x1_expanded + weight_identity_expanded)
628
- self.rbr_dense.bias = torch.nn.Parameter(self.rbr_dense.bias + rbr_1x1_bias + bias_identity_expanded)
629
-
630
- self.rbr_reparam = self.rbr_dense
631
- self.deploy = True
632
-
633
- if self.rbr_identity is not None:
634
- del self.rbr_identity
635
- self.rbr_identity = None
636
-
637
- if self.rbr_1x1 is not None:
638
- del self.rbr_1x1
639
- self.rbr_1x1 = None
640
-
641
- if self.rbr_dense is not None:
642
- del self.rbr_dense
643
- self.rbr_dense = None
644
-
645
-
646
- class RepBottleneck(Bottleneck):
647
- # Standard bottleneck
648
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
649
- super().__init__(c1, c2, shortcut=True, g=1, e=0.5)
650
- c_ = int(c2 * e) # hidden channels
651
- self.cv2 = RepConv(c_, c2, 3, 1, g=g)
652
-
653
-
654
- class RepBottleneckCSPA(BottleneckCSPA):
655
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
656
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
657
- super().__init__(c1, c2, n, shortcut, g, e)
658
- c_ = int(c2 * e) # hidden channels
659
- self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
660
-
661
-
662
- class RepBottleneckCSPB(BottleneckCSPB):
663
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
664
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
665
- super().__init__(c1, c2, n, shortcut, g, e)
666
- c_ = int(c2) # hidden channels
667
- self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
668
-
669
-
670
- class RepBottleneckCSPC(BottleneckCSPC):
671
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
672
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
673
- super().__init__(c1, c2, n, shortcut, g, e)
674
- c_ = int(c2 * e) # hidden channels
675
- self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
676
-
677
-
678
- class RepRes(Res):
679
- # Standard bottleneck
680
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
681
- super().__init__(c1, c2, shortcut, g, e)
682
- c_ = int(c2 * e) # hidden channels
683
- self.cv2 = RepConv(c_, c_, 3, 1, g=g)
684
-
685
-
686
- class RepResCSPA(ResCSPA):
687
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
688
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
689
- super().__init__(c1, c2, n, shortcut, g, e)
690
- c_ = int(c2 * e) # hidden channels
691
- self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
692
-
693
-
694
- class RepResCSPB(ResCSPB):
695
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
696
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
697
- super().__init__(c1, c2, n, shortcut, g, e)
698
- c_ = int(c2) # hidden channels
699
- self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
700
-
701
-
702
- class RepResCSPC(ResCSPC):
703
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
704
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
705
- super().__init__(c1, c2, n, shortcut, g, e)
706
- c_ = int(c2 * e) # hidden channels
707
- self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
708
-
709
-
710
- class RepResX(ResX):
711
- # Standard bottleneck
712
- def __init__(self, c1, c2, shortcut=True, g=32, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
713
- super().__init__(c1, c2, shortcut, g, e)
714
- c_ = int(c2 * e) # hidden channels
715
- self.cv2 = RepConv(c_, c_, 3, 1, g=g)
716
-
717
-
718
- class RepResXCSPA(ResXCSPA):
719
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
720
- def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
721
- super().__init__(c1, c2, n, shortcut, g, e)
722
- c_ = int(c2 * e) # hidden channels
723
- self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
724
-
725
-
726
- class RepResXCSPB(ResXCSPB):
727
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
728
- def __init__(self, c1, c2, n=1, shortcut=False, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
729
- super().__init__(c1, c2, n, shortcut, g, e)
730
- c_ = int(c2) # hidden channels
731
- self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
732
-
733
-
734
- class RepResXCSPC(ResXCSPC):
735
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
736
- def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
737
- super().__init__(c1, c2, n, shortcut, g, e)
738
- c_ = int(c2 * e) # hidden channels
739
- self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
740
-
741
- # #### end of repvgg #####
742
-
743
-
744
- # #### transformer #####
745
-
746
- class TransformerLayer(nn.Module):
747
- # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
748
- def __init__(self, c, num_heads):
749
- super().__init__()
750
- self.q = nn.Linear(c, c, bias=False)
751
- self.k = nn.Linear(c, c, bias=False)
752
- self.v = nn.Linear(c, c, bias=False)
753
- self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
754
- self.fc1 = nn.Linear(c, c, bias=False)
755
- self.fc2 = nn.Linear(c, c, bias=False)
756
-
757
- def forward(self, x):
758
- x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
759
- x = self.fc2(self.fc1(x)) + x
760
- return x
761
-
762
-
763
- class TransformerBlock(nn.Module):
764
- # Vision Transformer https://arxiv.org/abs/2010.11929
765
- def __init__(self, c1, c2, num_heads, num_layers):
766
- super().__init__()
767
- self.conv = None
768
- if c1 != c2:
769
- self.conv = Conv(c1, c2)
770
- self.linear = nn.Linear(c2, c2) # learnable position embedding
771
- self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)])
772
- self.c2 = c2
773
-
774
- def forward(self, x):
775
- if self.conv is not None:
776
- x = self.conv(x)
777
- b, _, w, h = x.shape
778
- p = x.flatten(2)
779
- p = p.unsqueeze(0)
780
- p = p.transpose(0, 3)
781
- p = p.squeeze(3)
782
- e = self.linear(p)
783
- x = p + e
784
-
785
- x = self.tr(x)
786
- x = x.unsqueeze(3)
787
- x = x.transpose(0, 3)
788
- x = x.reshape(b, self.c2, w, h)
789
- return x
790
-
791
- # #### end of transformer #####
792
-
793
-
794
- # #### yolov5 #####
795
-
796
- class Focus(nn.Module):
797
- # Focus wh information into c-space
798
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
799
- super(Focus, self).__init__()
800
- self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
801
- # self.contract = Contract(gain=2)
802
-
803
- def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
804
- return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
805
- # return self.conv(self.contract(x))
806
-
807
-
808
- class SPPF(nn.Module):
809
- # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
810
- def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
811
- super().__init__()
812
- c_ = c1 // 2 # hidden channels
813
- self.cv1 = Conv(c1, c_, 1, 1)
814
- self.cv2 = Conv(c_ * 4, c2, 1, 1)
815
- self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
816
-
817
- def forward(self, x):
818
- x = self.cv1(x)
819
- y1 = self.m(x)
820
- y2 = self.m(y1)
821
- return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
822
-
823
-
824
- class Contract(nn.Module):
825
- # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
826
- def __init__(self, gain=2):
827
- super().__init__()
828
- self.gain = gain
829
-
830
- def forward(self, x):
831
- N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
832
- s = self.gain
833
- x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
834
- x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
835
- return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
836
-
837
-
838
- class Expand(nn.Module):
839
- # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
840
- def __init__(self, gain=2):
841
- super().__init__()
842
- self.gain = gain
843
-
844
- def forward(self, x):
845
- N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
846
- s = self.gain
847
- x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
848
- x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
849
- return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
850
-
851
-
852
- class NMS(nn.Module):
853
- # Non-Maximum Suppression (NMS) module
854
- conf = 0.25 # confidence threshold
855
- iou = 0.45 # IoU threshold
856
- classes = None # (optional list) filter by class
857
-
858
- def __init__(self):
859
- super(NMS, self).__init__()
860
-
861
- def forward(self, x):
862
- return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
863
-
864
-
865
- class autoShape(nn.Module):
866
- # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
867
- conf = 0.25 # NMS confidence threshold
868
- iou = 0.45 # NMS IoU threshold
869
- classes = None # (optional list) filter by class
870
-
871
- def __init__(self, model):
872
- super(autoShape, self).__init__()
873
- self.model = model.eval()
874
-
875
- def autoshape(self):
876
- print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
877
- return self
878
-
879
- @torch.no_grad()
880
- def forward(self, imgs, size=640, augment=False, profile=False):
881
- # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
882
- # filename: imgs = 'data/samples/zidane.jpg'
883
- # URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
884
- # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
885
- # PIL: = Image.open('image.jpg') # HWC x(640,1280,3)
886
- # numpy: = np.zeros((640,1280,3)) # HWC
887
- # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
888
- # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
889
-
890
- t = [time_synchronized()]
891
- p = next(self.model.parameters()) # for device and type
892
- if isinstance(imgs, torch.Tensor): # torch
893
- with amp.autocast(enabled=p.device.type != 'cpu'):
894
- return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
895
-
896
- # Pre-process
897
- n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
898
- shape0, shape1, files = [], [], [] # image and inference shapes, filenames
899
- for i, im in enumerate(imgs):
900
- f = f'image{i}' # filename
901
- if isinstance(im, str): # filename or uri
902
- im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im
903
- elif isinstance(im, Image.Image): # PIL Image
904
- im, f = np.asarray(im), getattr(im, 'filename', f) or f
905
- files.append(Path(f).with_suffix('.jpg').name)
906
- if im.shape[0] < 5: # image in CHW
907
- im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
908
- im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
909
- s = im.shape[:2] # HWC
910
- shape0.append(s) # image shape
911
- g = (size / max(s)) # gain
912
- shape1.append([y * g for y in s])
913
- imgs[i] = im # update
914
- shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
915
- x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
916
- x = np.stack(x, 0) if n > 1 else x[0][None] # stack
917
- x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
918
- x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
919
- t.append(time_synchronized())
920
-
921
- with amp.autocast(enabled=p.device.type != 'cpu'):
922
- # Inference
923
- y = self.model(x, augment, profile)[0] # forward
924
- t.append(time_synchronized())
925
-
926
- # Post-process
927
- y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
928
- for i in range(n):
929
- scale_coords(shape1, y[i][:, :4], shape0[i])
930
-
931
- t.append(time_synchronized())
932
- return Detections(imgs, y, files, t, self.names, x.shape)
933
-
934
-
935
- class Detections:
936
- # detections class for YOLOv5 inference results
937
- def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
938
- super(Detections, self).__init__()
939
- d = pred[0].device # device
940
- gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
941
- self.imgs = imgs # list of images as numpy arrays
942
- self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
943
- self.names = names # class names
944
- self.files = files # image filenames
945
- self.xyxy = pred # xyxy pixels
946
- self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
947
- self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
948
- self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
949
- self.n = len(self.pred) # number of images (batch size)
950
- self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
951
- self.s = shape # inference BCHW shape
952
-
953
- def display(self, pprint=False, show=False, save=False, render=False, save_dir=''):
954
- colors = color_list()
955
- for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
956
- str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
957
- if pred is not None:
958
- for c in pred[:, -1].unique():
959
- n = (pred[:, -1] == c).sum() # detections per class
960
- str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
961
- if show or save or render:
962
- for *box, conf, cls in pred: # xyxy, confidence, class
963
- label = f'{self.names[int(cls)]} {conf:.2f}'
964
- plot_one_box(box, img, label=label, color=colors[int(cls) % 10])
965
- img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
966
- if pprint:
967
- print(str.rstrip(', '))
968
- if show:
969
- img.show(self.files[i]) # show
970
- if save:
971
- f = self.files[i]
972
- img.save(Path(save_dir) / f) # save
973
- print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n')
974
- if render:
975
- self.imgs[i] = np.asarray(img)
976
-
977
- def print(self):
978
- self.display(pprint=True) # print results
979
- print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
980
-
981
- def show(self):
982
- self.display(show=True) # show results
983
-
984
- def save(self, save_dir='runs/hub/exp'):
985
- save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp') # increment save_dir
986
- Path(save_dir).mkdir(parents=True, exist_ok=True)
987
- self.display(save=True, save_dir=save_dir) # save results
988
-
989
- def render(self):
990
- self.display(render=True) # render results
991
- return self.imgs
992
-
993
- def pandas(self):
994
- # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
995
- new = copy(self) # return copy
996
- ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
997
- cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
998
- for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
999
- a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
1000
- setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
1001
- return new
1002
-
1003
- def tolist(self):
1004
- # return a list of Detections objects, i.e. 'for result in results.tolist():'
1005
- x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)]
1006
- for d in x:
1007
- for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
1008
- setattr(d, k, getattr(d, k)[0]) # pop out of list
1009
- return x
1010
-
1011
- def __len__(self):
1012
- return self.n
1013
-
1014
-
1015
- class Classify(nn.Module):
1016
- # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
1017
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
1018
- super(Classify, self).__init__()
1019
- self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
1020
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
1021
- self.flat = nn.Flatten()
1022
-
1023
- def forward(self, x):
1024
- z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
1025
- return self.flat(self.conv(z)) # flatten to x(b,c2)
1026
-
1027
- # #### end of yolov5 ######
1028
-
1029
-
1030
- # #### orepa #####
1031
-
1032
- def transI_fusebn(kernel, bn):
1033
- gamma = bn.weight
1034
- std = (bn.running_var + bn.eps).sqrt()
1035
- return kernel * ((gamma / std).reshape(-1, 1, 1, 1)), bn.bias - bn.running_mean * gamma / std
1036
-
1037
-
1038
- class ConvBN(nn.Module):
1039
- def __init__(self, in_channels, out_channels, kernel_size,
1040
- stride=1, padding=0, dilation=1, groups=1, deploy=False, nonlinear=None):
1041
- super().__init__()
1042
- if nonlinear is None:
1043
- self.nonlinear = nn.Identity()
1044
- else:
1045
- self.nonlinear = nonlinear
1046
- if deploy:
1047
- self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
1048
- stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)
1049
- else:
1050
- self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
1051
- stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False)
1052
- self.bn = nn.BatchNorm2d(num_features=out_channels)
1053
-
1054
- def forward(self, x):
1055
- if hasattr(self, 'bn'):
1056
- return self.nonlinear(self.bn(self.conv(x)))
1057
- else:
1058
- return self.nonlinear(self.conv(x))
1059
-
1060
- def switch_to_deploy(self):
1061
- kernel, bias = transI_fusebn(self.conv.weight, self.bn)
1062
- conv = nn.Conv2d(in_channels=self.conv.in_channels, out_channels=self.conv.out_channels, kernel_size=self.conv.kernel_size,
1063
- stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups, bias=True)
1064
- conv.weight.data = kernel
1065
- conv.bias.data = bias
1066
- for para in self.parameters():
1067
- para.detach_()
1068
- self.__delattr__('conv')
1069
- self.__delattr__('bn')
1070
- self.conv = conv
1071
-
1072
- class OREPA_3x3_RepConv(nn.Module):
1073
-
1074
- def __init__(self, in_channels, out_channels, kernel_size,
1075
- stride=1, padding=0, dilation=1, groups=1,
1076
- internal_channels_1x1_3x3=None,
1077
- deploy=False, nonlinear=None, single_init=False):
1078
- super(OREPA_3x3_RepConv, self).__init__()
1079
- self.deploy = deploy
1080
-
1081
- if nonlinear is None:
1082
- self.nonlinear = nn.Identity()
1083
- else:
1084
- self.nonlinear = nonlinear
1085
-
1086
- self.kernel_size = kernel_size
1087
- self.in_channels = in_channels
1088
- self.out_channels = out_channels
1089
- self.groups = groups
1090
- assert padding == kernel_size // 2
1091
-
1092
- self.stride = stride
1093
- self.padding = padding
1094
- self.dilation = dilation
1095
-
1096
- self.branch_counter = 0
1097
-
1098
- self.weight_rbr_origin = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), kernel_size, kernel_size))
1099
- nn.init.kaiming_uniform_(self.weight_rbr_origin, a=math.sqrt(1.0))
1100
- self.branch_counter += 1
1101
-
1102
-
1103
- if groups < out_channels:
1104
- self.weight_rbr_avg_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
1105
- self.weight_rbr_pfir_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
1106
- nn.init.kaiming_uniform_(self.weight_rbr_avg_conv, a=1.0)
1107
- nn.init.kaiming_uniform_(self.weight_rbr_pfir_conv, a=1.0)
1108
- self.weight_rbr_avg_conv.data
1109
- self.weight_rbr_pfir_conv.data
1110
- self.register_buffer('weight_rbr_avg_avg', torch.ones(kernel_size, kernel_size).mul(1.0/kernel_size/kernel_size))
1111
- self.branch_counter += 1
1112
-
1113
- else:
1114
- raise NotImplementedError
1115
- self.branch_counter += 1
1116
-
1117
- if internal_channels_1x1_3x3 is None:
1118
- internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels # For mobilenet, it is better to have 2X internal channels
1119
-
1120
- if internal_channels_1x1_3x3 == in_channels:
1121
- self.weight_rbr_1x1_kxk_idconv1 = nn.Parameter(torch.zeros(in_channels, int(in_channels/self.groups), 1, 1))
1122
- id_value = np.zeros((in_channels, int(in_channels/self.groups), 1, 1))
1123
- for i in range(in_channels):
1124
- id_value[i, i % int(in_channels/self.groups), 0, 0] = 1
1125
- id_tensor = torch.from_numpy(id_value).type_as(self.weight_rbr_1x1_kxk_idconv1)
1126
- self.register_buffer('id_tensor', id_tensor)
1127
-
1128
- else:
1129
- self.weight_rbr_1x1_kxk_conv1 = nn.Parameter(torch.Tensor(internal_channels_1x1_3x3, int(in_channels/self.groups), 1, 1))
1130
- nn.init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv1, a=math.sqrt(1.0))
1131
- self.weight_rbr_1x1_kxk_conv2 = nn.Parameter(torch.Tensor(out_channels, int(internal_channels_1x1_3x3/self.groups), kernel_size, kernel_size))
1132
- nn.init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv2, a=math.sqrt(1.0))
1133
- self.branch_counter += 1
1134
-
1135
- expand_ratio = 8
1136
- self.weight_rbr_gconv_dw = nn.Parameter(torch.Tensor(in_channels*expand_ratio, 1, kernel_size, kernel_size))
1137
- self.weight_rbr_gconv_pw = nn.Parameter(torch.Tensor(out_channels, in_channels*expand_ratio, 1, 1))
1138
- nn.init.kaiming_uniform_(self.weight_rbr_gconv_dw, a=math.sqrt(1.0))
1139
- nn.init.kaiming_uniform_(self.weight_rbr_gconv_pw, a=math.sqrt(1.0))
1140
- self.branch_counter += 1
1141
-
1142
- if out_channels == in_channels and stride == 1:
1143
- self.branch_counter += 1
1144
-
1145
- self.vector = nn.Parameter(torch.Tensor(self.branch_counter, self.out_channels))
1146
- self.bn = nn.BatchNorm2d(out_channels)
1147
-
1148
- self.fre_init()
1149
-
1150
- nn.init.constant_(self.vector[0, :], 0.25) #origin
1151
- nn.init.constant_(self.vector[1, :], 0.25) #avg
1152
- nn.init.constant_(self.vector[2, :], 0.0) #prior
1153
- nn.init.constant_(self.vector[3, :], 0.5) #1x1_kxk
1154
- nn.init.constant_(self.vector[4, :], 0.5) #dws_conv
1155
-
1156
-
1157
- def fre_init(self):
1158
- prior_tensor = torch.Tensor(self.out_channels, self.kernel_size, self.kernel_size)
1159
- half_fg = self.out_channels/2
1160
- for i in range(self.out_channels):
1161
- for h in range(3):
1162
- for w in range(3):
1163
- if i < half_fg:
1164
- prior_tensor[i, h, w] = math.cos(math.pi*(h+0.5)*(i+1)/3)
1165
- else:
1166
- prior_tensor[i, h, w] = math.cos(math.pi*(w+0.5)*(i+1-half_fg)/3)
1167
-
1168
- self.register_buffer('weight_rbr_prior', prior_tensor)
1169
-
1170
- def weight_gen(self):
1171
-
1172
- weight_rbr_origin = torch.einsum('oihw,o->oihw', self.weight_rbr_origin, self.vector[0, :])
1173
-
1174
- weight_rbr_avg = torch.einsum('oihw,o->oihw', torch.einsum('oihw,hw->oihw', self.weight_rbr_avg_conv, self.weight_rbr_avg_avg), self.vector[1, :])
1175
-
1176
- weight_rbr_pfir = torch.einsum('oihw,o->oihw', torch.einsum('oihw,ohw->oihw', self.weight_rbr_pfir_conv, self.weight_rbr_prior), self.vector[2, :])
1177
-
1178
- weight_rbr_1x1_kxk_conv1 = None
1179
- if hasattr(self, 'weight_rbr_1x1_kxk_idconv1'):
1180
- weight_rbr_1x1_kxk_conv1 = (self.weight_rbr_1x1_kxk_idconv1 + self.id_tensor).squeeze()
1181
- elif hasattr(self, 'weight_rbr_1x1_kxk_conv1'):
1182
- weight_rbr_1x1_kxk_conv1 = self.weight_rbr_1x1_kxk_conv1.squeeze()
1183
- else:
1184
- raise NotImplementedError
1185
- weight_rbr_1x1_kxk_conv2 = self.weight_rbr_1x1_kxk_conv2
1186
-
1187
- if self.groups > 1:
1188
- g = self.groups
1189
- t, ig = weight_rbr_1x1_kxk_conv1.size()
1190
- o, tg, h, w = weight_rbr_1x1_kxk_conv2.size()
1191
- weight_rbr_1x1_kxk_conv1 = weight_rbr_1x1_kxk_conv1.view(g, int(t/g), ig)
1192
- weight_rbr_1x1_kxk_conv2 = weight_rbr_1x1_kxk_conv2.view(g, int(o/g), tg, h, w)
1193
- weight_rbr_1x1_kxk = torch.einsum('gti,gothw->goihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2).view(o, ig, h, w)
1194
- else:
1195
- weight_rbr_1x1_kxk = torch.einsum('ti,othw->oihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2)
1196
-
1197
- weight_rbr_1x1_kxk = torch.einsum('oihw,o->oihw', weight_rbr_1x1_kxk, self.vector[3, :])
1198
-
1199
- weight_rbr_gconv = self.dwsc2full(self.weight_rbr_gconv_dw, self.weight_rbr_gconv_pw, self.in_channels)
1200
- weight_rbr_gconv = torch.einsum('oihw,o->oihw', weight_rbr_gconv, self.vector[4, :])
1201
-
1202
- weight = weight_rbr_origin + weight_rbr_avg + weight_rbr_1x1_kxk + weight_rbr_pfir + weight_rbr_gconv
1203
-
1204
- return weight
1205
-
1206
- def dwsc2full(self, weight_dw, weight_pw, groups):
1207
-
1208
- t, ig, h, w = weight_dw.size()
1209
- o, _, _, _ = weight_pw.size()
1210
- tg = int(t/groups)
1211
- i = int(ig*groups)
1212
- weight_dw = weight_dw.view(groups, tg, ig, h, w)
1213
- weight_pw = weight_pw.squeeze().view(o, groups, tg)
1214
-
1215
- weight_dsc = torch.einsum('gtihw,ogt->ogihw', weight_dw, weight_pw)
1216
- return weight_dsc.view(o, i, h, w)
1217
-
1218
- def forward(self, inputs):
1219
- weight = self.weight_gen()
1220
- out = F.conv2d(inputs, weight, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
1221
-
1222
- return self.nonlinear(self.bn(out))
1223
-
1224
- class RepConv_OREPA(nn.Module):
1225
-
1226
- def __init__(self, c1, c2, k=3, s=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False, nonlinear=nn.SiLU()):
1227
- super(RepConv_OREPA, self).__init__()
1228
- self.deploy = deploy
1229
- self.groups = groups
1230
- self.in_channels = c1
1231
- self.out_channels = c2
1232
-
1233
- self.padding = padding
1234
- self.dilation = dilation
1235
- self.groups = groups
1236
-
1237
- assert k == 3
1238
- assert padding == 1
1239
-
1240
- padding_11 = padding - k // 2
1241
-
1242
- if nonlinear is None:
1243
- self.nonlinearity = nn.Identity()
1244
- else:
1245
- self.nonlinearity = nonlinear
1246
-
1247
- if use_se:
1248
- self.se = SEBlock(self.out_channels, internal_neurons=self.out_channels // 16)
1249
- else:
1250
- self.se = nn.Identity()
1251
-
1252
- if deploy:
1253
- self.rbr_reparam = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=k, stride=s,
1254
- padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode)
1255
-
1256
- else:
1257
- self.rbr_identity = nn.BatchNorm2d(num_features=self.in_channels) if self.out_channels == self.in_channels and s == 1 else None
1258
- self.rbr_dense = OREPA_3x3_RepConv(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=k, stride=s, padding=padding, groups=groups, dilation=1)
1259
- self.rbr_1x1 = ConvBN(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=1, stride=s, padding=padding_11, groups=groups, dilation=1)
1260
- print('RepVGG Block, identity = ', self.rbr_identity)
1261
-
1262
-
1263
- def forward(self, inputs):
1264
- if hasattr(self, 'rbr_reparam'):
1265
- return self.nonlinearity(self.se(self.rbr_reparam(inputs)))
1266
-
1267
- if self.rbr_identity is None:
1268
- id_out = 0
1269
- else:
1270
- id_out = self.rbr_identity(inputs)
1271
-
1272
- out1 = self.rbr_dense(inputs)
1273
- out2 = self.rbr_1x1(inputs)
1274
- out3 = id_out
1275
- out = out1 + out2 + out3
1276
-
1277
- return self.nonlinearity(self.se(out))
1278
-
1279
-
1280
- # Optional. This improves the accuracy and facilitates quantization.
1281
- # 1. Cancel the original weight decay on rbr_dense.conv.weight and rbr_1x1.conv.weight.
1282
- # 2. Use like this.
1283
- # loss = criterion(....)
1284
- # for every RepVGGBlock blk:
1285
- # loss += weight_decay_coefficient * 0.5 * blk.get_cust_L2()
1286
- # optimizer.zero_grad()
1287
- # loss.backward()
1288
-
1289
- # Not used for OREPA
1290
- def get_custom_L2(self):
1291
- K3 = self.rbr_dense.weight_gen()
1292
- K1 = self.rbr_1x1.conv.weight
1293
- t3 = (self.rbr_dense.bn.weight / ((self.rbr_dense.bn.running_var + self.rbr_dense.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
1294
- t1 = (self.rbr_1x1.bn.weight / ((self.rbr_1x1.bn.running_var + self.rbr_1x1.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
1295
-
1296
- l2_loss_circle = (K3 ** 2).sum() - (K3[:, :, 1:2, 1:2] ** 2).sum() # The L2 loss of the "circle" of weights in 3x3 kernel. Use regular L2 on them.
1297
- eq_kernel = K3[:, :, 1:2, 1:2] * t3 + K1 * t1 # The equivalent resultant central point of 3x3 kernel.
1298
- l2_loss_eq_kernel = (eq_kernel ** 2 / (t3 ** 2 + t1 ** 2)).sum() # Normalize for an L2 coefficient comparable to regular L2.
1299
- return l2_loss_eq_kernel + l2_loss_circle
1300
-
1301
- def get_equivalent_kernel_bias(self):
1302
- kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
1303
- kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
1304
- kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
1305
- return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
1306
-
1307
- def _pad_1x1_to_3x3_tensor(self, kernel1x1):
1308
- if kernel1x1 is None:
1309
- return 0
1310
- else:
1311
- return torch.nn.functional.pad(kernel1x1, [1,1,1,1])
1312
-
1313
- def _fuse_bn_tensor(self, branch):
1314
- if branch is None:
1315
- return 0, 0
1316
- if not isinstance(branch, nn.BatchNorm2d):
1317
- if isinstance(branch, OREPA_3x3_RepConv):
1318
- kernel = branch.weight_gen()
1319
- elif isinstance(branch, ConvBN):
1320
- kernel = branch.conv.weight
1321
- else:
1322
- raise NotImplementedError
1323
- running_mean = branch.bn.running_mean
1324
- running_var = branch.bn.running_var
1325
- gamma = branch.bn.weight
1326
- beta = branch.bn.bias
1327
- eps = branch.bn.eps
1328
- else:
1329
- if not hasattr(self, 'id_tensor'):
1330
- input_dim = self.in_channels // self.groups
1331
- kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
1332
- for i in range(self.in_channels):
1333
- kernel_value[i, i % input_dim, 1, 1] = 1
1334
- self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
1335
- kernel = self.id_tensor
1336
- running_mean = branch.running_mean
1337
- running_var = branch.running_var
1338
- gamma = branch.weight
1339
- beta = branch.bias
1340
- eps = branch.eps
1341
- std = (running_var + eps).sqrt()
1342
- t = (gamma / std).reshape(-1, 1, 1, 1)
1343
- return kernel * t, beta - running_mean * gamma / std
1344
-
1345
- def switch_to_deploy(self):
1346
- if hasattr(self, 'rbr_reparam'):
1347
- return
1348
- print(f"RepConv_OREPA.switch_to_deploy")
1349
- kernel, bias = self.get_equivalent_kernel_bias()
1350
- self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.in_channels, out_channels=self.rbr_dense.out_channels,
1351
- kernel_size=self.rbr_dense.kernel_size, stride=self.rbr_dense.stride,
1352
- padding=self.rbr_dense.padding, dilation=self.rbr_dense.dilation, groups=self.rbr_dense.groups, bias=True)
1353
- self.rbr_reparam.weight.data = kernel
1354
- self.rbr_reparam.bias.data = bias
1355
- for para in self.parameters():
1356
- para.detach_()
1357
- self.__delattr__('rbr_dense')
1358
- self.__delattr__('rbr_1x1')
1359
- if hasattr(self, 'rbr_identity'):
1360
- self.__delattr__('rbr_identity')
1361
-
1362
- # #### end of orepa #####
1363
-
1364
-
1365
- # #### swin transformer #####
1366
-
1367
- class WindowAttention(nn.Module):
1368
-
1369
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
1370
-
1371
- super().__init__()
1372
- self.dim = dim
1373
- self.window_size = window_size # Wh, Ww
1374
- self.num_heads = num_heads
1375
- head_dim = dim // num_heads
1376
- self.scale = qk_scale or head_dim ** -0.5
1377
-
1378
- # define a parameter table of relative position bias
1379
- self.relative_position_bias_table = nn.Parameter(
1380
- torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
1381
-
1382
- # get pair-wise relative position index for each token inside the window
1383
- coords_h = torch.arange(self.window_size[0])
1384
- coords_w = torch.arange(self.window_size[1])
1385
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
1386
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
1387
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
1388
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
1389
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
1390
- relative_coords[:, :, 1] += self.window_size[1] - 1
1391
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
1392
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
1393
- self.register_buffer("relative_position_index", relative_position_index)
1394
-
1395
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
1396
- self.attn_drop = nn.Dropout(attn_drop)
1397
- self.proj = nn.Linear(dim, dim)
1398
- self.proj_drop = nn.Dropout(proj_drop)
1399
-
1400
- nn.init.normal_(self.relative_position_bias_table, std=.02)
1401
- self.softmax = nn.Softmax(dim=-1)
1402
-
1403
- def forward(self, x, mask=None):
1404
-
1405
- B_, N, C = x.shape
1406
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
1407
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
1408
-
1409
- q = q * self.scale
1410
- attn = (q @ k.transpose(-2, -1))
1411
-
1412
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
1413
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
1414
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
1415
- attn = attn + relative_position_bias.unsqueeze(0)
1416
-
1417
- if mask is not None:
1418
- nW = mask.shape[0]
1419
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
1420
- attn = attn.view(-1, self.num_heads, N, N)
1421
- attn = self.softmax(attn)
1422
- else:
1423
- attn = self.softmax(attn)
1424
-
1425
- attn = self.attn_drop(attn)
1426
-
1427
- # print(attn.dtype, v.dtype)
1428
- try:
1429
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
1430
- except:
1431
- #print(attn.dtype, v.dtype)
1432
- x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
1433
- x = self.proj(x)
1434
- x = self.proj_drop(x)
1435
- return x
1436
-
1437
- class Mlp(nn.Module):
1438
-
1439
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
1440
- super().__init__()
1441
- out_features = out_features or in_features
1442
- hidden_features = hidden_features or in_features
1443
- self.fc1 = nn.Linear(in_features, hidden_features)
1444
- self.act = act_layer()
1445
- self.fc2 = nn.Linear(hidden_features, out_features)
1446
- self.drop = nn.Dropout(drop)
1447
-
1448
- def forward(self, x):
1449
- x = self.fc1(x)
1450
- x = self.act(x)
1451
- x = self.drop(x)
1452
- x = self.fc2(x)
1453
- x = self.drop(x)
1454
- return x
1455
-
1456
- def window_partition(x, window_size):
1457
-
1458
- B, H, W, C = x.shape
1459
- assert H % window_size == 0, 'feature map h and w can not divide by window size'
1460
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
1461
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
1462
- return windows
1463
-
1464
- def window_reverse(windows, window_size, H, W):
1465
-
1466
- B = int(windows.shape[0] / (H * W / window_size / window_size))
1467
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
1468
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
1469
- return x
1470
-
1471
-
1472
- class SwinTransformerLayer(nn.Module):
1473
-
1474
- def __init__(self, dim, num_heads, window_size=8, shift_size=0,
1475
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
1476
- act_layer=nn.SiLU, norm_layer=nn.LayerNorm):
1477
- super().__init__()
1478
- self.dim = dim
1479
- self.num_heads = num_heads
1480
- self.window_size = window_size
1481
- self.shift_size = shift_size
1482
- self.mlp_ratio = mlp_ratio
1483
- # if min(self.input_resolution) <= self.window_size:
1484
- # # if window size is larger than input resolution, we don't partition windows
1485
- # self.shift_size = 0
1486
- # self.window_size = min(self.input_resolution)
1487
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
1488
-
1489
- self.norm1 = norm_layer(dim)
1490
- self.attn = WindowAttention(
1491
- dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
1492
- qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
1493
-
1494
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
1495
- self.norm2 = norm_layer(dim)
1496
- mlp_hidden_dim = int(dim * mlp_ratio)
1497
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
1498
-
1499
- def create_mask(self, H, W):
1500
- # calculate attention mask for SW-MSA
1501
- img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
1502
- h_slices = (slice(0, -self.window_size),
1503
- slice(-self.window_size, -self.shift_size),
1504
- slice(-self.shift_size, None))
1505
- w_slices = (slice(0, -self.window_size),
1506
- slice(-self.window_size, -self.shift_size),
1507
- slice(-self.shift_size, None))
1508
- cnt = 0
1509
- for h in h_slices:
1510
- for w in w_slices:
1511
- img_mask[:, h, w, :] = cnt
1512
- cnt += 1
1513
-
1514
- mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
1515
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
1516
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
1517
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
1518
-
1519
- return attn_mask
1520
-
1521
- def forward(self, x):
1522
- # reshape x[b c h w] to x[b l c]
1523
- _, _, H_, W_ = x.shape
1524
-
1525
- Padding = False
1526
- if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
1527
- Padding = True
1528
- # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
1529
- pad_r = (self.window_size - W_ % self.window_size) % self.window_size
1530
- pad_b = (self.window_size - H_ % self.window_size) % self.window_size
1531
- x = F.pad(x, (0, pad_r, 0, pad_b))
1532
-
1533
- # print('2', x.shape)
1534
- B, C, H, W = x.shape
1535
- L = H * W
1536
- x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
1537
-
1538
- # create mask from init to forward
1539
- if self.shift_size > 0:
1540
- attn_mask = self.create_mask(H, W).to(x.device)
1541
- else:
1542
- attn_mask = None
1543
-
1544
- shortcut = x
1545
- x = self.norm1(x)
1546
- x = x.view(B, H, W, C)
1547
-
1548
- # cyclic shift
1549
- if self.shift_size > 0:
1550
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
1551
- else:
1552
- shifted_x = x
1553
-
1554
- # partition windows
1555
- x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
1556
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
1557
-
1558
- # W-MSA/SW-MSA
1559
- attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
1560
-
1561
- # merge windows
1562
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
1563
- shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
1564
-
1565
- # reverse cyclic shift
1566
- if self.shift_size > 0:
1567
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
1568
- else:
1569
- x = shifted_x
1570
- x = x.view(B, H * W, C)
1571
-
1572
- # FFN
1573
- x = shortcut + self.drop_path(x)
1574
- x = x + self.drop_path(self.mlp(self.norm2(x)))
1575
-
1576
- x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
1577
-
1578
- if Padding:
1579
- x = x[:, :, :H_, :W_] # reverse padding
1580
-
1581
- return x
1582
-
1583
-
1584
- class SwinTransformerBlock(nn.Module):
1585
- def __init__(self, c1, c2, num_heads, num_layers, window_size=8):
1586
- super().__init__()
1587
- self.conv = None
1588
- if c1 != c2:
1589
- self.conv = Conv(c1, c2)
1590
-
1591
- # remove input_resolution
1592
- self.blocks = nn.Sequential(*[SwinTransformerLayer(dim=c2, num_heads=num_heads, window_size=window_size,
1593
- shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])
1594
-
1595
- def forward(self, x):
1596
- if self.conv is not None:
1597
- x = self.conv(x)
1598
- x = self.blocks(x)
1599
- return x
1600
-
1601
-
1602
- class STCSPA(nn.Module):
1603
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1604
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1605
- super(STCSPA, self).__init__()
1606
- c_ = int(c2 * e) # hidden channels
1607
- self.cv1 = Conv(c1, c_, 1, 1)
1608
- self.cv2 = Conv(c1, c_, 1, 1)
1609
- self.cv3 = Conv(2 * c_, c2, 1, 1)
1610
- num_heads = c_ // 32
1611
- self.m = SwinTransformerBlock(c_, c_, num_heads, n)
1612
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1613
-
1614
- def forward(self, x):
1615
- y1 = self.m(self.cv1(x))
1616
- y2 = self.cv2(x)
1617
- return self.cv3(torch.cat((y1, y2), dim=1))
1618
-
1619
-
1620
- class STCSPB(nn.Module):
1621
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1622
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1623
- super(STCSPB, self).__init__()
1624
- c_ = int(c2) # hidden channels
1625
- self.cv1 = Conv(c1, c_, 1, 1)
1626
- self.cv2 = Conv(c_, c_, 1, 1)
1627
- self.cv3 = Conv(2 * c_, c2, 1, 1)
1628
- num_heads = c_ // 32
1629
- self.m = SwinTransformerBlock(c_, c_, num_heads, n)
1630
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1631
-
1632
- def forward(self, x):
1633
- x1 = self.cv1(x)
1634
- y1 = self.m(x1)
1635
- y2 = self.cv2(x1)
1636
- return self.cv3(torch.cat((y1, y2), dim=1))
1637
-
1638
-
1639
- class STCSPC(nn.Module):
1640
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1641
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1642
- super(STCSPC, self).__init__()
1643
- c_ = int(c2 * e) # hidden channels
1644
- self.cv1 = Conv(c1, c_, 1, 1)
1645
- self.cv2 = Conv(c1, c_, 1, 1)
1646
- self.cv3 = Conv(c_, c_, 1, 1)
1647
- self.cv4 = Conv(2 * c_, c2, 1, 1)
1648
- num_heads = c_ // 32
1649
- self.m = SwinTransformerBlock(c_, c_, num_heads, n)
1650
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1651
-
1652
- def forward(self, x):
1653
- y1 = self.cv3(self.m(self.cv1(x)))
1654
- y2 = self.cv2(x)
1655
- return self.cv4(torch.cat((y1, y2), dim=1))
1656
-
1657
- # #### end of swin transformer #####
1658
-
1659
-
1660
- # #### swin transformer v2 #####
1661
-
1662
- class WindowAttention_v2(nn.Module):
1663
-
1664
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
1665
- pretrained_window_size=[0, 0]):
1666
-
1667
- super().__init__()
1668
- self.dim = dim
1669
- self.window_size = window_size # Wh, Ww
1670
- self.pretrained_window_size = pretrained_window_size
1671
- self.num_heads = num_heads
1672
-
1673
- self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
1674
-
1675
- # mlp to generate continuous relative position bias
1676
- self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
1677
- nn.ReLU(inplace=True),
1678
- nn.Linear(512, num_heads, bias=False))
1679
-
1680
- # get relative_coords_table
1681
- relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
1682
- relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
1683
- relative_coords_table = torch.stack(
1684
- torch.meshgrid([relative_coords_h,
1685
- relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
1686
- if pretrained_window_size[0] > 0:
1687
- relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
1688
- relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
1689
- else:
1690
- relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
1691
- relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
1692
- relative_coords_table *= 8 # normalize to -8, 8
1693
- relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
1694
- torch.abs(relative_coords_table) + 1.0) / np.log2(8)
1695
-
1696
- self.register_buffer("relative_coords_table", relative_coords_table)
1697
-
1698
- # get pair-wise relative position index for each token inside the window
1699
- coords_h = torch.arange(self.window_size[0])
1700
- coords_w = torch.arange(self.window_size[1])
1701
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
1702
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
1703
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
1704
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
1705
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
1706
- relative_coords[:, :, 1] += self.window_size[1] - 1
1707
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
1708
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
1709
- self.register_buffer("relative_position_index", relative_position_index)
1710
-
1711
- self.qkv = nn.Linear(dim, dim * 3, bias=False)
1712
- if qkv_bias:
1713
- self.q_bias = nn.Parameter(torch.zeros(dim))
1714
- self.v_bias = nn.Parameter(torch.zeros(dim))
1715
- else:
1716
- self.q_bias = None
1717
- self.v_bias = None
1718
- self.attn_drop = nn.Dropout(attn_drop)
1719
- self.proj = nn.Linear(dim, dim)
1720
- self.proj_drop = nn.Dropout(proj_drop)
1721
- self.softmax = nn.Softmax(dim=-1)
1722
-
1723
- def forward(self, x, mask=None):
1724
-
1725
- B_, N, C = x.shape
1726
- qkv_bias = None
1727
- if self.q_bias is not None:
1728
- qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
1729
- qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
1730
- qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
1731
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
1732
-
1733
- # cosine attention
1734
- attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
1735
- logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01))).exp()
1736
- attn = attn * logit_scale
1737
-
1738
- relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
1739
- relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
1740
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
1741
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
1742
- relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
1743
- attn = attn + relative_position_bias.unsqueeze(0)
1744
-
1745
- if mask is not None:
1746
- nW = mask.shape[0]
1747
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
1748
- attn = attn.view(-1, self.num_heads, N, N)
1749
- attn = self.softmax(attn)
1750
- else:
1751
- attn = self.softmax(attn)
1752
-
1753
- attn = self.attn_drop(attn)
1754
-
1755
- try:
1756
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
1757
- except:
1758
- x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
1759
-
1760
- x = self.proj(x)
1761
- x = self.proj_drop(x)
1762
- return x
1763
-
1764
- def extra_repr(self) -> str:
1765
- return f'dim={self.dim}, window_size={self.window_size}, ' \
1766
- f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
1767
-
1768
- def flops(self, N):
1769
- # calculate flops for 1 window with token length of N
1770
- flops = 0
1771
- # qkv = self.qkv(x)
1772
- flops += N * self.dim * 3 * self.dim
1773
- # attn = (q @ k.transpose(-2, -1))
1774
- flops += self.num_heads * N * (self.dim // self.num_heads) * N
1775
- # x = (attn @ v)
1776
- flops += self.num_heads * N * N * (self.dim // self.num_heads)
1777
- # x = self.proj(x)
1778
- flops += N * self.dim * self.dim
1779
- return flops
1780
-
1781
- class Mlp_v2(nn.Module):
1782
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
1783
- super().__init__()
1784
- out_features = out_features or in_features
1785
- hidden_features = hidden_features or in_features
1786
- self.fc1 = nn.Linear(in_features, hidden_features)
1787
- self.act = act_layer()
1788
- self.fc2 = nn.Linear(hidden_features, out_features)
1789
- self.drop = nn.Dropout(drop)
1790
-
1791
- def forward(self, x):
1792
- x = self.fc1(x)
1793
- x = self.act(x)
1794
- x = self.drop(x)
1795
- x = self.fc2(x)
1796
- x = self.drop(x)
1797
- return x
1798
-
1799
-
1800
- def window_partition_v2(x, window_size):
1801
-
1802
- B, H, W, C = x.shape
1803
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
1804
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
1805
- return windows
1806
-
1807
-
1808
- def window_reverse_v2(windows, window_size, H, W):
1809
-
1810
- B = int(windows.shape[0] / (H * W / window_size / window_size))
1811
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
1812
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
1813
- return x
1814
-
1815
-
1816
- class SwinTransformerLayer_v2(nn.Module):
1817
-
1818
- def __init__(self, dim, num_heads, window_size=7, shift_size=0,
1819
- mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
1820
- act_layer=nn.SiLU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
1821
- super().__init__()
1822
- self.dim = dim
1823
- #self.input_resolution = input_resolution
1824
- self.num_heads = num_heads
1825
- self.window_size = window_size
1826
- self.shift_size = shift_size
1827
- self.mlp_ratio = mlp_ratio
1828
- #if min(self.input_resolution) <= self.window_size:
1829
- # # if window size is larger than input resolution, we don't partition windows
1830
- # self.shift_size = 0
1831
- # self.window_size = min(self.input_resolution)
1832
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
1833
-
1834
- self.norm1 = norm_layer(dim)
1835
- self.attn = WindowAttention_v2(
1836
- dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
1837
- qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
1838
- pretrained_window_size=(pretrained_window_size, pretrained_window_size))
1839
-
1840
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
1841
- self.norm2 = norm_layer(dim)
1842
- mlp_hidden_dim = int(dim * mlp_ratio)
1843
- self.mlp = Mlp_v2(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
1844
-
1845
- def create_mask(self, H, W):
1846
- # calculate attention mask for SW-MSA
1847
- img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
1848
- h_slices = (slice(0, -self.window_size),
1849
- slice(-self.window_size, -self.shift_size),
1850
- slice(-self.shift_size, None))
1851
- w_slices = (slice(0, -self.window_size),
1852
- slice(-self.window_size, -self.shift_size),
1853
- slice(-self.shift_size, None))
1854
- cnt = 0
1855
- for h in h_slices:
1856
- for w in w_slices:
1857
- img_mask[:, h, w, :] = cnt
1858
- cnt += 1
1859
-
1860
- mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
1861
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
1862
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
1863
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
1864
-
1865
- return attn_mask
1866
-
1867
- def forward(self, x):
1868
- # reshape x[b c h w] to x[b l c]
1869
- _, _, H_, W_ = x.shape
1870
-
1871
- Padding = False
1872
- if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
1873
- Padding = True
1874
- # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
1875
- pad_r = (self.window_size - W_ % self.window_size) % self.window_size
1876
- pad_b = (self.window_size - H_ % self.window_size) % self.window_size
1877
- x = F.pad(x, (0, pad_r, 0, pad_b))
1878
-
1879
- # print('2', x.shape)
1880
- B, C, H, W = x.shape
1881
- L = H * W
1882
- x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
1883
-
1884
- # create mask from init to forward
1885
- if self.shift_size > 0:
1886
- attn_mask = self.create_mask(H, W).to(x.device)
1887
- else:
1888
- attn_mask = None
1889
-
1890
- shortcut = x
1891
- x = x.view(B, H, W, C)
1892
-
1893
- # cyclic shift
1894
- if self.shift_size > 0:
1895
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
1896
- else:
1897
- shifted_x = x
1898
-
1899
- # partition windows
1900
- x_windows = window_partition_v2(shifted_x, self.window_size) # nW*B, window_size, window_size, C
1901
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
1902
-
1903
- # W-MSA/SW-MSA
1904
- attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
1905
-
1906
- # merge windows
1907
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
1908
- shifted_x = window_reverse_v2(attn_windows, self.window_size, H, W) # B H' W' C
1909
-
1910
- # reverse cyclic shift
1911
- if self.shift_size > 0:
1912
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
1913
- else:
1914
- x = shifted_x
1915
- x = x.view(B, H * W, C)
1916
- x = shortcut + self.drop_path(self.norm1(x))
1917
-
1918
- # FFN
1919
- x = x + self.drop_path(self.norm2(self.mlp(x)))
1920
- x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
1921
-
1922
- if Padding:
1923
- x = x[:, :, :H_, :W_] # reverse padding
1924
-
1925
- return x
1926
-
1927
- def extra_repr(self) -> str:
1928
- return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
1929
- f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
1930
-
1931
- def flops(self):
1932
- flops = 0
1933
- H, W = self.input_resolution
1934
- # norm1
1935
- flops += self.dim * H * W
1936
- # W-MSA/SW-MSA
1937
- nW = H * W / self.window_size / self.window_size
1938
- flops += nW * self.attn.flops(self.window_size * self.window_size)
1939
- # mlp
1940
- flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
1941
- # norm2
1942
- flops += self.dim * H * W
1943
- return flops
1944
-
1945
-
1946
- class SwinTransformer2Block(nn.Module):
1947
- def __init__(self, c1, c2, num_heads, num_layers, window_size=7):
1948
- super().__init__()
1949
- self.conv = None
1950
- if c1 != c2:
1951
- self.conv = Conv(c1, c2)
1952
-
1953
- # remove input_resolution
1954
- self.blocks = nn.Sequential(*[SwinTransformerLayer_v2(dim=c2, num_heads=num_heads, window_size=window_size,
1955
- shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])
1956
-
1957
- def forward(self, x):
1958
- if self.conv is not None:
1959
- x = self.conv(x)
1960
- x = self.blocks(x)
1961
- return x
1962
-
1963
-
1964
- class ST2CSPA(nn.Module):
1965
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1966
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1967
- super(ST2CSPA, self).__init__()
1968
- c_ = int(c2 * e) # hidden channels
1969
- self.cv1 = Conv(c1, c_, 1, 1)
1970
- self.cv2 = Conv(c1, c_, 1, 1)
1971
- self.cv3 = Conv(2 * c_, c2, 1, 1)
1972
- num_heads = c_ // 32
1973
- self.m = SwinTransformer2Block(c_, c_, num_heads, n)
1974
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1975
-
1976
- def forward(self, x):
1977
- y1 = self.m(self.cv1(x))
1978
- y2 = self.cv2(x)
1979
- return self.cv3(torch.cat((y1, y2), dim=1))
1980
-
1981
-
1982
- class ST2CSPB(nn.Module):
1983
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1984
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1985
- super(ST2CSPB, self).__init__()
1986
- c_ = int(c2) # hidden channels
1987
- self.cv1 = Conv(c1, c_, 1, 1)
1988
- self.cv2 = Conv(c_, c_, 1, 1)
1989
- self.cv3 = Conv(2 * c_, c2, 1, 1)
1990
- num_heads = c_ // 32
1991
- self.m = SwinTransformer2Block(c_, c_, num_heads, n)
1992
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1993
-
1994
- def forward(self, x):
1995
- x1 = self.cv1(x)
1996
- y1 = self.m(x1)
1997
- y2 = self.cv2(x1)
1998
- return self.cv3(torch.cat((y1, y2), dim=1))
1999
-
2000
-
2001
- class ST2CSPC(nn.Module):
2002
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
2003
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
2004
- super(ST2CSPC, self).__init__()
2005
- c_ = int(c2 * e) # hidden channels
2006
- self.cv1 = Conv(c1, c_, 1, 1)
2007
- self.cv2 = Conv(c1, c_, 1, 1)
2008
- self.cv3 = Conv(c_, c_, 1, 1)
2009
- self.cv4 = Conv(2 * c_, c2, 1, 1)
2010
- num_heads = c_ // 32
2011
- self.m = SwinTransformer2Block(c_, c_, num_heads, n)
2012
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
2013
-
2014
- def forward(self, x):
2015
- y1 = self.cv3(self.m(self.cv1(x)))
2016
- y2 = self.cv2(x)
2017
- return self.cv4(torch.cat((y1, y2), dim=1))
2018
-
2019
- # #### end of swin transformer v2 #####
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cedula/models/experimental.py DELETED
@@ -1,272 +0,0 @@
1
- import numpy as np
2
- import random
3
- import torch
4
- import torch.nn as nn
5
-
6
- from models.common import Conv, DWConv
7
- from utils.google_utils import attempt_download
8
-
9
-
10
- class CrossConv(nn.Module):
11
- # Cross Convolution Downsample
12
- def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
13
- # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
14
- super(CrossConv, self).__init__()
15
- c_ = int(c2 * e) # hidden channels
16
- self.cv1 = Conv(c1, c_, (1, k), (1, s))
17
- self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
18
- self.add = shortcut and c1 == c2
19
-
20
- def forward(self, x):
21
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
22
-
23
-
24
- class Sum(nn.Module):
25
- # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
26
- def __init__(self, n, weight=False): # n: number of inputs
27
- super(Sum, self).__init__()
28
- self.weight = weight # apply weights boolean
29
- self.iter = range(n - 1) # iter object
30
- if weight:
31
- self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
32
-
33
- def forward(self, x):
34
- y = x[0] # no weight
35
- if self.weight:
36
- w = torch.sigmoid(self.w) * 2
37
- for i in self.iter:
38
- y = y + x[i + 1] * w[i]
39
- else:
40
- for i in self.iter:
41
- y = y + x[i + 1]
42
- return y
43
-
44
-
45
- class MixConv2d(nn.Module):
46
- # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
47
- def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
48
- super(MixConv2d, self).__init__()
49
- groups = len(k)
50
- if equal_ch: # equal c_ per group
51
- i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
52
- c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
53
- else: # equal weight.numel() per group
54
- b = [c2] + [0] * groups
55
- a = np.eye(groups + 1, groups, k=-1)
56
- a -= np.roll(a, 1, axis=1)
57
- a *= np.array(k) ** 2
58
- a[0] = 1
59
- c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
60
-
61
- self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
62
- self.bn = nn.BatchNorm2d(c2)
63
- self.act = nn.LeakyReLU(0.1, inplace=True)
64
-
65
- def forward(self, x):
66
- return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
67
-
68
-
69
- class Ensemble(nn.ModuleList):
70
- # Ensemble of models
71
- def __init__(self):
72
- super(Ensemble, self).__init__()
73
-
74
- def forward(self, x, augment=False):
75
- y = []
76
- for module in self:
77
- y.append(module(x, augment)[0])
78
- # y = torch.stack(y).max(0)[0] # max ensemble
79
- # y = torch.stack(y).mean(0) # mean ensemble
80
- y = torch.cat(y, 1) # nms ensemble
81
- return y, None # inference, train output
82
-
83
-
84
-
85
-
86
-
87
- class ORT_NMS(torch.autograd.Function):
88
- '''ONNX-Runtime NMS operation'''
89
- @staticmethod
90
- def forward(ctx,
91
- boxes,
92
- scores,
93
- max_output_boxes_per_class=torch.tensor([100]),
94
- iou_threshold=torch.tensor([0.45]),
95
- score_threshold=torch.tensor([0.25])):
96
- device = boxes.device
97
- batch = scores.shape[0]
98
- num_det = random.randint(0, 100)
99
- batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device)
100
- idxs = torch.arange(100, 100 + num_det).to(device)
101
- zeros = torch.zeros((num_det,), dtype=torch.int64).to(device)
102
- selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous()
103
- selected_indices = selected_indices.to(torch.int64)
104
- return selected_indices
105
-
106
- @staticmethod
107
- def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold):
108
- return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold)
109
-
110
-
111
- class TRT_NMS(torch.autograd.Function):
112
- '''TensorRT NMS operation'''
113
- @staticmethod
114
- def forward(
115
- ctx,
116
- boxes,
117
- scores,
118
- background_class=-1,
119
- box_coding=1,
120
- iou_threshold=0.45,
121
- max_output_boxes=100,
122
- plugin_version="1",
123
- score_activation=0,
124
- score_threshold=0.25,
125
- ):
126
- batch_size, num_boxes, num_classes = scores.shape
127
- num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
128
- det_boxes = torch.randn(batch_size, max_output_boxes, 4)
129
- det_scores = torch.randn(batch_size, max_output_boxes)
130
- det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
131
- return num_det, det_boxes, det_scores, det_classes
132
-
133
- @staticmethod
134
- def symbolic(g,
135
- boxes,
136
- scores,
137
- background_class=-1,
138
- box_coding=1,
139
- iou_threshold=0.45,
140
- max_output_boxes=100,
141
- plugin_version="1",
142
- score_activation=0,
143
- score_threshold=0.25):
144
- out = g.op("TRT::EfficientNMS_TRT",
145
- boxes,
146
- scores,
147
- background_class_i=background_class,
148
- box_coding_i=box_coding,
149
- iou_threshold_f=iou_threshold,
150
- max_output_boxes_i=max_output_boxes,
151
- plugin_version_s=plugin_version,
152
- score_activation_i=score_activation,
153
- score_threshold_f=score_threshold,
154
- outputs=4)
155
- nums, boxes, scores, classes = out
156
- return nums, boxes, scores, classes
157
-
158
-
159
- class ONNX_ORT(nn.Module):
160
- '''onnx module with ONNX-Runtime NMS operation.'''
161
- def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None, n_classes=80):
162
- super().__init__()
163
- self.device = device if device else torch.device("cpu")
164
- self.max_obj = torch.tensor([max_obj]).to(device)
165
- self.iou_threshold = torch.tensor([iou_thres]).to(device)
166
- self.score_threshold = torch.tensor([score_thres]).to(device)
167
- self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic
168
- self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
169
- dtype=torch.float32,
170
- device=self.device)
171
- self.n_classes=n_classes
172
-
173
- def forward(self, x):
174
- boxes = x[:, :, :4]
175
- conf = x[:, :, 4:5]
176
- scores = x[:, :, 5:]
177
- if self.n_classes == 1:
178
- scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
179
- # so there is no need to multiplicate.
180
- else:
181
- scores *= conf # conf = obj_conf * cls_conf
182
- boxes @= self.convert_matrix
183
- max_score, category_id = scores.max(2, keepdim=True)
184
- dis = category_id.float() * self.max_wh
185
- nmsbox = boxes + dis
186
- max_score_tp = max_score.transpose(1, 2).contiguous()
187
- selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold)
188
- X, Y = selected_indices[:, 0], selected_indices[:, 2]
189
- selected_boxes = boxes[X, Y, :]
190
- selected_categories = category_id[X, Y, :].float()
191
- selected_scores = max_score[X, Y, :]
192
- X = X.unsqueeze(1).float()
193
- return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1)
194
-
195
- class ONNX_TRT(nn.Module):
196
- '''onnx module with TensorRT NMS operation.'''
197
- def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None, n_classes=80):
198
- super().__init__()
199
- assert max_wh is None
200
- self.device = device if device else torch.device('cpu')
201
- self.background_class = -1,
202
- self.box_coding = 1,
203
- self.iou_threshold = iou_thres
204
- self.max_obj = max_obj
205
- self.plugin_version = '1'
206
- self.score_activation = 0
207
- self.score_threshold = score_thres
208
- self.n_classes=n_classes
209
-
210
- def forward(self, x):
211
- boxes = x[:, :, :4]
212
- conf = x[:, :, 4:5]
213
- scores = x[:, :, 5:]
214
- if self.n_classes == 1:
215
- scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
216
- # so there is no need to multiplicate.
217
- else:
218
- scores *= conf # conf = obj_conf * cls_conf
219
- num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(boxes, scores, self.background_class, self.box_coding,
220
- self.iou_threshold, self.max_obj,
221
- self.plugin_version, self.score_activation,
222
- self.score_threshold)
223
- return num_det, det_boxes, det_scores, det_classes
224
-
225
-
226
- class End2End(nn.Module):
227
- '''export onnx or tensorrt model with NMS operation.'''
228
- def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None, n_classes=80):
229
- super().__init__()
230
- device = device if device else torch.device('cpu')
231
- assert isinstance(max_wh,(int)) or max_wh is None
232
- self.model = model.to(device)
233
- self.model.model[-1].end2end = True
234
- self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT
235
- self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device, n_classes)
236
- self.end2end.eval()
237
-
238
- def forward(self, x):
239
- x = self.model(x)
240
- x = self.end2end(x)
241
- return x
242
-
243
-
244
-
245
-
246
-
247
- def attempt_load(weights, map_location=None):
248
- # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
249
- model = Ensemble()
250
- for w in weights if isinstance(weights, list) else [weights]:
251
- attempt_download(w)
252
- ckpt = torch.load(w, map_location=map_location) # load
253
- model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
254
-
255
- # Compatibility updates
256
- for m in model.modules():
257
- if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
258
- m.inplace = True # pytorch 1.7.0 compatibility
259
- elif type(m) is nn.Upsample:
260
- m.recompute_scale_factor = None # torch 1.11.0 compatibility
261
- elif type(m) is Conv:
262
- m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
263
-
264
- if len(model) == 1:
265
- return model[-1] # return model
266
- else:
267
- print('Ensemble created with %s\n' % weights)
268
- for k in ['names', 'stride']:
269
- setattr(model, k, getattr(model[-1], k))
270
- return model # return ensemble
271
-
272
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cedula/models/yolo.py DELETED
@@ -1,843 +0,0 @@
1
- import argparse
2
- import logging
3
- import sys
4
- from copy import deepcopy
5
-
6
- sys.path.append('./') # to run '$ python *.py' files in subdirectories
7
- logger = logging.getLogger(__name__)
8
- import torch
9
- from models.common import *
10
- from models.experimental import *
11
- from utils.autoanchor import check_anchor_order
12
- from utils.general import make_divisible, check_file, set_logging
13
- from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
14
- select_device, copy_attr
15
- from utils.loss import SigmoidBin
16
-
17
- try:
18
- import thop # for FLOPS computation
19
- except ImportError:
20
- thop = None
21
-
22
-
23
- class Detect(nn.Module):
24
- stride = None # strides computed during build
25
- export = False # onnx export
26
- end2end = False
27
- include_nms = False
28
- concat = False
29
-
30
- def __init__(self, nc=80, anchors=(), ch=()): # detection layer
31
- super(Detect, self).__init__()
32
- self.nc = nc # number of classes
33
- self.no = nc + 5 # number of outputs per anchor
34
- self.nl = len(anchors) # number of detection layers
35
- self.na = len(anchors[0]) // 2 # number of anchors
36
- self.grid = [torch.zeros(1)] * self.nl # init grid
37
- a = torch.tensor(anchors).float().view(self.nl, -1, 2)
38
- self.register_buffer('anchors', a) # shape(nl,na,2)
39
- self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
40
- self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
41
-
42
- def forward(self, x):
43
- # x = x.copy() # for profiling
44
- z = [] # inference output
45
- self.training |= self.export
46
- for i in range(self.nl):
47
- x[i] = self.m[i](x[i]) # conv
48
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
49
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
50
-
51
- if not self.training: # inference
52
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
53
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
54
- y = x[i].sigmoid()
55
- if not torch.onnx.is_in_onnx_export():
56
- y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
57
- y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
58
- else:
59
- xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
60
- xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5)) # new xy
61
- wh = wh ** 2 * (4 * self.anchor_grid[i].data) # new wh
62
- y = torch.cat((xy, wh, conf), 4)
63
- z.append(y.view(bs, -1, self.no))
64
-
65
- if self.training:
66
- out = x
67
- elif self.end2end:
68
- out = torch.cat(z, 1)
69
- elif self.include_nms:
70
- z = self.convert(z)
71
- out = (z, )
72
- elif self.concat:
73
- out = torch.cat(z, 1)
74
- else:
75
- out = (torch.cat(z, 1), x)
76
-
77
- return out
78
-
79
- @staticmethod
80
- def _make_grid(nx=20, ny=20):
81
- yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
82
- return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
83
-
84
- def convert(self, z):
85
- z = torch.cat(z, 1)
86
- box = z[:, :, :4]
87
- conf = z[:, :, 4:5]
88
- score = z[:, :, 5:]
89
- score *= conf
90
- convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
91
- dtype=torch.float32,
92
- device=z.device)
93
- box @= convert_matrix
94
- return (box, score)
95
-
96
-
97
- class IDetect(nn.Module):
98
- stride = None # strides computed during build
99
- export = False # onnx export
100
- end2end = False
101
- include_nms = False
102
- concat = False
103
-
104
- def __init__(self, nc=80, anchors=(), ch=()): # detection layer
105
- super(IDetect, self).__init__()
106
- self.nc = nc # number of classes
107
- self.no = nc + 5 # number of outputs per anchor
108
- self.nl = len(anchors) # number of detection layers
109
- self.na = len(anchors[0]) // 2 # number of anchors
110
- self.grid = [torch.zeros(1)] * self.nl # init grid
111
- a = torch.tensor(anchors).float().view(self.nl, -1, 2)
112
- self.register_buffer('anchors', a) # shape(nl,na,2)
113
- self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
114
- self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
115
-
116
- self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
117
- self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
118
-
119
- def forward(self, x):
120
- # x = x.copy() # for profiling
121
- z = [] # inference output
122
- self.training |= self.export
123
- for i in range(self.nl):
124
- x[i] = self.m[i](self.ia[i](x[i])) # conv
125
- x[i] = self.im[i](x[i])
126
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
127
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
128
-
129
- if not self.training: # inference
130
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
131
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
132
-
133
- y = x[i].sigmoid()
134
- y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
135
- y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
136
- z.append(y.view(bs, -1, self.no))
137
-
138
- return x if self.training else (torch.cat(z, 1), x)
139
-
140
- def fuseforward(self, x):
141
- # x = x.copy() # for profiling
142
- z = [] # inference output
143
- self.training |= self.export
144
- for i in range(self.nl):
145
- x[i] = self.m[i](x[i]) # conv
146
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
147
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
148
-
149
- if not self.training: # inference
150
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
151
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
152
-
153
- y = x[i].sigmoid()
154
- if not torch.onnx.is_in_onnx_export():
155
- y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
156
- y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
157
- else:
158
- xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
159
- xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5)) # new xy
160
- wh = wh ** 2 * (4 * self.anchor_grid[i].data) # new wh
161
- y = torch.cat((xy, wh, conf), 4)
162
- z.append(y.view(bs, -1, self.no))
163
-
164
- if self.training:
165
- out = x
166
- elif self.end2end:
167
- out = torch.cat(z, 1)
168
- elif self.include_nms:
169
- z = self.convert(z)
170
- out = (z, )
171
- elif self.concat:
172
- out = torch.cat(z, 1)
173
- else:
174
- out = (torch.cat(z, 1), x)
175
-
176
- return out
177
-
178
- def fuse(self):
179
- print("IDetect.fuse")
180
- # fuse ImplicitA and Convolution
181
- for i in range(len(self.m)):
182
- c1,c2,_,_ = self.m[i].weight.shape
183
- c1_,c2_, _,_ = self.ia[i].implicit.shape
184
- self.m[i].bias += torch.matmul(self.m[i].weight.reshape(c1,c2),self.ia[i].implicit.reshape(c2_,c1_)).squeeze(1)
185
-
186
- # fuse ImplicitM and Convolution
187
- for i in range(len(self.m)):
188
- c1,c2, _,_ = self.im[i].implicit.shape
189
- self.m[i].bias *= self.im[i].implicit.reshape(c2)
190
- self.m[i].weight *= self.im[i].implicit.transpose(0,1)
191
-
192
- @staticmethod
193
- def _make_grid(nx=20, ny=20):
194
- yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
195
- return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
196
-
197
- def convert(self, z):
198
- z = torch.cat(z, 1)
199
- box = z[:, :, :4]
200
- conf = z[:, :, 4:5]
201
- score = z[:, :, 5:]
202
- score *= conf
203
- convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
204
- dtype=torch.float32,
205
- device=z.device)
206
- box @= convert_matrix
207
- return (box, score)
208
-
209
-
210
- class IKeypoint(nn.Module):
211
- stride = None # strides computed during build
212
- export = False # onnx export
213
-
214
- def __init__(self, nc=80, anchors=(), nkpt=17, ch=(), inplace=True, dw_conv_kpt=False): # detection layer
215
- super(IKeypoint, self).__init__()
216
- self.nc = nc # number of classes
217
- self.nkpt = nkpt
218
- self.dw_conv_kpt = dw_conv_kpt
219
- self.no_det=(nc + 5) # number of outputs per anchor for box and class
220
- self.no_kpt = 3*self.nkpt ## number of outputs per anchor for keypoints
221
- self.no = self.no_det+self.no_kpt
222
- self.nl = len(anchors) # number of detection layers
223
- self.na = len(anchors[0]) // 2 # number of anchors
224
- self.grid = [torch.zeros(1)] * self.nl # init grid
225
- self.flip_test = False
226
- a = torch.tensor(anchors).float().view(self.nl, -1, 2)
227
- self.register_buffer('anchors', a) # shape(nl,na,2)
228
- self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
229
- self.m = nn.ModuleList(nn.Conv2d(x, self.no_det * self.na, 1) for x in ch) # output conv
230
-
231
- self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
232
- self.im = nn.ModuleList(ImplicitM(self.no_det * self.na) for _ in ch)
233
-
234
- if self.nkpt is not None:
235
- if self.dw_conv_kpt: #keypoint head is slightly more complex
236
- self.m_kpt = nn.ModuleList(
237
- nn.Sequential(DWConv(x, x, k=3), Conv(x,x),
238
- DWConv(x, x, k=3), Conv(x, x),
239
- DWConv(x, x, k=3), Conv(x,x),
240
- DWConv(x, x, k=3), Conv(x, x),
241
- DWConv(x, x, k=3), Conv(x, x),
242
- DWConv(x, x, k=3), nn.Conv2d(x, self.no_kpt * self.na, 1)) for x in ch)
243
- else: #keypoint head is a single convolution
244
- self.m_kpt = nn.ModuleList(nn.Conv2d(x, self.no_kpt * self.na, 1) for x in ch)
245
-
246
- self.inplace = inplace # use in-place ops (e.g. slice assignment)
247
-
248
- def forward(self, x):
249
- # x = x.copy() # for profiling
250
- z = [] # inference output
251
- self.training |= self.export
252
- for i in range(self.nl):
253
- if self.nkpt is None or self.nkpt==0:
254
- x[i] = self.im[i](self.m[i](self.ia[i](x[i]))) # conv
255
- else :
256
- x[i] = torch.cat((self.im[i](self.m[i](self.ia[i](x[i]))), self.m_kpt[i](x[i])), axis=1)
257
-
258
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
259
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
260
- x_det = x[i][..., :6]
261
- x_kpt = x[i][..., 6:]
262
-
263
- if not self.training: # inference
264
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
265
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
266
- kpt_grid_x = self.grid[i][..., 0:1]
267
- kpt_grid_y = self.grid[i][..., 1:2]
268
-
269
- if self.nkpt == 0:
270
- y = x[i].sigmoid()
271
- else:
272
- y = x_det.sigmoid()
273
-
274
- if self.inplace:
275
- xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
276
- wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh
277
- if self.nkpt != 0:
278
- x_kpt[..., 0::3] = (x_kpt[..., ::3] * 2. - 0.5 + kpt_grid_x.repeat(1,1,1,1,17)) * self.stride[i] # xy
279
- x_kpt[..., 1::3] = (x_kpt[..., 1::3] * 2. - 0.5 + kpt_grid_y.repeat(1,1,1,1,17)) * self.stride[i] # xy
280
- #x_kpt[..., 0::3] = (x_kpt[..., ::3] + kpt_grid_x.repeat(1,1,1,1,17)) * self.stride[i] # xy
281
- #x_kpt[..., 1::3] = (x_kpt[..., 1::3] + kpt_grid_y.repeat(1,1,1,1,17)) * self.stride[i] # xy
282
- #print('=============')
283
- #print(self.anchor_grid[i].shape)
284
- #print(self.anchor_grid[i][...,0].unsqueeze(4).shape)
285
- #print(x_kpt[..., 0::3].shape)
286
- #x_kpt[..., 0::3] = ((x_kpt[..., 0::3].tanh() * 2.) ** 3 * self.anchor_grid[i][...,0].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_x.repeat(1,1,1,1,17) * self.stride[i] # xy
287
- #x_kpt[..., 1::3] = ((x_kpt[..., 1::3].tanh() * 2.) ** 3 * self.anchor_grid[i][...,1].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_y.repeat(1,1,1,1,17) * self.stride[i] # xy
288
- #x_kpt[..., 0::3] = (((x_kpt[..., 0::3].sigmoid() * 4.) ** 2 - 8.) * self.anchor_grid[i][...,0].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_x.repeat(1,1,1,1,17) * self.stride[i] # xy
289
- #x_kpt[..., 1::3] = (((x_kpt[..., 1::3].sigmoid() * 4.) ** 2 - 8.) * self.anchor_grid[i][...,1].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_y.repeat(1,1,1,1,17) * self.stride[i] # xy
290
- x_kpt[..., 2::3] = x_kpt[..., 2::3].sigmoid()
291
-
292
- y = torch.cat((xy, wh, y[..., 4:], x_kpt), dim = -1)
293
-
294
- else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
295
- xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
296
- wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
297
- if self.nkpt != 0:
298
- y[..., 6:] = (y[..., 6:] * 2. - 0.5 + self.grid[i].repeat((1,1,1,1,self.nkpt))) * self.stride[i] # xy
299
- y = torch.cat((xy, wh, y[..., 4:]), -1)
300
-
301
- z.append(y.view(bs, -1, self.no))
302
-
303
- return x if self.training else (torch.cat(z, 1), x)
304
-
305
- @staticmethod
306
- def _make_grid(nx=20, ny=20):
307
- yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
308
- return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
309
-
310
-
311
- class IAuxDetect(nn.Module):
312
- stride = None # strides computed during build
313
- export = False # onnx export
314
- end2end = False
315
- include_nms = False
316
- concat = False
317
-
318
- def __init__(self, nc=80, anchors=(), ch=()): # detection layer
319
- super(IAuxDetect, self).__init__()
320
- self.nc = nc # number of classes
321
- self.no = nc + 5 # number of outputs per anchor
322
- self.nl = len(anchors) # number of detection layers
323
- self.na = len(anchors[0]) // 2 # number of anchors
324
- self.grid = [torch.zeros(1)] * self.nl # init grid
325
- a = torch.tensor(anchors).float().view(self.nl, -1, 2)
326
- self.register_buffer('anchors', a) # shape(nl,na,2)
327
- self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
328
- self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[:self.nl]) # output conv
329
- self.m2 = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[self.nl:]) # output conv
330
-
331
- self.ia = nn.ModuleList(ImplicitA(x) for x in ch[:self.nl])
332
- self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch[:self.nl])
333
-
334
- def forward(self, x):
335
- # x = x.copy() # for profiling
336
- z = [] # inference output
337
- self.training |= self.export
338
- for i in range(self.nl):
339
- x[i] = self.m[i](self.ia[i](x[i])) # conv
340
- x[i] = self.im[i](x[i])
341
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
342
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
343
-
344
- x[i+self.nl] = self.m2[i](x[i+self.nl])
345
- x[i+self.nl] = x[i+self.nl].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
346
-
347
- if not self.training: # inference
348
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
349
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
350
-
351
- y = x[i].sigmoid()
352
- if not torch.onnx.is_in_onnx_export():
353
- y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
354
- y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
355
- else:
356
- xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
357
- xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5)) # new xy
358
- wh = wh ** 2 * (4 * self.anchor_grid[i].data) # new wh
359
- y = torch.cat((xy, wh, conf), 4)
360
- z.append(y.view(bs, -1, self.no))
361
-
362
- return x if self.training else (torch.cat(z, 1), x[:self.nl])
363
-
364
- def fuseforward(self, x):
365
- # x = x.copy() # for profiling
366
- z = [] # inference output
367
- self.training |= self.export
368
- for i in range(self.nl):
369
- x[i] = self.m[i](x[i]) # conv
370
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
371
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
372
-
373
- if not self.training: # inference
374
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
375
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
376
-
377
- y = x[i].sigmoid()
378
- if not torch.onnx.is_in_onnx_export():
379
- y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
380
- y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
381
- else:
382
- xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
383
- wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].data # wh
384
- y = torch.cat((xy, wh, y[..., 4:]), -1)
385
- z.append(y.view(bs, -1, self.no))
386
-
387
- if self.training:
388
- out = x
389
- elif self.end2end:
390
- out = torch.cat(z, 1)
391
- elif self.include_nms:
392
- z = self.convert(z)
393
- out = (z, )
394
- elif self.concat:
395
- out = torch.cat(z, 1)
396
- else:
397
- out = (torch.cat(z, 1), x)
398
-
399
- return out
400
-
401
- def fuse(self):
402
- print("IAuxDetect.fuse")
403
- # fuse ImplicitA and Convolution
404
- for i in range(len(self.m)):
405
- c1,c2,_,_ = self.m[i].weight.shape
406
- c1_,c2_, _,_ = self.ia[i].implicit.shape
407
- self.m[i].bias += torch.matmul(self.m[i].weight.reshape(c1,c2),self.ia[i].implicit.reshape(c2_,c1_)).squeeze(1)
408
-
409
- # fuse ImplicitM and Convolution
410
- for i in range(len(self.m)):
411
- c1,c2, _,_ = self.im[i].implicit.shape
412
- self.m[i].bias *= self.im[i].implicit.reshape(c2)
413
- self.m[i].weight *= self.im[i].implicit.transpose(0,1)
414
-
415
- @staticmethod
416
- def _make_grid(nx=20, ny=20):
417
- yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
418
- return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
419
-
420
- def convert(self, z):
421
- z = torch.cat(z, 1)
422
- box = z[:, :, :4]
423
- conf = z[:, :, 4:5]
424
- score = z[:, :, 5:]
425
- score *= conf
426
- convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
427
- dtype=torch.float32,
428
- device=z.device)
429
- box @= convert_matrix
430
- return (box, score)
431
-
432
-
433
- class IBin(nn.Module):
434
- stride = None # strides computed during build
435
- export = False # onnx export
436
-
437
- def __init__(self, nc=80, anchors=(), ch=(), bin_count=21): # detection layer
438
- super(IBin, self).__init__()
439
- self.nc = nc # number of classes
440
- self.bin_count = bin_count
441
-
442
- self.w_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0)
443
- self.h_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0)
444
- # classes, x,y,obj
445
- self.no = nc + 3 + \
446
- self.w_bin_sigmoid.get_length() + self.h_bin_sigmoid.get_length() # w-bce, h-bce
447
- # + self.x_bin_sigmoid.get_length() + self.y_bin_sigmoid.get_length()
448
-
449
- self.nl = len(anchors) # number of detection layers
450
- self.na = len(anchors[0]) // 2 # number of anchors
451
- self.grid = [torch.zeros(1)] * self.nl # init grid
452
- a = torch.tensor(anchors).float().view(self.nl, -1, 2)
453
- self.register_buffer('anchors', a) # shape(nl,na,2)
454
- self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
455
- self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
456
-
457
- self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
458
- self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
459
-
460
- def forward(self, x):
461
-
462
- #self.x_bin_sigmoid.use_fw_regression = True
463
- #self.y_bin_sigmoid.use_fw_regression = True
464
- self.w_bin_sigmoid.use_fw_regression = True
465
- self.h_bin_sigmoid.use_fw_regression = True
466
-
467
- # x = x.copy() # for profiling
468
- z = [] # inference output
469
- self.training |= self.export
470
- for i in range(self.nl):
471
- x[i] = self.m[i](self.ia[i](x[i])) # conv
472
- x[i] = self.im[i](x[i])
473
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
474
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
475
-
476
- if not self.training: # inference
477
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
478
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
479
-
480
- y = x[i].sigmoid()
481
- y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
482
- #y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
483
-
484
-
485
- #px = (self.x_bin_sigmoid.forward(y[..., 0:12]) + self.grid[i][..., 0]) * self.stride[i]
486
- #py = (self.y_bin_sigmoid.forward(y[..., 12:24]) + self.grid[i][..., 1]) * self.stride[i]
487
-
488
- pw = self.w_bin_sigmoid.forward(y[..., 2:24]) * self.anchor_grid[i][..., 0]
489
- ph = self.h_bin_sigmoid.forward(y[..., 24:46]) * self.anchor_grid[i][..., 1]
490
-
491
- #y[..., 0] = px
492
- #y[..., 1] = py
493
- y[..., 2] = pw
494
- y[..., 3] = ph
495
-
496
- y = torch.cat((y[..., 0:4], y[..., 46:]), dim=-1)
497
-
498
- z.append(y.view(bs, -1, y.shape[-1]))
499
-
500
- return x if self.training else (torch.cat(z, 1), x)
501
-
502
- @staticmethod
503
- def _make_grid(nx=20, ny=20):
504
- yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
505
- return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
506
-
507
-
508
- class Model(nn.Module):
509
- def __init__(self, cfg='yolor-csp-c.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
510
- super(Model, self).__init__()
511
- self.traced = False
512
- if isinstance(cfg, dict):
513
- self.yaml = cfg # model dict
514
- else: # is *.yaml
515
- import yaml # for torch hub
516
- self.yaml_file = Path(cfg).name
517
- with open(cfg) as f:
518
- self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict
519
-
520
- # Define model
521
- ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
522
- if nc and nc != self.yaml['nc']:
523
- logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
524
- self.yaml['nc'] = nc # override yaml value
525
- if anchors:
526
- logger.info(f'Overriding model.yaml anchors with anchors={anchors}')
527
- self.yaml['anchors'] = round(anchors) # override yaml value
528
- self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
529
- self.names = [str(i) for i in range(self.yaml['nc'])] # default names
530
- # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
531
-
532
- # Build strides, anchors
533
- m = self.model[-1] # Detect()
534
- if isinstance(m, Detect):
535
- s = 256 # 2x min stride
536
- m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
537
- check_anchor_order(m)
538
- m.anchors /= m.stride.view(-1, 1, 1)
539
- self.stride = m.stride
540
- self._initialize_biases() # only run once
541
- # print('Strides: %s' % m.stride.tolist())
542
- if isinstance(m, IDetect):
543
- s = 256 # 2x min stride
544
- m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
545
- check_anchor_order(m)
546
- m.anchors /= m.stride.view(-1, 1, 1)
547
- self.stride = m.stride
548
- self._initialize_biases() # only run once
549
- # print('Strides: %s' % m.stride.tolist())
550
- if isinstance(m, IAuxDetect):
551
- s = 256 # 2x min stride
552
- m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))[:4]]) # forward
553
- #print(m.stride)
554
- check_anchor_order(m)
555
- m.anchors /= m.stride.view(-1, 1, 1)
556
- self.stride = m.stride
557
- self._initialize_aux_biases() # only run once
558
- # print('Strides: %s' % m.stride.tolist())
559
- if isinstance(m, IBin):
560
- s = 256 # 2x min stride
561
- m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
562
- check_anchor_order(m)
563
- m.anchors /= m.stride.view(-1, 1, 1)
564
- self.stride = m.stride
565
- self._initialize_biases_bin() # only run once
566
- # print('Strides: %s' % m.stride.tolist())
567
- if isinstance(m, IKeypoint):
568
- s = 256 # 2x min stride
569
- m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
570
- check_anchor_order(m)
571
- m.anchors /= m.stride.view(-1, 1, 1)
572
- self.stride = m.stride
573
- self._initialize_biases_kpt() # only run once
574
- # print('Strides: %s' % m.stride.tolist())
575
-
576
- # Init weights, biases
577
- initialize_weights(self)
578
- self.info()
579
- logger.info('')
580
-
581
- def forward(self, x, augment=False, profile=False):
582
- if augment:
583
- img_size = x.shape[-2:] # height, width
584
- s = [1, 0.83, 0.67] # scales
585
- f = [None, 3, None] # flips (2-ud, 3-lr)
586
- y = [] # outputs
587
- for si, fi in zip(s, f):
588
- xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
589
- yi = self.forward_once(xi)[0] # forward
590
- # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
591
- yi[..., :4] /= si # de-scale
592
- if fi == 2:
593
- yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
594
- elif fi == 3:
595
- yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
596
- y.append(yi)
597
- return torch.cat(y, 1), None # augmented inference, train
598
- else:
599
- return self.forward_once(x, profile) # single-scale inference, train
600
-
601
- def forward_once(self, x, profile=False):
602
- y, dt = [], [] # outputs
603
- for m in self.model:
604
- if m.f != -1: # if not from previous layer
605
- x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
606
-
607
- if not hasattr(self, 'traced'):
608
- self.traced=False
609
-
610
- if self.traced:
611
- if isinstance(m, Detect) or isinstance(m, IDetect) or isinstance(m, IAuxDetect) or isinstance(m, IKeypoint):
612
- break
613
-
614
- if profile:
615
- c = isinstance(m, (Detect, IDetect, IAuxDetect, IBin))
616
- o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
617
- for _ in range(10):
618
- m(x.copy() if c else x)
619
- t = time_synchronized()
620
- for _ in range(10):
621
- m(x.copy() if c else x)
622
- dt.append((time_synchronized() - t) * 100)
623
- print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
624
-
625
- x = m(x) # run
626
-
627
- y.append(x if m.i in self.save else None) # save output
628
-
629
- if profile:
630
- print('%.1fms total' % sum(dt))
631
- return x
632
-
633
- def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
634
- # https://arxiv.org/abs/1708.02002 section 3.3
635
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
636
- m = self.model[-1] # Detect() module
637
- for mi, s in zip(m.m, m.stride): # from
638
- b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
639
- b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
640
- b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
641
- mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
642
-
643
- def _initialize_aux_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
644
- # https://arxiv.org/abs/1708.02002 section 3.3
645
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
646
- m = self.model[-1] # Detect() module
647
- for mi, mi2, s in zip(m.m, m.m2, m.stride): # from
648
- b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
649
- b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
650
- b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
651
- mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
652
- b2 = mi2.bias.view(m.na, -1) # conv.bias(255) to (3,85)
653
- b2.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
654
- b2.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
655
- mi2.bias = torch.nn.Parameter(b2.view(-1), requires_grad=True)
656
-
657
- def _initialize_biases_bin(self, cf=None): # initialize biases into Detect(), cf is class frequency
658
- # https://arxiv.org/abs/1708.02002 section 3.3
659
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
660
- m = self.model[-1] # Bin() module
661
- bc = m.bin_count
662
- for mi, s in zip(m.m, m.stride): # from
663
- b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
664
- old = b[:, (0,1,2,bc+3)].data
665
- obj_idx = 2*bc+4
666
- b[:, :obj_idx].data += math.log(0.6 / (bc + 1 - 0.99))
667
- b[:, obj_idx].data += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
668
- b[:, (obj_idx+1):].data += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
669
- b[:, (0,1,2,bc+3)].data = old
670
- mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
671
-
672
- def _initialize_biases_kpt(self, cf=None): # initialize biases into Detect(), cf is class frequency
673
- # https://arxiv.org/abs/1708.02002 section 3.3
674
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
675
- m = self.model[-1] # Detect() module
676
- for mi, s in zip(m.m, m.stride): # from
677
- b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
678
- b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
679
- b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
680
- mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
681
-
682
- def _print_biases(self):
683
- m = self.model[-1] # Detect() module
684
- for mi in m.m: # from
685
- b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
686
- print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
687
-
688
- # def _print_weights(self):
689
- # for m in self.model.modules():
690
- # if type(m) is Bottleneck:
691
- # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
692
-
693
- def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
694
- print('Fusing layers... ')
695
- for m in self.model.modules():
696
- if isinstance(m, RepConv):
697
- #print(f" fuse_repvgg_block")
698
- m.fuse_repvgg_block()
699
- elif isinstance(m, RepConv_OREPA):
700
- #print(f" switch_to_deploy")
701
- m.switch_to_deploy()
702
- elif type(m) is Conv and hasattr(m, 'bn'):
703
- m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
704
- delattr(m, 'bn') # remove batchnorm
705
- m.forward = m.fuseforward # update forward
706
- elif isinstance(m, (IDetect, IAuxDetect)):
707
- m.fuse()
708
- m.forward = m.fuseforward
709
- self.info()
710
- return self
711
-
712
- def nms(self, mode=True): # add or remove NMS module
713
- present = type(self.model[-1]) is NMS # last layer is NMS
714
- if mode and not present:
715
- print('Adding NMS... ')
716
- m = NMS() # module
717
- m.f = -1 # from
718
- m.i = self.model[-1].i + 1 # index
719
- self.model.add_module(name='%s' % m.i, module=m) # add
720
- self.eval()
721
- elif not mode and present:
722
- print('Removing NMS... ')
723
- self.model = self.model[:-1] # remove
724
- return self
725
-
726
- def autoshape(self): # add autoShape module
727
- print('Adding autoShape... ')
728
- m = autoShape(self) # wrap model
729
- copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
730
- return m
731
-
732
- def info(self, verbose=False, img_size=640): # print model information
733
- model_info(self, verbose, img_size)
734
-
735
-
736
- def parse_model(d, ch): # model_dict, input_channels(3)
737
- logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
738
- anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
739
- na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
740
- no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
741
-
742
- layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
743
- for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
744
- m = eval(m) if isinstance(m, str) else m # eval strings
745
- for j, a in enumerate(args):
746
- try:
747
- args[j] = eval(a) if isinstance(a, str) else a # eval strings
748
- except:
749
- pass
750
-
751
- n = max(round(n * gd), 1) if n > 1 else n # depth gain
752
- if m in [nn.Conv2d, Conv, RobustConv, RobustConv2, DWConv, GhostConv, RepConv, RepConv_OREPA, DownC,
753
- SPP, SPPF, SPPCSPC, GhostSPPCSPC, MixConv2d, Focus, Stem, GhostStem, CrossConv,
754
- Bottleneck, BottleneckCSPA, BottleneckCSPB, BottleneckCSPC,
755
- RepBottleneck, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC,
756
- Res, ResCSPA, ResCSPB, ResCSPC,
757
- RepRes, RepResCSPA, RepResCSPB, RepResCSPC,
758
- ResX, ResXCSPA, ResXCSPB, ResXCSPC,
759
- RepResX, RepResXCSPA, RepResXCSPB, RepResXCSPC,
760
- Ghost, GhostCSPA, GhostCSPB, GhostCSPC,
761
- SwinTransformerBlock, STCSPA, STCSPB, STCSPC,
762
- SwinTransformer2Block, ST2CSPA, ST2CSPB, ST2CSPC]:
763
- c1, c2 = ch[f], args[0]
764
- if c2 != no: # if not output
765
- c2 = make_divisible(c2 * gw, 8)
766
-
767
- args = [c1, c2, *args[1:]]
768
- if m in [DownC, SPPCSPC, GhostSPPCSPC,
769
- BottleneckCSPA, BottleneckCSPB, BottleneckCSPC,
770
- RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC,
771
- ResCSPA, ResCSPB, ResCSPC,
772
- RepResCSPA, RepResCSPB, RepResCSPC,
773
- ResXCSPA, ResXCSPB, ResXCSPC,
774
- RepResXCSPA, RepResXCSPB, RepResXCSPC,
775
- GhostCSPA, GhostCSPB, GhostCSPC,
776
- STCSPA, STCSPB, STCSPC,
777
- ST2CSPA, ST2CSPB, ST2CSPC]:
778
- args.insert(2, n) # number of repeats
779
- n = 1
780
- elif m is nn.BatchNorm2d:
781
- args = [ch[f]]
782
- elif m is Concat:
783
- c2 = sum([ch[x] for x in f])
784
- elif m is Chuncat:
785
- c2 = sum([ch[x] for x in f])
786
- elif m is Shortcut:
787
- c2 = ch[f[0]]
788
- elif m is Foldcut:
789
- c2 = ch[f] // 2
790
- elif m in [Detect, IDetect, IAuxDetect, IBin, IKeypoint]:
791
- args.append([ch[x] for x in f])
792
- if isinstance(args[1], int): # number of anchors
793
- args[1] = [list(range(args[1] * 2))] * len(f)
794
- elif m is ReOrg:
795
- c2 = ch[f] * 4
796
- elif m is Contract:
797
- c2 = ch[f] * args[0] ** 2
798
- elif m is Expand:
799
- c2 = ch[f] // args[0] ** 2
800
- else:
801
- c2 = ch[f]
802
-
803
- m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
804
- t = str(m)[8:-2].replace('__main__.', '') # module type
805
- np = sum([x.numel() for x in m_.parameters()]) # number params
806
- m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
807
- logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
808
- save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
809
- layers.append(m_)
810
- if i == 0:
811
- ch = []
812
- ch.append(c2)
813
- return nn.Sequential(*layers), sorted(save)
814
-
815
-
816
- if __name__ == '__main__':
817
- parser = argparse.ArgumentParser()
818
- parser.add_argument('--cfg', type=str, default='yolor-csp-c.yaml', help='model.yaml')
819
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
820
- parser.add_argument('--profile', action='store_true', help='profile model speed')
821
- opt = parser.parse_args()
822
- opt.cfg = check_file(opt.cfg) # check file
823
- set_logging()
824
- device = select_device(opt.device)
825
-
826
- # Create model
827
- model = Model(opt.cfg).to(device)
828
- model.train()
829
-
830
- if opt.profile:
831
- img = torch.rand(1, 3, 640, 640).to(device)
832
- y = model(img, profile=True)
833
-
834
- # Profile
835
- # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
836
- # y = model(img, profile=True)
837
-
838
- # Tensorboard
839
- # from torch.utils.tensorboard import SummaryWriter
840
- # tb_writer = SummaryWriter()
841
- # print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
842
- # tb_writer.add_graph(model.model, img) # add model to tensorboard
843
- # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cedula/utils/autoanchor.py DELETED
@@ -1,160 +0,0 @@
1
- # Auto-anchor utils
2
-
3
- import numpy as np
4
- import torch
5
- import yaml
6
- from scipy.cluster.vq import kmeans
7
- from tqdm import tqdm
8
-
9
- from utils.general import colorstr
10
-
11
-
12
- def check_anchor_order(m):
13
- # Check anchor order against stride order for YOLO Detect() module m, and correct if necessary
14
- a = m.anchor_grid.prod(-1).view(-1) # anchor area
15
- da = a[-1] - a[0] # delta a
16
- ds = m.stride[-1] - m.stride[0] # delta s
17
- if da.sign() != ds.sign(): # same order
18
- print('Reversing anchor order')
19
- m.anchors[:] = m.anchors.flip(0)
20
- m.anchor_grid[:] = m.anchor_grid.flip(0)
21
-
22
-
23
- def check_anchors(dataset, model, thr=4.0, imgsz=640):
24
- # Check anchor fit to data, recompute if necessary
25
- prefix = colorstr('autoanchor: ')
26
- print(f'\n{prefix}Analyzing anchors... ', end='')
27
- m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
28
- shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
29
- scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
30
- wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
31
-
32
- def metric(k): # compute metric
33
- r = wh[:, None] / k[None]
34
- x = torch.min(r, 1. / r).min(2)[0] # ratio metric
35
- best = x.max(1)[0] # best_x
36
- aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
37
- bpr = (best > 1. / thr).float().mean() # best possible recall
38
- return bpr, aat
39
-
40
- anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
41
- bpr, aat = metric(anchors)
42
- print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
43
- if bpr < 0.98: # threshold to recompute
44
- print('. Attempting to improve anchors, please wait...')
45
- na = m.anchor_grid.numel() // 2 # number of anchors
46
- try:
47
- anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
48
- except Exception as e:
49
- print(f'{prefix}ERROR: {e}')
50
- new_bpr = metric(anchors)[0]
51
- if new_bpr > bpr: # replace anchors
52
- anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
53
- m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
54
- check_anchor_order(m)
55
- m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
56
- print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
57
- else:
58
- print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
59
- print('') # newline
60
-
61
-
62
- def kmean_anchors(path='./data/coco.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
63
- """ Creates kmeans-evolved anchors from training dataset
64
-
65
- Arguments:
66
- path: path to dataset *.yaml, or a loaded dataset
67
- n: number of anchors
68
- img_size: image size used for training
69
- thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
70
- gen: generations to evolve anchors using genetic algorithm
71
- verbose: print all results
72
-
73
- Return:
74
- k: kmeans evolved anchors
75
-
76
- Usage:
77
- from utils.autoanchor import *; _ = kmean_anchors()
78
- """
79
- thr = 1. / thr
80
- prefix = colorstr('autoanchor: ')
81
-
82
- def metric(k, wh): # compute metrics
83
- r = wh[:, None] / k[None]
84
- x = torch.min(r, 1. / r).min(2)[0] # ratio metric
85
- # x = wh_iou(wh, torch.tensor(k)) # iou metric
86
- return x, x.max(1)[0] # x, best_x
87
-
88
- def anchor_fitness(k): # mutation fitness
89
- _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
90
- return (best * (best > thr).float()).mean() # fitness
91
-
92
- def print_results(k):
93
- k = k[np.argsort(k.prod(1))] # sort small to large
94
- x, best = metric(k, wh0)
95
- bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
96
- print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
97
- print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
98
- f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
99
- for i, x in enumerate(k):
100
- print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
101
- return k
102
-
103
- if isinstance(path, str): # *.yaml file
104
- with open(path) as f:
105
- data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
106
- from utils.datasets import LoadImagesAndLabels
107
- dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
108
- else:
109
- dataset = path # dataset
110
-
111
- # Get label wh
112
- shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
113
- wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
114
-
115
- # Filter
116
- i = (wh0 < 3.0).any(1).sum()
117
- if i:
118
- print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
119
- wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
120
- # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
121
-
122
- # Kmeans calculation
123
- print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
124
- s = wh.std(0) # sigmas for whitening
125
- k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
126
- assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
127
- k *= s
128
- wh = torch.tensor(wh, dtype=torch.float32) # filtered
129
- wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
130
- k = print_results(k)
131
-
132
- # Plot
133
- # k, d = [None] * 20, [None] * 20
134
- # for i in tqdm(range(1, 21)):
135
- # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
136
- # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
137
- # ax = ax.ravel()
138
- # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
139
- # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
140
- # ax[0].hist(wh[wh[:, 0]<100, 0],400)
141
- # ax[1].hist(wh[wh[:, 1]<100, 1],400)
142
- # fig.savefig('wh.png', dpi=200)
143
-
144
- # Evolve
145
- npr = np.random
146
- f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
147
- pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
148
- for _ in pbar:
149
- v = np.ones(sh)
150
- while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
151
- v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
152
- kg = (k.copy() * v).clip(min=2.0)
153
- fg = anchor_fitness(kg)
154
- if fg > f:
155
- f, k = fg, kg.copy()
156
- pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
157
- if verbose:
158
- print_results(k)
159
-
160
- return print_results(k)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cedula/utils/datasets.py DELETED
@@ -1,1358 +0,0 @@
1
- # Dataset utils and dataloaders
2
-
3
- import glob
4
- import logging
5
- import math
6
- import os
7
- import random
8
- import shutil
9
- import time
10
- from itertools import repeat
11
- from multiprocessing.pool import ThreadPool
12
- from pathlib import Path
13
- from threading import Thread
14
-
15
- import cv2
16
- import numpy as np
17
- import torch
18
- import torch.nn.functional as F
19
- from PIL import Image, ExifTags
20
- from torch.utils.data import Dataset
21
- from tqdm import tqdm
22
-
23
- import pickle
24
- from copy import deepcopy
25
- #from pycocotools import mask as maskUtils
26
- from torchvision.utils import save_image
27
- from torchvision.ops import roi_pool, roi_align, ps_roi_pool, ps_roi_align
28
-
29
- from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \
30
- resample_segments, clean_str
31
- from utils.torch_utils import torch_distributed_zero_first
32
-
33
- # Parameters
34
- help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
35
- img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes
36
- vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
37
- logger = logging.getLogger(__name__)
38
-
39
- # Get orientation exif tag
40
- for orientation in ExifTags.TAGS.keys():
41
- if ExifTags.TAGS[orientation] == 'Orientation':
42
- break
43
-
44
-
45
- def get_hash(files):
46
- # Returns a single hash value of a list of files
47
- return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
48
-
49
-
50
- def exif_size(img):
51
- # Returns exif-corrected PIL size
52
- s = img.size # (width, height)
53
- try:
54
- rotation = dict(img._getexif().items())[orientation]
55
- if rotation == 6: # rotation 270
56
- s = (s[1], s[0])
57
- elif rotation == 8: # rotation 90
58
- s = (s[1], s[0])
59
- except:
60
- pass
61
-
62
- return s
63
-
64
-
65
- def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
66
- rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
67
- # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
68
- with torch_distributed_zero_first(rank):
69
- dataset = LoadImagesAndLabels(path, imgsz, batch_size,
70
- augment=augment, # augment images
71
- hyp=hyp, # augmentation hyperparameters
72
- rect=rect, # rectangular training
73
- cache_images=cache,
74
- single_cls=opt.single_cls,
75
- stride=int(stride),
76
- pad=pad,
77
- image_weights=image_weights,
78
- prefix=prefix)
79
-
80
- batch_size = min(batch_size, len(dataset))
81
- nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
82
- sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
83
- loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
84
- # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
85
- dataloader = loader(dataset,
86
- batch_size=batch_size,
87
- num_workers=nw,
88
- sampler=sampler,
89
- pin_memory=True,
90
- collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
91
- return dataloader, dataset
92
-
93
-
94
- class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
95
- """ Dataloader that reuses workers
96
-
97
- Uses same syntax as vanilla DataLoader
98
- """
99
-
100
- def __init__(self, *args, **kwargs):
101
- super().__init__(*args, **kwargs)
102
- object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
103
- self.iterator = super().__iter__()
104
-
105
- def __len__(self):
106
- return len(self.batch_sampler.sampler)
107
-
108
- def __iter__(self):
109
- for i in range(len(self)):
110
- yield next(self.iterator)
111
-
112
-
113
- class _RepeatSampler(object):
114
- """ Sampler that repeats forever
115
-
116
- Args:
117
- sampler (Sampler)
118
- """
119
-
120
- def __init__(self, sampler):
121
- self.sampler = sampler
122
-
123
- def __iter__(self):
124
- while True:
125
- yield from iter(self.sampler)
126
-
127
- class LoadImages: # for inference
128
- def __init__(self, path, img_size=640, stride=32):
129
- p = str(Path(path).absolute()) # os-agnostic absolute path
130
- if '*' in p:
131
- files = sorted(glob.glob(p, recursive=True)) # glob
132
- elif os.path.isdir(p):
133
- files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
134
- elif os.path.isfile(p):
135
- files = [p] # files
136
- else:
137
- raise Exception(f'ERROR: {p} does not exist')
138
-
139
- images = [x for x in files if x.split('.')[-1].lower() in img_formats]
140
- videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
141
- ni, nv = len(images), len(videos)
142
-
143
- self.img_size = img_size
144
- self.stride = stride
145
- self.files = images + videos
146
- self.nf = ni + nv # number of files
147
- self.video_flag = [False] * ni + [True] * nv
148
- self.mode = 'image'
149
- if any(videos):
150
- self.new_video(videos[0]) # new video
151
- else:
152
- self.cap = None
153
- assert self.nf > 0, f'No images or videos found in {p}. ' \
154
- f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
155
-
156
- def __iter__(self):
157
- self.count = 0
158
- return self
159
-
160
- def __next__(self):
161
- if self.count == self.nf:
162
- raise StopIteration
163
- path = self.files[self.count]
164
-
165
- if self.video_flag[self.count]:
166
- # Read video
167
- self.mode = 'video'
168
- ret_val, img0 = self.cap.read()
169
- if not ret_val:
170
- self.count += 1
171
- self.cap.release()
172
- if self.count == self.nf: # last video
173
- raise StopIteration
174
- else:
175
- path = self.files[self.count]
176
- self.new_video(path)
177
- ret_val, img0 = self.cap.read()
178
-
179
- self.frame += 1
180
- print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='')
181
-
182
- else:
183
- # Read image
184
- self.count += 1
185
- img0 = cv2.imread(path) # BGR
186
- assert img0 is not None, 'Image Not Found ' + path
187
- #print(f'image {self.count}/{self.nf} {path}: ', end='')
188
-
189
- # Padded resize
190
- img = letterbox(img0, self.img_size, stride=self.stride)[0]
191
-
192
- # Convert
193
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
194
- img = np.ascontiguousarray(img)
195
-
196
- return path, img, img0, self.cap
197
-
198
- def new_video(self, path):
199
- self.frame = 0
200
- self.cap = cv2.VideoCapture(path)
201
- self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
202
-
203
- def __len__(self):
204
- return self.nf # number of files
205
-
206
- class LoadImage: # for inference
207
- def __init__(self, files = [], img_size=640, stride=32):
208
- if not len(files):
209
- raise Exception(f'ERROR: empty list')
210
-
211
- self.img_size = img_size
212
- self.stride = stride
213
- self.files = files
214
- self.nf = len(files) # number of files
215
- assert self.nf > 0, f'No images or videos found'
216
-
217
- def __iter__(self):
218
- self.count = 0
219
- return self
220
-
221
- def __next__(self):
222
- if self.count == self.nf:
223
- raise StopIteration
224
- image = self.files[self.count]
225
-
226
- # Read image
227
- self.count += 1
228
-
229
- img0 = np.array(image) #rgb
230
- img0 = cv2.cvtColor(img0, cv2.COLOR_RGB2BGR) #bgr
231
- assert img0 is not None, 'Image empty '
232
-
233
- # Padded resize
234
- img = letterbox(img0, self.img_size, stride=self.stride)[0]
235
-
236
- # Convert
237
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
238
- img = np.ascontiguousarray(img)
239
-
240
- return img, img0
241
-
242
- def __len__(self):
243
- return self.nf # number of files
244
-
245
-
246
- class LoadWebcam: # for inference
247
- def __init__(self, pipe='0', img_size=640, stride=32):
248
- self.img_size = img_size
249
- self.stride = stride
250
-
251
- if pipe.isnumeric():
252
- pipe = eval(pipe) # local camera
253
- # pipe = 'rtsp://192.168.1.64/1' # IP camera
254
- # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
255
- # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
256
-
257
- self.pipe = pipe
258
- self.cap = cv2.VideoCapture(pipe) # video capture object
259
- self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
260
-
261
- def __iter__(self):
262
- self.count = -1
263
- return self
264
-
265
- def __next__(self):
266
- self.count += 1
267
- if cv2.waitKey(1) == ord('q'): # q to quit
268
- self.cap.release()
269
- cv2.destroyAllWindows()
270
- raise StopIteration
271
-
272
- # Read frame
273
- if self.pipe == 0: # local camera
274
- ret_val, img0 = self.cap.read()
275
- img0 = cv2.flip(img0, 1) # flip left-right
276
- else: # IP camera
277
- n = 0
278
- while True:
279
- n += 1
280
- self.cap.grab()
281
- if n % 30 == 0: # skip frames
282
- ret_val, img0 = self.cap.retrieve()
283
- if ret_val:
284
- break
285
-
286
- # Print
287
- assert ret_val, f'Camera Error {self.pipe}'
288
- img_path = 'webcam.jpg'
289
- print(f'webcam {self.count}: ', end='')
290
-
291
- # Padded resize
292
- img = letterbox(img0, self.img_size, stride=self.stride)[0]
293
-
294
- # Convert
295
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
296
- img = np.ascontiguousarray(img)
297
-
298
- return img_path, img, img0, None
299
-
300
- def __len__(self):
301
- return 0
302
-
303
-
304
- class LoadStreams: # multiple IP or RTSP cameras
305
- def __init__(self, sources='streams.txt', img_size=640, stride=32):
306
- self.mode = 'stream'
307
- self.img_size = img_size
308
- self.stride = stride
309
-
310
- if os.path.isfile(sources):
311
- with open(sources, 'r') as f:
312
- sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
313
- else:
314
- sources = [sources]
315
-
316
- n = len(sources)
317
- self.imgs = [None] * n
318
- self.sources = [clean_str(x) for x in sources] # clean source names for later
319
- for i, s in enumerate(sources):
320
- # Start the thread to read frames from the video stream
321
- print(f'{i + 1}/{n}: {s}... ', end='')
322
- url = eval(s) if s.isnumeric() else s
323
- if 'youtube.com/' in str(url) or 'youtu.be/' in str(url): # if source is YouTube video
324
- check_requirements(('pafy', 'youtube_dl'))
325
- import pafy
326
- url = pafy.new(url).getbest(preftype="mp4").url
327
- cap = cv2.VideoCapture(url)
328
- assert cap.isOpened(), f'Failed to open {s}'
329
- w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
330
- h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
331
- self.fps = cap.get(cv2.CAP_PROP_FPS) % 100
332
-
333
- _, self.imgs[i] = cap.read() # guarantee first frame
334
- thread = Thread(target=self.update, args=([i, cap]), daemon=True)
335
- print(f' success ({w}x{h} at {self.fps:.2f} FPS).')
336
- thread.start()
337
- print('') # newline
338
-
339
- # check for common shapes
340
- s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) # shapes
341
- self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
342
- if not self.rect:
343
- print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
344
-
345
- def update(self, index, cap):
346
- # Read next stream frame in a daemon thread
347
- n = 0
348
- while cap.isOpened():
349
- n += 1
350
- # _, self.imgs[index] = cap.read()
351
- cap.grab()
352
- if n == 4: # read every 4th frame
353
- success, im = cap.retrieve()
354
- self.imgs[index] = im if success else self.imgs[index] * 0
355
- n = 0
356
- time.sleep(1 / self.fps) # wait time
357
-
358
- def __iter__(self):
359
- self.count = -1
360
- return self
361
-
362
- def __next__(self):
363
- self.count += 1
364
- img0 = self.imgs.copy()
365
- if cv2.waitKey(1) == ord('q'): # q to quit
366
- cv2.destroyAllWindows()
367
- raise StopIteration
368
-
369
- # Letterbox
370
- img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0]
371
-
372
- # Stack
373
- img = np.stack(img, 0)
374
-
375
- # Convert
376
- img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
377
- img = np.ascontiguousarray(img)
378
-
379
- return self.sources, img, img0, None
380
-
381
- def __len__(self):
382
- return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
383
-
384
-
385
- def img2label_paths(img_paths):
386
- # Define label paths as a function of image paths
387
- sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
388
- return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths]
389
-
390
-
391
- class LoadImagesAndLabels(Dataset): # for training/testing
392
- def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
393
- cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
394
- self.img_size = img_size
395
- self.augment = augment
396
- self.hyp = hyp
397
- self.image_weights = image_weights
398
- self.rect = False if image_weights else rect
399
- self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
400
- self.mosaic_border = [-img_size // 2, -img_size // 2]
401
- self.stride = stride
402
- self.path = path
403
- #self.albumentations = Albumentations() if augment else None
404
-
405
- try:
406
- f = [] # image files
407
- for p in path if isinstance(path, list) else [path]:
408
- p = Path(p) # os-agnostic
409
- if p.is_dir(): # dir
410
- f += glob.glob(str(p / '**' / '*.*'), recursive=True)
411
- # f = list(p.rglob('**/*.*')) # pathlib
412
- elif p.is_file(): # file
413
- with open(p, 'r') as t:
414
- t = t.read().strip().splitlines()
415
- parent = str(p.parent) + os.sep
416
- f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
417
- # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
418
- else:
419
- raise Exception(f'{prefix}{p} does not exist')
420
- self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
421
- # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib
422
- assert self.img_files, f'{prefix}No images found'
423
- except Exception as e:
424
- raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')
425
-
426
- # Check cache
427
- self.label_files = img2label_paths(self.img_files) # labels
428
- cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') # cached labels
429
- if cache_path.is_file():
430
- cache, exists = torch.load(cache_path), True # load
431
- #if cache['hash'] != get_hash(self.label_files + self.img_files) or 'version' not in cache: # changed
432
- # cache, exists = self.cache_labels(cache_path, prefix), False # re-cache
433
- else:
434
- cache, exists = self.cache_labels(cache_path, prefix), False # cache
435
-
436
- # Display cache
437
- nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total
438
- if exists:
439
- d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
440
- tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
441
- assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
442
-
443
- # Read cache
444
- cache.pop('hash') # remove hash
445
- cache.pop('version') # remove version
446
- labels, shapes, self.segments = zip(*cache.values())
447
- self.labels = list(labels)
448
- self.shapes = np.array(shapes, dtype=np.float64)
449
- self.img_files = list(cache.keys()) # update
450
- self.label_files = img2label_paths(cache.keys()) # update
451
- if single_cls:
452
- for x in self.labels:
453
- x[:, 0] = 0
454
-
455
- n = len(shapes) # number of images
456
- bi = np.floor(np.arange(n) / batch_size).astype(int) # batch index
457
- nb = bi[-1] + 1 # number of batches
458
- self.batch = bi # batch index of image
459
- self.n = n
460
- self.indices = range(n)
461
-
462
- # Rectangular Training
463
- if self.rect:
464
- # Sort by aspect ratio
465
- s = self.shapes # wh
466
- ar = s[:, 1] / s[:, 0] # aspect ratio
467
- irect = ar.argsort()
468
- self.img_files = [self.img_files[i] for i in irect]
469
- self.label_files = [self.label_files[i] for i in irect]
470
- self.labels = [self.labels[i] for i in irect]
471
- self.shapes = s[irect] # wh
472
- ar = ar[irect]
473
-
474
- # Set training image shapes
475
- shapes = [[1, 1]] * nb
476
- for i in range(nb):
477
- ari = ar[bi == i]
478
- mini, maxi = ari.min(), ari.max()
479
- if maxi < 1:
480
- shapes[i] = [maxi, 1]
481
- elif mini > 1:
482
- shapes[i] = [1, 1 / mini]
483
-
484
- self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride
485
-
486
- # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
487
- self.imgs = [None] * n
488
- if cache_images:
489
- if cache_images == 'disk':
490
- self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy')
491
- self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files]
492
- self.im_cache_dir.mkdir(parents=True, exist_ok=True)
493
- gb = 0 # Gigabytes of cached images
494
- self.img_hw0, self.img_hw = [None] * n, [None] * n
495
- results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))
496
- pbar = tqdm(enumerate(results), total=n)
497
- for i, x in pbar:
498
- if cache_images == 'disk':
499
- if not self.img_npy[i].exists():
500
- np.save(self.img_npy[i].as_posix(), x[0])
501
- gb += self.img_npy[i].stat().st_size
502
- else:
503
- self.imgs[i], self.img_hw0[i], self.img_hw[i] = x
504
- gb += self.imgs[i].nbytes
505
- pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
506
- pbar.close()
507
-
508
- def cache_labels(self, path=Path('./labels.cache'), prefix=''):
509
- # Cache dataset labels, check images and read shapes
510
- x = {} # dict
511
- nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
512
- pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
513
- for i, (im_file, lb_file) in enumerate(pbar):
514
- try:
515
- # verify images
516
- im = Image.open(im_file)
517
- im.verify() # PIL verify
518
- shape = exif_size(im) # image size
519
- segments = [] # instance segments
520
- assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
521
- assert im.format.lower() in img_formats, f'invalid image format {im.format}'
522
-
523
- # verify labels
524
- if os.path.isfile(lb_file):
525
- nf += 1 # label found
526
- with open(lb_file, 'r') as f:
527
- l = [x.split() for x in f.read().strip().splitlines()]
528
- if any([len(x) > 8 for x in l]): # is segment
529
- classes = np.array([x[0] for x in l], dtype=np.float32)
530
- segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
531
- l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
532
- l = np.array(l, dtype=np.float32)
533
- if len(l):
534
- assert l.shape[1] == 5, 'labels require 5 columns each'
535
- assert (l >= 0).all(), 'negative labels'
536
- assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
537
- assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
538
- else:
539
- ne += 1 # label empty
540
- l = np.zeros((0, 5), dtype=np.float32)
541
- else:
542
- nm += 1 # label missing
543
- l = np.zeros((0, 5), dtype=np.float32)
544
- x[im_file] = [l, shape, segments]
545
- except Exception as e:
546
- nc += 1
547
- print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
548
-
549
- pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels... " \
550
- f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
551
- pbar.close()
552
-
553
- if nf == 0:
554
- print(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
555
-
556
- x['hash'] = get_hash(self.label_files + self.img_files)
557
- x['results'] = nf, nm, ne, nc, i + 1
558
- x['version'] = 0.1 # cache version
559
- torch.save(x, path) # save for next time
560
- logging.info(f'{prefix}New cache created: {path}')
561
- return x
562
-
563
- def __len__(self):
564
- return len(self.img_files)
565
-
566
- # def __iter__(self):
567
- # self.count = -1
568
- # print('ran dataset iter')
569
- # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
570
- # return self
571
-
572
- def __getitem__(self, index):
573
- index = self.indices[index] # linear, shuffled, or image_weights
574
-
575
- hyp = self.hyp
576
- mosaic = self.mosaic and random.random() < hyp['mosaic']
577
- if mosaic:
578
- # Load mosaic
579
- if random.random() < 0.8:
580
- img, labels = load_mosaic(self, index)
581
- else:
582
- img, labels = load_mosaic9(self, index)
583
- shapes = None
584
-
585
- # MixUp https://arxiv.org/pdf/1710.09412.pdf
586
- if random.random() < hyp['mixup']:
587
- if random.random() < 0.8:
588
- img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1))
589
- else:
590
- img2, labels2 = load_mosaic9(self, random.randint(0, len(self.labels) - 1))
591
- r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
592
- img = (img * r + img2 * (1 - r)).astype(np.uint8)
593
- labels = np.concatenate((labels, labels2), 0)
594
-
595
- else:
596
- # Load image
597
- img, (h0, w0), (h, w) = load_image(self, index)
598
-
599
- # Letterbox
600
- shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
601
- img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
602
- shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
603
-
604
- labels = self.labels[index].copy()
605
- if labels.size: # normalized xywh to pixel xyxy format
606
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
607
-
608
- if self.augment:
609
- # Augment imagespace
610
- if not mosaic:
611
- img, labels = random_perspective(img, labels,
612
- degrees=hyp['degrees'],
613
- translate=hyp['translate'],
614
- scale=hyp['scale'],
615
- shear=hyp['shear'],
616
- perspective=hyp['perspective'])
617
-
618
-
619
- #img, labels = self.albumentations(img, labels)
620
-
621
- # Augment colorspace
622
- augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
623
-
624
- # Apply cutouts
625
- # if random.random() < 0.9:
626
- # labels = cutout(img, labels)
627
-
628
- if random.random() < hyp['paste_in']:
629
- sample_labels, sample_images, sample_masks = [], [], []
630
- while len(sample_labels) < 30:
631
- sample_labels_, sample_images_, sample_masks_ = load_samples(self, random.randint(0, len(self.labels) - 1))
632
- sample_labels += sample_labels_
633
- sample_images += sample_images_
634
- sample_masks += sample_masks_
635
- #print(len(sample_labels))
636
- if len(sample_labels) == 0:
637
- break
638
- labels = pastein(img, labels, sample_labels, sample_images, sample_masks)
639
-
640
- nL = len(labels) # number of labels
641
- if nL:
642
- labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
643
- labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
644
- labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
645
-
646
- if self.augment:
647
- # flip up-down
648
- if random.random() < hyp['flipud']:
649
- img = np.flipud(img)
650
- if nL:
651
- labels[:, 2] = 1 - labels[:, 2]
652
-
653
- # flip left-right
654
- if random.random() < hyp['fliplr']:
655
- img = np.fliplr(img)
656
- if nL:
657
- labels[:, 1] = 1 - labels[:, 1]
658
-
659
- labels_out = torch.zeros((nL, 6))
660
- if nL:
661
- labels_out[:, 1:] = torch.from_numpy(labels)
662
-
663
- # Convert
664
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
665
- img = np.ascontiguousarray(img)
666
-
667
- return torch.from_numpy(img), labels_out, self.img_files[index], shapes
668
-
669
- @staticmethod
670
- def collate_fn(batch):
671
- img, label, path, shapes = zip(*batch) # transposed
672
- for i, l in enumerate(label):
673
- l[:, 0] = i # add target image index for build_targets()
674
- return torch.stack(img, 0), torch.cat(label, 0), path, shapes
675
-
676
- @staticmethod
677
- def collate_fn4(batch):
678
- img, label, path, shapes = zip(*batch) # transposed
679
- n = len(shapes) // 4
680
- img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
681
-
682
- ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
683
- wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
684
- s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale
685
- for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
686
- i *= 4
687
- if random.random() < 0.5:
688
- im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
689
- 0].type(img[i].type())
690
- l = label[i]
691
- else:
692
- im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
693
- l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
694
- img4.append(im)
695
- label4.append(l)
696
-
697
- for i, l in enumerate(label4):
698
- l[:, 0] = i # add target image index for build_targets()
699
-
700
- return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
701
-
702
-
703
- # Ancillary functions --------------------------------------------------------------------------------------------------
704
- def load_image(self, index):
705
- # loads 1 image from dataset, returns img, original hw, resized hw
706
- img = self.imgs[index]
707
- if img is None: # not cached
708
- path = self.img_files[index]
709
- img = cv2.imread(path) # BGR
710
- assert img is not None, 'Image Not Found ' + path
711
- h0, w0 = img.shape[:2] # orig hw
712
- r = self.img_size / max(h0, w0) # resize image to img_size
713
- if r != 1: # always resize down, only resize up if training with augmentation
714
- interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
715
- img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
716
- return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
717
- else:
718
- return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
719
-
720
-
721
- def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
722
- r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
723
- hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
724
- dtype = img.dtype # uint8
725
-
726
- x = np.arange(0, 256, dtype=np.int16)
727
- lut_hue = ((x * r[0]) % 180).astype(dtype)
728
- lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
729
- lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
730
-
731
- img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
732
- cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
733
-
734
-
735
- def hist_equalize(img, clahe=True, bgr=False):
736
- # Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
737
- yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
738
- if clahe:
739
- c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
740
- yuv[:, :, 0] = c.apply(yuv[:, :, 0])
741
- else:
742
- yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
743
- return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
744
-
745
-
746
- def load_mosaic(self, index):
747
- # loads images in a 4-mosaic
748
-
749
- labels4, segments4 = [], []
750
- s = self.img_size
751
- yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
752
- indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
753
- for i, index in enumerate(indices):
754
- # Load image
755
- img, _, (h, w) = load_image(self, index)
756
-
757
- # place img in img4
758
- if i == 0: # top left
759
- img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
760
- x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
761
- x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
762
- elif i == 1: # top right
763
- x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
764
- x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
765
- elif i == 2: # bottom left
766
- x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
767
- x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
768
- elif i == 3: # bottom right
769
- x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
770
- x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
771
-
772
- img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
773
- padw = x1a - x1b
774
- padh = y1a - y1b
775
-
776
- # Labels
777
- labels, segments = self.labels[index].copy(), self.segments[index].copy()
778
- if labels.size:
779
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
780
- segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
781
- labels4.append(labels)
782
- segments4.extend(segments)
783
-
784
- # Concat/clip labels
785
- labels4 = np.concatenate(labels4, 0)
786
- for x in (labels4[:, 1:], *segments4):
787
- np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
788
- # img4, labels4 = replicate(img4, labels4) # replicate
789
-
790
- # Augment
791
- #img4, labels4, segments4 = remove_background(img4, labels4, segments4)
792
- #sample_segments(img4, labels4, segments4, probability=self.hyp['copy_paste'])
793
- img4, labels4, segments4 = copy_paste(img4, labels4, segments4, probability=self.hyp['copy_paste'])
794
- img4, labels4 = random_perspective(img4, labels4, segments4,
795
- degrees=self.hyp['degrees'],
796
- translate=self.hyp['translate'],
797
- scale=self.hyp['scale'],
798
- shear=self.hyp['shear'],
799
- perspective=self.hyp['perspective'],
800
- border=self.mosaic_border) # border to remove
801
-
802
- return img4, labels4
803
-
804
-
805
- def load_mosaic9(self, index):
806
- # loads images in a 9-mosaic
807
-
808
- labels9, segments9 = [], []
809
- s = self.img_size
810
- indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
811
- for i, index in enumerate(indices):
812
- # Load image
813
- img, _, (h, w) = load_image(self, index)
814
-
815
- # place img in img9
816
- if i == 0: # center
817
- img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
818
- h0, w0 = h, w
819
- c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
820
- elif i == 1: # top
821
- c = s, s - h, s + w, s
822
- elif i == 2: # top right
823
- c = s + wp, s - h, s + wp + w, s
824
- elif i == 3: # right
825
- c = s + w0, s, s + w0 + w, s + h
826
- elif i == 4: # bottom right
827
- c = s + w0, s + hp, s + w0 + w, s + hp + h
828
- elif i == 5: # bottom
829
- c = s + w0 - w, s + h0, s + w0, s + h0 + h
830
- elif i == 6: # bottom left
831
- c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
832
- elif i == 7: # left
833
- c = s - w, s + h0 - h, s, s + h0
834
- elif i == 8: # top left
835
- c = s - w, s + h0 - hp - h, s, s + h0 - hp
836
-
837
- padx, pady = c[:2]
838
- x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
839
-
840
- # Labels
841
- labels, segments = self.labels[index].copy(), self.segments[index].copy()
842
- if labels.size:
843
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
844
- segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
845
- labels9.append(labels)
846
- segments9.extend(segments)
847
-
848
- # Image
849
- img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
850
- hp, wp = h, w # height, width previous
851
-
852
- # Offset
853
- yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y
854
- img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
855
-
856
- # Concat/clip labels
857
- labels9 = np.concatenate(labels9, 0)
858
- labels9[:, [1, 3]] -= xc
859
- labels9[:, [2, 4]] -= yc
860
- c = np.array([xc, yc]) # centers
861
- segments9 = [x - c for x in segments9]
862
-
863
- for x in (labels9[:, 1:], *segments9):
864
- np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
865
- # img9, labels9 = replicate(img9, labels9) # replicate
866
-
867
- # Augment
868
- #img9, labels9, segments9 = remove_background(img9, labels9, segments9)
869
- img9, labels9, segments9 = copy_paste(img9, labels9, segments9, probability=self.hyp['copy_paste'])
870
- img9, labels9 = random_perspective(img9, labels9, segments9,
871
- degrees=self.hyp['degrees'],
872
- translate=self.hyp['translate'],
873
- scale=self.hyp['scale'],
874
- shear=self.hyp['shear'],
875
- perspective=self.hyp['perspective'],
876
- border=self.mosaic_border) # border to remove
877
-
878
- return img9, labels9
879
-
880
-
881
- def load_samples(self, index):
882
- # loads images in a 4-mosaic
883
-
884
- labels4, segments4 = [], []
885
- s = self.img_size
886
- yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
887
- indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
888
- for i, index in enumerate(indices):
889
- # Load image
890
- img, _, (h, w) = load_image(self, index)
891
-
892
- # place img in img4
893
- if i == 0: # top left
894
- img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
895
- x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
896
- x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
897
- elif i == 1: # top right
898
- x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
899
- x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
900
- elif i == 2: # bottom left
901
- x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
902
- x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
903
- elif i == 3: # bottom right
904
- x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
905
- x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
906
-
907
- img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
908
- padw = x1a - x1b
909
- padh = y1a - y1b
910
-
911
- # Labels
912
- labels, segments = self.labels[index].copy(), self.segments[index].copy()
913
- if labels.size:
914
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
915
- segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
916
- labels4.append(labels)
917
- segments4.extend(segments)
918
-
919
- # Concat/clip labels
920
- labels4 = np.concatenate(labels4, 0)
921
- for x in (labels4[:, 1:], *segments4):
922
- np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
923
- # img4, labels4 = replicate(img4, labels4) # replicate
924
-
925
- # Augment
926
- #img4, labels4, segments4 = remove_background(img4, labels4, segments4)
927
- sample_labels, sample_images, sample_masks = sample_segments(img4, labels4, segments4, probability=0.5)
928
-
929
- return sample_labels, sample_images, sample_masks
930
-
931
-
932
- def copy_paste(img, labels, segments, probability=0.5):
933
- # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
934
- n = len(segments)
935
- if probability and n:
936
- h, w, c = img.shape # height, width, channels
937
- im_new = np.zeros(img.shape, np.uint8)
938
- for j in random.sample(range(n), k=round(probability * n)):
939
- l, s = labels[j], segments[j]
940
- box = w - l[3], l[2], w - l[1], l[4]
941
- ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
942
- if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
943
- labels = np.concatenate((labels, [[l[0], *box]]), 0)
944
- segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
945
- cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
946
-
947
- result = cv2.bitwise_and(src1=img, src2=im_new)
948
- result = cv2.flip(result, 1) # augment segments (flip left-right)
949
- i = result > 0 # pixels to replace
950
- # i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
951
- img[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug
952
-
953
- return img, labels, segments
954
-
955
-
956
- def remove_background(img, labels, segments):
957
- # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
958
- n = len(segments)
959
- h, w, c = img.shape # height, width, channels
960
- im_new = np.zeros(img.shape, np.uint8)
961
- img_new = np.ones(img.shape, np.uint8) * 114
962
- for j in range(n):
963
- cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
964
-
965
- result = cv2.bitwise_and(src1=img, src2=im_new)
966
-
967
- i = result > 0 # pixels to replace
968
- img_new[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug
969
-
970
- return img_new, labels, segments
971
-
972
-
973
- def sample_segments(img, labels, segments, probability=0.5):
974
- # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
975
- n = len(segments)
976
- sample_labels = []
977
- sample_images = []
978
- sample_masks = []
979
- if probability and n:
980
- h, w, c = img.shape # height, width, channels
981
- for j in random.sample(range(n), k=round(probability * n)):
982
- l, s = labels[j], segments[j]
983
- box = l[1].astype(int).clip(0,w-1), l[2].astype(int).clip(0,h-1), l[3].astype(int).clip(0,w-1), l[4].astype(int).clip(0,h-1)
984
-
985
- #print(box)
986
- if (box[2] <= box[0]) or (box[3] <= box[1]):
987
- continue
988
-
989
- sample_labels.append(l[0])
990
-
991
- mask = np.zeros(img.shape, np.uint8)
992
-
993
- cv2.drawContours(mask, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
994
- sample_masks.append(mask[box[1]:box[3],box[0]:box[2],:])
995
-
996
- result = cv2.bitwise_and(src1=img, src2=mask)
997
- i = result > 0 # pixels to replace
998
- mask[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug
999
- #print(box)
1000
- sample_images.append(mask[box[1]:box[3],box[0]:box[2],:])
1001
-
1002
- return sample_labels, sample_images, sample_masks
1003
-
1004
-
1005
- def replicate(img, labels):
1006
- # Replicate labels
1007
- h, w = img.shape[:2]
1008
- boxes = labels[:, 1:].astype(int)
1009
- x1, y1, x2, y2 = boxes.T
1010
- s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
1011
- for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
1012
- x1b, y1b, x2b, y2b = boxes[i]
1013
- bh, bw = y2b - y1b, x2b - x1b
1014
- yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
1015
- x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
1016
- img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
1017
- labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
1018
-
1019
- return img, labels
1020
-
1021
-
1022
- def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
1023
- # Resize and pad image while meeting stride-multiple constraints
1024
- shape = img.shape[:2] # current shape [height, width]
1025
- if isinstance(new_shape, int):
1026
- new_shape = (new_shape, new_shape)
1027
-
1028
- # Scale ratio (new / old)
1029
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
1030
- if not scaleup: # only scale down, do not scale up (for better test mAP)
1031
- r = min(r, 1.0)
1032
-
1033
- # Compute padding
1034
- ratio = r, r # width, height ratios
1035
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
1036
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
1037
- if auto: # minimum rectangle
1038
- dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
1039
- elif scaleFill: # stretch
1040
- dw, dh = 0.0, 0.0
1041
- new_unpad = (new_shape[1], new_shape[0])
1042
- ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
1043
-
1044
- dw /= 2 # divide padding into 2 sides
1045
- dh /= 2
1046
-
1047
- if shape[::-1] != new_unpad: # resize
1048
- img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
1049
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
1050
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
1051
- img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
1052
- return img, ratio, (dw, dh)
1053
-
1054
-
1055
- def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
1056
- border=(0, 0)):
1057
- # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
1058
- # targets = [cls, xyxy]
1059
-
1060
- height = img.shape[0] + border[0] * 2 # shape(h,w,c)
1061
- width = img.shape[1] + border[1] * 2
1062
-
1063
- # Center
1064
- C = np.eye(3)
1065
- C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
1066
- C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
1067
-
1068
- # Perspective
1069
- P = np.eye(3)
1070
- P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
1071
- P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
1072
-
1073
- # Rotation and Scale
1074
- R = np.eye(3)
1075
- a = random.uniform(-degrees, degrees)
1076
- # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
1077
- s = random.uniform(1 - scale, 1.1 + scale)
1078
- # s = 2 ** random.uniform(-scale, scale)
1079
- R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
1080
-
1081
- # Shear
1082
- S = np.eye(3)
1083
- S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
1084
- S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
1085
-
1086
- # Translation
1087
- T = np.eye(3)
1088
- T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
1089
- T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
1090
-
1091
- # Combined rotation matrix
1092
- M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
1093
- if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
1094
- if perspective:
1095
- img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
1096
- else: # affine
1097
- img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
1098
-
1099
- # Visualize
1100
- # import matplotlib.pyplot as plt
1101
- # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
1102
- # ax[0].imshow(img[:, :, ::-1]) # base
1103
- # ax[1].imshow(img2[:, :, ::-1]) # warped
1104
-
1105
- # Transform label coordinates
1106
- n = len(targets)
1107
- if n:
1108
- use_segments = any(x.any() for x in segments)
1109
- new = np.zeros((n, 4))
1110
- if use_segments: # warp segments
1111
- segments = resample_segments(segments) # upsample
1112
- for i, segment in enumerate(segments):
1113
- xy = np.ones((len(segment), 3))
1114
- xy[:, :2] = segment
1115
- xy = xy @ M.T # transform
1116
- xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
1117
-
1118
- # clip
1119
- new[i] = segment2box(xy, width, height)
1120
-
1121
- else: # warp boxes
1122
- xy = np.ones((n * 4, 3))
1123
- xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
1124
- xy = xy @ M.T # transform
1125
- xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
1126
-
1127
- # create new boxes
1128
- x = xy[:, [0, 2, 4, 6]]
1129
- y = xy[:, [1, 3, 5, 7]]
1130
- new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
1131
-
1132
- # clip
1133
- new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
1134
- new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
1135
-
1136
- # filter candidates
1137
- i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
1138
- targets = targets[i]
1139
- targets[:, 1:5] = new[i]
1140
-
1141
- return img, targets
1142
-
1143
-
1144
- def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
1145
- # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
1146
- w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
1147
- w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
1148
- ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
1149
- return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
1150
-
1151
-
1152
- def bbox_ioa(box1, box2):
1153
- # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
1154
- box2 = box2.transpose()
1155
-
1156
- # Get the coordinates of bounding boxes
1157
- b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
1158
- b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
1159
-
1160
- # Intersection area
1161
- inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
1162
- (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
1163
-
1164
- # box2 area
1165
- box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
1166
-
1167
- # Intersection over box2 area
1168
- return inter_area / box2_area
1169
-
1170
-
1171
- def cutout(image, labels):
1172
- # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
1173
- h, w = image.shape[:2]
1174
-
1175
- # create random masks
1176
- scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
1177
- for s in scales:
1178
- mask_h = random.randint(1, int(h * s))
1179
- mask_w = random.randint(1, int(w * s))
1180
-
1181
- # box
1182
- xmin = max(0, random.randint(0, w) - mask_w // 2)
1183
- ymin = max(0, random.randint(0, h) - mask_h // 2)
1184
- xmax = min(w, xmin + mask_w)
1185
- ymax = min(h, ymin + mask_h)
1186
-
1187
- # apply random color mask
1188
- image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
1189
-
1190
- # return unobscured labels
1191
- if len(labels) and s > 0.03:
1192
- box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
1193
- ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
1194
- labels = labels[ioa < 0.60] # remove >60% obscured labels
1195
-
1196
- return labels
1197
-
1198
-
1199
- def pastein(image, labels, sample_labels, sample_images, sample_masks):
1200
- # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
1201
- h, w = image.shape[:2]
1202
-
1203
- # create random masks
1204
- scales = [0.75] * 2 + [0.5] * 4 + [0.25] * 4 + [0.125] * 4 + [0.0625] * 6 # image size fraction
1205
- for s in scales:
1206
- if random.random() < 0.2:
1207
- continue
1208
- mask_h = random.randint(1, int(h * s))
1209
- mask_w = random.randint(1, int(w * s))
1210
-
1211
- # box
1212
- xmin = max(0, random.randint(0, w) - mask_w // 2)
1213
- ymin = max(0, random.randint(0, h) - mask_h // 2)
1214
- xmax = min(w, xmin + mask_w)
1215
- ymax = min(h, ymin + mask_h)
1216
-
1217
- box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
1218
- if len(labels):
1219
- ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
1220
- else:
1221
- ioa = np.zeros(1)
1222
-
1223
- if (ioa < 0.30).all() and len(sample_labels) and (xmax > xmin+20) and (ymax > ymin+20): # allow 30% obscuration of existing labels
1224
- sel_ind = random.randint(0, len(sample_labels)-1)
1225
- #print(len(sample_labels))
1226
- #print(sel_ind)
1227
- #print((xmax-xmin, ymax-ymin))
1228
- #print(image[ymin:ymax, xmin:xmax].shape)
1229
- #print([[sample_labels[sel_ind], *box]])
1230
- #print(labels.shape)
1231
- hs, ws, cs = sample_images[sel_ind].shape
1232
- r_scale = min((ymax-ymin)/hs, (xmax-xmin)/ws)
1233
- r_w = int(ws*r_scale)
1234
- r_h = int(hs*r_scale)
1235
-
1236
- if (r_w > 10) and (r_h > 10):
1237
- r_mask = cv2.resize(sample_masks[sel_ind], (r_w, r_h))
1238
- r_image = cv2.resize(sample_images[sel_ind], (r_w, r_h))
1239
- temp_crop = image[ymin:ymin+r_h, xmin:xmin+r_w]
1240
- m_ind = r_mask > 0
1241
- if m_ind.astype(np.int32).sum() > 60:
1242
- temp_crop[m_ind] = r_image[m_ind]
1243
- #print(sample_labels[sel_ind])
1244
- #print(sample_images[sel_ind].shape)
1245
- #print(temp_crop.shape)
1246
- box = np.array([xmin, ymin, xmin+r_w, ymin+r_h], dtype=np.float32)
1247
- if len(labels):
1248
- labels = np.concatenate((labels, [[sample_labels[sel_ind], *box]]), 0)
1249
- else:
1250
- labels = np.array([[sample_labels[sel_ind], *box]])
1251
-
1252
- image[ymin:ymin+r_h, xmin:xmin+r_w] = temp_crop
1253
-
1254
- return labels
1255
-
1256
- class Albumentations:
1257
- # YOLOv5 Albumentations class (optional, only used if package is installed)
1258
- def __init__(self):
1259
- self.transform = None
1260
- import albumentations as A
1261
-
1262
- self.transform = A.Compose([
1263
- A.CLAHE(p=0.01),
1264
- A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.01),
1265
- A.RandomGamma(gamma_limit=[80, 120], p=0.01),
1266
- A.Blur(p=0.01),
1267
- A.MedianBlur(p=0.01),
1268
- A.ToGray(p=0.01),
1269
- A.ImageCompression(quality_lower=75, p=0.01),],
1270
- bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels']))
1271
-
1272
- #logging.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
1273
-
1274
- def __call__(self, im, labels, p=1.0):
1275
- if self.transform and random.random() < p:
1276
- new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
1277
- im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
1278
- return im, labels
1279
-
1280
-
1281
- def create_folder(path='./new'):
1282
- # Create folder
1283
- if os.path.exists(path):
1284
- shutil.rmtree(path) # delete output folder
1285
- os.makedirs(path) # make new output folder
1286
-
1287
-
1288
- def flatten_recursive(path='../coco'):
1289
- # Flatten a recursive directory by bringing all files to top level
1290
- new_path = Path(path + '_flat')
1291
- create_folder(new_path)
1292
- for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
1293
- shutil.copyfile(file, new_path / Path(file).name)
1294
-
1295
-
1296
- def extract_boxes(path='../coco/'): # from utils.datasets import *; extract_boxes('../coco128')
1297
- # Convert detection dataset into classification dataset, with one directory per class
1298
-
1299
- path = Path(path) # images dir
1300
- shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
1301
- files = list(path.rglob('*.*'))
1302
- n = len(files) # number of files
1303
- for im_file in tqdm(files, total=n):
1304
- if im_file.suffix[1:] in img_formats:
1305
- # image
1306
- im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
1307
- h, w = im.shape[:2]
1308
-
1309
- # labels
1310
- lb_file = Path(img2label_paths([str(im_file)])[0])
1311
- if Path(lb_file).exists():
1312
- with open(lb_file, 'r') as f:
1313
- lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
1314
-
1315
- for j, x in enumerate(lb):
1316
- c = int(x[0]) # class
1317
- f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
1318
- if not f.parent.is_dir():
1319
- f.parent.mkdir(parents=True)
1320
-
1321
- b = x[1:] * [w, h, w, h] # box
1322
- # b[2:] = b[2:].max() # rectangle to square
1323
- b[2:] = b[2:] * 1.2 + 3 # pad
1324
- b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
1325
-
1326
- b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
1327
- b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
1328
- assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
1329
-
1330
-
1331
- def autosplit(path='../coco', weights=(0.9, 0.1, 0.0), annotated_only=False):
1332
- """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
1333
- Usage: from utils.datasets import *; autosplit('../coco')
1334
- Arguments
1335
- path: Path to images directory
1336
- weights: Train, val, test weights (list)
1337
- annotated_only: Only use images with an annotated txt file
1338
- """
1339
- path = Path(path) # images dir
1340
- files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], []) # image files only
1341
- n = len(files) # number of files
1342
- indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
1343
-
1344
- txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
1345
- [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
1346
-
1347
- print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
1348
- for i, img in tqdm(zip(indices, files), total=n):
1349
- if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
1350
- with open(path / txt[i], 'a') as f:
1351
- f.write(str(img) + '\n') # add image to txt file
1352
-
1353
-
1354
- def load_segmentations(self, index):
1355
- key = '/work/handsomejw66/coco17/' + self.img_files[index]
1356
- #print(key)
1357
- # /work/handsomejw66/coco17/
1358
- return self.segs[key]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cedula/utils/general.py DELETED
@@ -1,892 +0,0 @@
1
- # YOLOR general utils
2
-
3
- import glob
4
- import logging
5
- import math
6
- import os
7
- import platform
8
- import random
9
- import re
10
- import subprocess
11
- import time
12
- from pathlib import Path
13
-
14
- import cv2
15
- import numpy as np
16
- import pandas as pd
17
- import torch
18
- import torchvision
19
- import yaml
20
-
21
- from utils.google_utils import gsutil_getsize
22
- from utils.metrics import fitness
23
- from utils.torch_utils import init_torch_seeds
24
-
25
- # Settings
26
- torch.set_printoptions(linewidth=320, precision=5, profile='long')
27
- np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
28
- pd.options.display.max_columns = 10
29
- cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
30
- os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
31
-
32
-
33
- def set_logging(rank=-1):
34
- logging.basicConfig(
35
- format="%(message)s",
36
- level=logging.INFO if rank in [-1, 0] else logging.WARN)
37
-
38
-
39
- def init_seeds(seed=0):
40
- # Initialize random number generator (RNG) seeds
41
- random.seed(seed)
42
- np.random.seed(seed)
43
- init_torch_seeds(seed)
44
-
45
-
46
- def get_latest_run(search_dir='.'):
47
- # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
48
- last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
49
- return max(last_list, key=os.path.getctime) if last_list else ''
50
-
51
-
52
- def isdocker():
53
- # Is environment a Docker container
54
- return Path('/workspace').exists() # or Path('/.dockerenv').exists()
55
-
56
-
57
- def emojis(str=''):
58
- # Return platform-dependent emoji-safe version of string
59
- return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
60
-
61
-
62
- def check_online():
63
- # Check internet connectivity
64
- import socket
65
- try:
66
- socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
67
- return True
68
- except OSError:
69
- return False
70
-
71
-
72
- def check_git_status():
73
- # Recommend 'git pull' if code is out of date
74
- print(colorstr('github: '), end='')
75
- try:
76
- assert Path('.git').exists(), 'skipping check (not a git repository)'
77
- assert not isdocker(), 'skipping check (Docker image)'
78
- assert check_online(), 'skipping check (offline)'
79
-
80
- cmd = 'git fetch && git config --get remote.origin.url'
81
- url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
82
- branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
83
- n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
84
- if n > 0:
85
- s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
86
- f"Use 'git pull' to update or 'git clone {url}' to download latest."
87
- else:
88
- s = f'up to date with {url} ✅'
89
- print(emojis(s)) # emoji-safe
90
- except Exception as e:
91
- print(e)
92
-
93
-
94
- def check_requirements(requirements='requirements.txt', exclude=()):
95
- # Check installed dependencies meet requirements (pass *.txt file or list of packages)
96
- import pkg_resources as pkg
97
- prefix = colorstr('red', 'bold', 'requirements:')
98
- if isinstance(requirements, (str, Path)): # requirements.txt file
99
- file = Path(requirements)
100
- if not file.exists():
101
- print(f"{prefix} {file.resolve()} not found, check failed.")
102
- return
103
- requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
104
- else: # list or tuple of packages
105
- requirements = [x for x in requirements if x not in exclude]
106
-
107
- n = 0 # number of packages updates
108
- for r in requirements:
109
- try:
110
- pkg.require(r)
111
- except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
112
- n += 1
113
- print(f"{prefix} {e.req} not found and is required by YOLOR, attempting auto-update...")
114
- print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode())
115
-
116
- if n: # if packages updated
117
- source = file.resolve() if 'file' in locals() else requirements
118
- s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
119
- f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
120
- print(emojis(s)) # emoji-safe
121
-
122
-
123
- def check_img_size(img_size, s=32):
124
- # Verify img_size is a multiple of stride s
125
- new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
126
- if new_size != img_size:
127
- print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
128
- return new_size
129
-
130
-
131
- def check_imshow():
132
- # Check if environment supports image displays
133
- try:
134
- assert not isdocker(), 'cv2.imshow() is disabled in Docker environments'
135
- cv2.imshow('test', np.zeros((1, 1, 3)))
136
- cv2.waitKey(1)
137
- cv2.destroyAllWindows()
138
- cv2.waitKey(1)
139
- return True
140
- except Exception as e:
141
- print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
142
- return False
143
-
144
-
145
- def check_file(file):
146
- # Search for file if not found
147
- if Path(file).is_file() or file == '':
148
- return file
149
- else:
150
- files = glob.glob('./**/' + file, recursive=True) # find file
151
- assert len(files), f'File Not Found: {file}' # assert file was found
152
- assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
153
- return files[0] # return file
154
-
155
-
156
- def check_dataset(dict):
157
- # Download dataset if not found locally
158
- val, s = dict.get('val'), dict.get('download')
159
- if val and len(val):
160
- val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
161
- if not all(x.exists() for x in val):
162
- print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
163
- if s and len(s): # download script
164
- print('Downloading %s ...' % s)
165
- if s.startswith('http') and s.endswith('.zip'): # URL
166
- f = Path(s).name # filename
167
- torch.hub.download_url_to_file(s, f)
168
- r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
169
- else: # bash script
170
- r = os.system(s)
171
- print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
172
- else:
173
- raise Exception('Dataset not found.')
174
-
175
-
176
- def make_divisible(x, divisor):
177
- # Returns x evenly divisible by divisor
178
- return math.ceil(x / divisor) * divisor
179
-
180
-
181
- def clean_str(s):
182
- # Cleans a string by replacing special characters with underscore _
183
- return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
184
-
185
-
186
- def one_cycle(y1=0.0, y2=1.0, steps=100):
187
- # lambda function for sinusoidal ramp from y1 to y2
188
- return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
189
-
190
-
191
- def colorstr(*input):
192
- # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
193
- *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
194
- colors = {'black': '\033[30m', # basic colors
195
- 'red': '\033[31m',
196
- 'green': '\033[32m',
197
- 'yellow': '\033[33m',
198
- 'blue': '\033[34m',
199
- 'magenta': '\033[35m',
200
- 'cyan': '\033[36m',
201
- 'white': '\033[37m',
202
- 'bright_black': '\033[90m', # bright colors
203
- 'bright_red': '\033[91m',
204
- 'bright_green': '\033[92m',
205
- 'bright_yellow': '\033[93m',
206
- 'bright_blue': '\033[94m',
207
- 'bright_magenta': '\033[95m',
208
- 'bright_cyan': '\033[96m',
209
- 'bright_white': '\033[97m',
210
- 'end': '\033[0m', # misc
211
- 'bold': '\033[1m',
212
- 'underline': '\033[4m'}
213
- return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
214
-
215
-
216
- def labels_to_class_weights(labels, nc=80):
217
- # Get class weights (inverse frequency) from training labels
218
- if labels[0] is None: # no labels loaded
219
- return torch.Tensor()
220
-
221
- labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
222
- classes = labels[:, 0].astype(np.int32) # labels = [class xywh]
223
- weights = np.bincount(classes, minlength=nc) # occurrences per class
224
-
225
- # Prepend gridpoint count (for uCE training)
226
- # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
227
- # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
228
-
229
- weights[weights == 0] = 1 # replace empty bins with 1
230
- weights = 1 / weights # number of targets per class
231
- weights /= weights.sum() # normalize
232
- return torch.from_numpy(weights)
233
-
234
-
235
- def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
236
- # Produces image weights based on class_weights and image contents
237
- class_counts = np.array([np.bincount(x[:, 0].astype(np.int32), minlength=nc) for x in labels])
238
- image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
239
- # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
240
- return image_weights
241
-
242
-
243
- def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
244
- # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
245
- # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
246
- # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
247
- # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
248
- # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
249
- x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
250
- 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
251
- 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
252
- return x
253
-
254
-
255
- def xyxy2xywh(x):
256
- # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
257
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
258
- y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
259
- y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
260
- y[:, 2] = x[:, 2] - x[:, 0] # width
261
- y[:, 3] = x[:, 3] - x[:, 1] # height
262
- return y
263
-
264
-
265
- def xywh2xyxy(x):
266
- # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
267
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
268
- y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
269
- y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
270
- y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
271
- y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
272
- return y
273
-
274
-
275
- def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
276
- # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
277
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
278
- y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
279
- y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
280
- y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
281
- y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
282
- return y
283
-
284
-
285
- def xyn2xy(x, w=640, h=640, padw=0, padh=0):
286
- # Convert normalized segments into pixel segments, shape (n,2)
287
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
288
- y[:, 0] = w * x[:, 0] + padw # top left x
289
- y[:, 1] = h * x[:, 1] + padh # top left y
290
- return y
291
-
292
-
293
- def segment2box(segment, width=640, height=640):
294
- # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
295
- x, y = segment.T # segment xy
296
- inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
297
- x, y, = x[inside], y[inside]
298
- return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
299
-
300
-
301
- def segments2boxes(segments):
302
- # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
303
- boxes = []
304
- for s in segments:
305
- x, y = s.T # segment xy
306
- boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
307
- return xyxy2xywh(np.array(boxes)) # cls, xywh
308
-
309
-
310
- def resample_segments(segments, n=1000):
311
- # Up-sample an (n,2) segment
312
- for i, s in enumerate(segments):
313
- s = np.concatenate((s, s[0:1, :]), axis=0)
314
- x = np.linspace(0, len(s) - 1, n)
315
- xp = np.arange(len(s))
316
- segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
317
- return segments
318
-
319
-
320
- def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
321
- # Rescale coords (xyxy) from img1_shape to img0_shape
322
- if ratio_pad is None: # calculate from img0_shape
323
- gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
324
- pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
325
- else:
326
- gain = ratio_pad[0][0]
327
- pad = ratio_pad[1]
328
-
329
- coords[:, [0, 2]] -= pad[0] # x padding
330
- coords[:, [1, 3]] -= pad[1] # y padding
331
- coords[:, :4] /= gain
332
- clip_coords(coords, img0_shape)
333
- return coords
334
-
335
-
336
- def clip_coords(boxes, img_shape):
337
- # Clip bounding xyxy bounding boxes to image shape (height, width)
338
- boxes[:, 0].clamp_(0, img_shape[1]) # x1
339
- boxes[:, 1].clamp_(0, img_shape[0]) # y1
340
- boxes[:, 2].clamp_(0, img_shape[1]) # x2
341
- boxes[:, 3].clamp_(0, img_shape[0]) # y2
342
-
343
-
344
- def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
345
- # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
346
- box2 = box2.T
347
-
348
- # Get the coordinates of bounding boxes
349
- if x1y1x2y2: # x1, y1, x2, y2 = box1
350
- b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
351
- b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
352
- else: # transform from xywh to xyxy
353
- b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
354
- b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
355
- b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
356
- b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
357
-
358
- # Intersection area
359
- inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
360
- (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
361
-
362
- # Union Area
363
- w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
364
- w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
365
- union = w1 * h1 + w2 * h2 - inter + eps
366
-
367
- iou = inter / union
368
-
369
- if GIoU or DIoU or CIoU:
370
- cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
371
- ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
372
- if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
373
- c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
374
- rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
375
- (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
376
- if DIoU:
377
- return iou - rho2 / c2 # DIoU
378
- elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
379
- v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2)
380
- with torch.no_grad():
381
- alpha = v / (v - iou + (1 + eps))
382
- return iou - (rho2 / c2 + v * alpha) # CIoU
383
- else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
384
- c_area = cw * ch + eps # convex area
385
- return iou - (c_area - union) / c_area # GIoU
386
- else:
387
- return iou # IoU
388
-
389
-
390
-
391
-
392
- def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=2, eps=1e-9):
393
- # Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4
394
- box2 = box2.T
395
-
396
- # Get the coordinates of bounding boxes
397
- if x1y1x2y2: # x1, y1, x2, y2 = box1
398
- b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
399
- b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
400
- else: # transform from xywh to xyxy
401
- b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
402
- b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
403
- b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
404
- b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
405
-
406
- # Intersection area
407
- inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
408
- (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
409
-
410
- # Union Area
411
- w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
412
- w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
413
- union = w1 * h1 + w2 * h2 - inter + eps
414
-
415
- # change iou into pow(iou+eps)
416
- # iou = inter / union
417
- iou = torch.pow(inter/union + eps, alpha)
418
- # beta = 2 * alpha
419
- if GIoU or DIoU or CIoU:
420
- cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
421
- ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
422
- if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
423
- c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal
424
- rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
425
- rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
426
- rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha # center distance
427
- if DIoU:
428
- return iou - rho2 / c2 # DIoU
429
- elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
430
- v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
431
- with torch.no_grad():
432
- alpha_ciou = v / ((1 + eps) - inter / union + v)
433
- # return iou - (rho2 / c2 + v * alpha_ciou) # CIoU
434
- return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU
435
- else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
436
- # c_area = cw * ch + eps # convex area
437
- # return iou - (c_area - union) / c_area # GIoU
438
- c_area = torch.max(cw * ch + eps, union) # convex area
439
- return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU
440
- else:
441
- return iou # torch.log(iou+eps) or iou
442
-
443
-
444
- def box_iou(box1, box2):
445
- # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
446
- """
447
- Return intersection-over-union (Jaccard index) of boxes.
448
- Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
449
- Arguments:
450
- box1 (Tensor[N, 4])
451
- box2 (Tensor[M, 4])
452
- Returns:
453
- iou (Tensor[N, M]): the NxM matrix containing the pairwise
454
- IoU values for every element in boxes1 and boxes2
455
- """
456
-
457
- def box_area(box):
458
- # box = 4xn
459
- return (box[2] - box[0]) * (box[3] - box[1])
460
-
461
- area1 = box_area(box1.T)
462
- area2 = box_area(box2.T)
463
-
464
- # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
465
- inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
466
- return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
467
-
468
-
469
- def wh_iou(wh1, wh2):
470
- # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
471
- wh1 = wh1[:, None] # [N,1,2]
472
- wh2 = wh2[None] # [1,M,2]
473
- inter = torch.min(wh1, wh2).prod(2) # [N,M]
474
- return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
475
-
476
-
477
- def box_giou(box1, box2):
478
- """
479
- Return generalized intersection-over-union (Jaccard index) between two sets of boxes.
480
- Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
481
- ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
482
- Args:
483
- boxes1 (Tensor[N, 4]): first set of boxes
484
- boxes2 (Tensor[M, 4]): second set of boxes
485
- Returns:
486
- Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values
487
- for every element in boxes1 and boxes2
488
- """
489
-
490
- def box_area(box):
491
- # box = 4xn
492
- return (box[2] - box[0]) * (box[3] - box[1])
493
-
494
- area1 = box_area(box1.T)
495
- area2 = box_area(box2.T)
496
-
497
- inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
498
- union = (area1[:, None] + area2 - inter)
499
-
500
- iou = inter / union
501
-
502
- lti = torch.min(box1[:, None, :2], box2[:, :2])
503
- rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
504
-
505
- whi = (rbi - lti).clamp(min=0) # [N,M,2]
506
- areai = whi[:, :, 0] * whi[:, :, 1]
507
-
508
- return iou - (areai - union) / areai
509
-
510
-
511
- def box_ciou(box1, box2, eps: float = 1e-7):
512
- """
513
- Return complete intersection-over-union (Jaccard index) between two sets of boxes.
514
- Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
515
- ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
516
- Args:
517
- boxes1 (Tensor[N, 4]): first set of boxes
518
- boxes2 (Tensor[M, 4]): second set of boxes
519
- eps (float, optional): small number to prevent division by zero. Default: 1e-7
520
- Returns:
521
- Tensor[N, M]: the NxM matrix containing the pairwise complete IoU values
522
- for every element in boxes1 and boxes2
523
- """
524
-
525
- def box_area(box):
526
- # box = 4xn
527
- return (box[2] - box[0]) * (box[3] - box[1])
528
-
529
- area1 = box_area(box1.T)
530
- area2 = box_area(box2.T)
531
-
532
- inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
533
- union = (area1[:, None] + area2 - inter)
534
-
535
- iou = inter / union
536
-
537
- lti = torch.min(box1[:, None, :2], box2[:, :2])
538
- rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
539
-
540
- whi = (rbi - lti).clamp(min=0) # [N,M,2]
541
- diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
542
-
543
- # centers of boxes
544
- x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
545
- y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
546
- x_g = (box2[:, 0] + box2[:, 2]) / 2
547
- y_g = (box2[:, 1] + box2[:, 3]) / 2
548
- # The distance between boxes' centers squared.
549
- centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
550
-
551
- w_pred = box1[:, None, 2] - box1[:, None, 0]
552
- h_pred = box1[:, None, 3] - box1[:, None, 1]
553
-
554
- w_gt = box2[:, 2] - box2[:, 0]
555
- h_gt = box2[:, 3] - box2[:, 1]
556
-
557
- v = (4 / (torch.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2)
558
- with torch.no_grad():
559
- alpha = v / (1 - iou + v + eps)
560
- return iou - (centers_distance_squared / diagonal_distance_squared) - alpha * v
561
-
562
-
563
- def box_diou(box1, box2, eps: float = 1e-7):
564
- """
565
- Return distance intersection-over-union (Jaccard index) between two sets of boxes.
566
- Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
567
- ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
568
- Args:
569
- boxes1 (Tensor[N, 4]): first set of boxes
570
- boxes2 (Tensor[M, 4]): second set of boxes
571
- eps (float, optional): small number to prevent division by zero. Default: 1e-7
572
- Returns:
573
- Tensor[N, M]: the NxM matrix containing the pairwise distance IoU values
574
- for every element in boxes1 and boxes2
575
- """
576
-
577
- def box_area(box):
578
- # box = 4xn
579
- return (box[2] - box[0]) * (box[3] - box[1])
580
-
581
- area1 = box_area(box1.T)
582
- area2 = box_area(box2.T)
583
-
584
- inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
585
- union = (area1[:, None] + area2 - inter)
586
-
587
- iou = inter / union
588
-
589
- lti = torch.min(box1[:, None, :2], box2[:, :2])
590
- rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
591
-
592
- whi = (rbi - lti).clamp(min=0) # [N,M,2]
593
- diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
594
-
595
- # centers of boxes
596
- x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
597
- y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
598
- x_g = (box2[:, 0] + box2[:, 2]) / 2
599
- y_g = (box2[:, 1] + box2[:, 3]) / 2
600
- # The distance between boxes' centers squared.
601
- centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
602
-
603
- # The distance IoU is the IoU penalized by a normalized
604
- # distance between boxes' centers squared.
605
- return iou - (centers_distance_squared / diagonal_distance_squared)
606
-
607
-
608
- def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
609
- labels=()):
610
- """Runs Non-Maximum Suppression (NMS) on inference results
611
-
612
- Returns:
613
- list of detections, on (n,6) tensor per image [xyxy, conf, cls]
614
- """
615
-
616
- nc = prediction.shape[2] - 5 # number of classes
617
- xc = prediction[..., 4] > conf_thres # candidates
618
-
619
- # Settings
620
- min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
621
- max_det = 300 # maximum number of detections per image
622
- max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
623
- time_limit = 10.0 # seconds to quit after
624
- redundant = True # require redundant detections
625
- multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
626
- merge = False # use merge-NMS
627
-
628
- t = time.time()
629
- output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
630
- for xi, x in enumerate(prediction): # image index, image inference
631
- # Apply constraints
632
- # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
633
- x = x[xc[xi]] # confidence
634
-
635
- # Cat apriori labels if autolabelling
636
- if labels and len(labels[xi]):
637
- l = labels[xi]
638
- v = torch.zeros((len(l), nc + 5), device=x.device)
639
- v[:, :4] = l[:, 1:5] # box
640
- v[:, 4] = 1.0 # conf
641
- v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
642
- x = torch.cat((x, v), 0)
643
-
644
- # If none remain process next image
645
- if not x.shape[0]:
646
- continue
647
-
648
- # Compute conf
649
- if nc == 1:
650
- x[:, 5:] = x[:, 4:5] # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
651
- # so there is no need to multiplicate.
652
- else:
653
- x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
654
-
655
- # Box (center x, center y, width, height) to (x1, y1, x2, y2)
656
- box = xywh2xyxy(x[:, :4])
657
-
658
- # Detections matrix nx6 (xyxy, conf, cls)
659
- if multi_label:
660
- i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
661
- x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
662
- else: # best class only
663
- conf, j = x[:, 5:].max(1, keepdim=True)
664
- x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
665
-
666
- # Filter by class
667
- if classes is not None:
668
- x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
669
-
670
- # Apply finite constraint
671
- # if not torch.isfinite(x).all():
672
- # x = x[torch.isfinite(x).all(1)]
673
-
674
- # Check shape
675
- n = x.shape[0] # number of boxes
676
- if not n: # no boxes
677
- continue
678
- elif n > max_nms: # excess boxes
679
- x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
680
-
681
- # Batched NMS
682
- c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
683
- boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
684
- i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
685
- if i.shape[0] > max_det: # limit detections
686
- i = i[:max_det]
687
- if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
688
- # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
689
- iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
690
- weights = iou * scores[None] # box weights
691
- x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
692
- if redundant:
693
- i = i[iou.sum(1) > 1] # require redundancy
694
-
695
- output[xi] = x[i]
696
- if (time.time() - t) > time_limit:
697
- print(f'WARNING: NMS time limit {time_limit}s exceeded')
698
- break # time limit exceeded
699
-
700
- return output
701
-
702
-
703
- def non_max_suppression_kpt(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
704
- labels=(), kpt_label=False, nc=None, nkpt=None):
705
- """Runs Non-Maximum Suppression (NMS) on inference results
706
-
707
- Returns:
708
- list of detections, on (n,6) tensor per image [xyxy, conf, cls]
709
- """
710
- if nc is None:
711
- nc = prediction.shape[2] - 5 if not kpt_label else prediction.shape[2] - 56 # number of classes
712
- xc = prediction[..., 4] > conf_thres # candidates
713
-
714
- # Settings
715
- min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
716
- max_det = 300 # maximum number of detections per image
717
- max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
718
- time_limit = 10.0 # seconds to quit after
719
- redundant = True # require redundant detections
720
- multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
721
- merge = False # use merge-NMS
722
-
723
- t = time.time()
724
- output = [torch.zeros((0,6), device=prediction.device)] * prediction.shape[0]
725
- for xi, x in enumerate(prediction): # image index, image inference
726
- # Apply constraints
727
- # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
728
- x = x[xc[xi]] # confidence
729
-
730
- # Cat apriori labels if autolabelling
731
- if labels and len(labels[xi]):
732
- l = labels[xi]
733
- v = torch.zeros((len(l), nc + 5), device=x.device)
734
- v[:, :4] = l[:, 1:5] # box
735
- v[:, 4] = 1.0 # conf
736
- v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
737
- x = torch.cat((x, v), 0)
738
-
739
- # If none remain process next image
740
- if not x.shape[0]:
741
- continue
742
-
743
- # Compute conf
744
- x[:, 5:5+nc] *= x[:, 4:5] # conf = obj_conf * cls_conf
745
-
746
- # Box (center x, center y, width, height) to (x1, y1, x2, y2)
747
- box = xywh2xyxy(x[:, :4])
748
-
749
- # Detections matrix nx6 (xyxy, conf, cls)
750
- if multi_label:
751
- i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
752
- x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
753
- else: # best class only
754
- if not kpt_label:
755
- conf, j = x[:, 5:].max(1, keepdim=True)
756
- x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
757
- else:
758
- kpts = x[:, 6:]
759
- conf, j = x[:, 5:6].max(1, keepdim=True)
760
- x = torch.cat((box, conf, j.float(), kpts), 1)[conf.view(-1) > conf_thres]
761
-
762
-
763
- # Filter by class
764
- if classes is not None:
765
- x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
766
-
767
- # Apply finite constraint
768
- # if not torch.isfinite(x).all():
769
- # x = x[torch.isfinite(x).all(1)]
770
-
771
- # Check shape
772
- n = x.shape[0] # number of boxes
773
- if not n: # no boxes
774
- continue
775
- elif n > max_nms: # excess boxes
776
- x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
777
-
778
- # Batched NMS
779
- c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
780
- boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
781
- i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
782
- if i.shape[0] > max_det: # limit detections
783
- i = i[:max_det]
784
- if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
785
- # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
786
- iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
787
- weights = iou * scores[None] # box weights
788
- x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
789
- if redundant:
790
- i = i[iou.sum(1) > 1] # require redundancy
791
-
792
- output[xi] = x[i]
793
- if (time.time() - t) > time_limit:
794
- print(f'WARNING: NMS time limit {time_limit}s exceeded')
795
- break # time limit exceeded
796
-
797
- return output
798
-
799
-
800
- def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
801
- # Strip optimizer from 'f' to finalize training, optionally save as 's'
802
- x = torch.load(f, map_location=torch.device('cpu'))
803
- if x.get('ema'):
804
- x['model'] = x['ema'] # replace model with ema
805
- for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
806
- x[k] = None
807
- x['epoch'] = -1
808
- x['model'].half() # to FP16
809
- for p in x['model'].parameters():
810
- p.requires_grad = False
811
- torch.save(x, s or f)
812
- mb = os.path.getsize(s or f) / 1E6 # filesize
813
- print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
814
-
815
-
816
- def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
817
- # Print mutation results to evolve.txt (for use with train.py --evolve)
818
- a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
819
- b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
820
- c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
821
- print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
822
-
823
- if bucket:
824
- url = 'gs://%s/evolve.txt' % bucket
825
- if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
826
- os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
827
-
828
- with open('evolve.txt', 'a') as f: # append result
829
- f.write(c + b + '\n')
830
- x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
831
- x = x[np.argsort(-fitness(x))] # sort
832
- np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
833
-
834
- # Save yaml
835
- for i, k in enumerate(hyp.keys()):
836
- hyp[k] = float(x[0, i + 7])
837
- with open(yaml_file, 'w') as f:
838
- results = tuple(x[0, :7])
839
- c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
840
- f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
841
- yaml.dump(hyp, f, sort_keys=False)
842
-
843
- if bucket:
844
- os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
845
-
846
-
847
- def apply_classifier(x, model, img, im0):
848
- # applies a second stage classifier to yolo outputs
849
- im0 = [im0] if isinstance(im0, np.ndarray) else im0
850
- for i, d in enumerate(x): # per image
851
- if d is not None and len(d):
852
- d = d.clone()
853
-
854
- # Reshape and pad cutouts
855
- b = xyxy2xywh(d[:, :4]) # boxes
856
- b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
857
- b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
858
- d[:, :4] = xywh2xyxy(b).long()
859
-
860
- # Rescale boxes from img_size to im0 size
861
- scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
862
-
863
- # Classes
864
- pred_cls1 = d[:, 5].long()
865
- ims = []
866
- for j, a in enumerate(d): # per item
867
- cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
868
- im = cv2.resize(cutout, (224, 224)) # BGR
869
- # cv2.imwrite('test%i.jpg' % j, cutout)
870
-
871
- im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
872
- im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
873
- im /= 255.0 # 0 - 255 to 0.0 - 1.0
874
- ims.append(im)
875
-
876
- pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
877
- x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
878
-
879
- return x
880
-
881
-
882
- def increment_path(path, exist_ok=True, sep=''):
883
- # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
884
- path = Path(path) # os-agnostic
885
- if (path.exists() and exist_ok) or (not path.exists()):
886
- return str(path)
887
- else:
888
- dirs = glob.glob(f"{path}{sep}*") # similar paths
889
- matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
890
- i = [int(m.groups()[0]) for m in matches if m] # indices
891
- n = max(i) + 1 if i else 2 # increment number
892
- return f"{path}{sep}{n}" # update path
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cedula/utils/google_utils.py DELETED
@@ -1,123 +0,0 @@
1
- # Google utils: https://cloud.google.com/storage/docs/reference/libraries
2
-
3
- import os
4
- import platform
5
- import subprocess
6
- import time
7
- from pathlib import Path
8
-
9
- import requests
10
- import torch
11
-
12
-
13
- def gsutil_getsize(url=''):
14
- # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
15
- s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
16
- return eval(s.split(' ')[0]) if len(s) else 0 # bytes
17
-
18
-
19
- def attempt_download(file, repo='WongKinYiu/yolov7'):
20
- # Attempt file download if does not exist
21
- file = Path(str(file).strip().replace("'", '').lower())
22
-
23
- if not file.exists():
24
- try:
25
- response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
26
- assets = [x['name'] for x in response['assets']] # release assets
27
- tag = response['tag_name'] # i.e. 'v1.0'
28
- except: # fallback plan
29
- assets = ['yolov7.pt', 'yolov7-tiny.pt', 'yolov7x.pt', 'yolov7-d6.pt', 'yolov7-e6.pt',
30
- 'yolov7-e6e.pt', 'yolov7-w6.pt']
31
- tag = subprocess.check_output('git tag', shell=True).decode().split()[-1]
32
-
33
- name = file.name
34
- if name in assets:
35
- msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
36
- redundant = False # second download option
37
- try: # GitHub
38
- url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
39
- print(f'Downloading {url} to {file}...')
40
- torch.hub.download_url_to_file(url, file)
41
- assert file.exists() and file.stat().st_size > 1E6 # check
42
- except Exception as e: # GCP
43
- print(f'Download error: {e}')
44
- assert redundant, 'No secondary mirror'
45
- url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
46
- print(f'Downloading {url} to {file}...')
47
- os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
48
- finally:
49
- if not file.exists() or file.stat().st_size < 1E6: # check
50
- file.unlink(missing_ok=True) # remove partial downloads
51
- print(f'ERROR: Download failure: {msg}')
52
- print('')
53
- return
54
-
55
-
56
- def gdrive_download(id='', file='tmp.zip'):
57
- # Downloads a file from Google Drive. from yolov7.utils.google_utils import *; gdrive_download()
58
- t = time.time()
59
- file = Path(file)
60
- cookie = Path('cookie') # gdrive cookie
61
- print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
62
- file.unlink(missing_ok=True) # remove existing file
63
- cookie.unlink(missing_ok=True) # remove existing cookie
64
-
65
- # Attempt file download
66
- out = "NUL" if platform.system() == "Windows" else "/dev/null"
67
- os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
68
- if os.path.exists('cookie'): # large file
69
- s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
70
- else: # small file
71
- s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
72
- r = os.system(s) # execute, capture return
73
- cookie.unlink(missing_ok=True) # remove existing cookie
74
-
75
- # Error check
76
- if r != 0:
77
- file.unlink(missing_ok=True) # remove partial
78
- print('Download error ') # raise Exception('Download error')
79
- return r
80
-
81
- # Unzip if archive
82
- if file.suffix == '.zip':
83
- print('unzipping... ', end='')
84
- os.system(f'unzip -q {file}') # unzip
85
- file.unlink() # remove zip to free space
86
-
87
- print(f'Done ({time.time() - t:.1f}s)')
88
- return r
89
-
90
-
91
- def get_token(cookie="./cookie"):
92
- with open(cookie) as f:
93
- for line in f:
94
- if "download" in line:
95
- return line.split()[-1]
96
- return ""
97
-
98
- # def upload_blob(bucket_name, source_file_name, destination_blob_name):
99
- # # Uploads a file to a bucket
100
- # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
101
- #
102
- # storage_client = storage.Client()
103
- # bucket = storage_client.get_bucket(bucket_name)
104
- # blob = bucket.blob(destination_blob_name)
105
- #
106
- # blob.upload_from_filename(source_file_name)
107
- #
108
- # print('File {} uploaded to {}.'.format(
109
- # source_file_name,
110
- # destination_blob_name))
111
- #
112
- #
113
- # def download_blob(bucket_name, source_blob_name, destination_file_name):
114
- # # Uploads a blob from a bucket
115
- # storage_client = storage.Client()
116
- # bucket = storage_client.get_bucket(bucket_name)
117
- # blob = bucket.blob(source_blob_name)
118
- #
119
- # blob.download_to_filename(destination_file_name)
120
- #
121
- # print('Blob {} downloaded to {}.'.format(
122
- # source_blob_name,
123
- # destination_file_name))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cedula/utils/loss.py DELETED
@@ -1,1697 +0,0 @@
1
- # Loss functions
2
-
3
- import torch
4
- import torch.nn as nn
5
- import torch.nn.functional as F
6
-
7
- from utils.general import bbox_iou, bbox_alpha_iou, box_iou, box_giou, box_diou, box_ciou, xywh2xyxy
8
- from utils.torch_utils import is_parallel
9
-
10
-
11
- def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
12
- # return positive, negative label smoothing BCE targets
13
- return 1.0 - 0.5 * eps, 0.5 * eps
14
-
15
-
16
- class BCEBlurWithLogitsLoss(nn.Module):
17
- # BCEwithLogitLoss() with reduced missing label effects.
18
- def __init__(self, alpha=0.05):
19
- super(BCEBlurWithLogitsLoss, self).__init__()
20
- self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
21
- self.alpha = alpha
22
-
23
- def forward(self, pred, true):
24
- loss = self.loss_fcn(pred, true)
25
- pred = torch.sigmoid(pred) # prob from logits
26
- dx = pred - true # reduce only missing label effects
27
- # dx = (pred - true).abs() # reduce missing label and false label effects
28
- alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
29
- loss *= alpha_factor
30
- return loss.mean()
31
-
32
-
33
- class SigmoidBin(nn.Module):
34
- stride = None # strides computed during build
35
- export = False # onnx export
36
-
37
- def __init__(self, bin_count=10, min=0.0, max=1.0, reg_scale = 2.0, use_loss_regression=True, use_fw_regression=True, BCE_weight=1.0, smooth_eps=0.0):
38
- super(SigmoidBin, self).__init__()
39
-
40
- self.bin_count = bin_count
41
- self.length = bin_count + 1
42
- self.min = min
43
- self.max = max
44
- self.scale = float(max - min)
45
- self.shift = self.scale / 2.0
46
-
47
- self.use_loss_regression = use_loss_regression
48
- self.use_fw_regression = use_fw_regression
49
- self.reg_scale = reg_scale
50
- self.BCE_weight = BCE_weight
51
-
52
- start = min + (self.scale/2.0) / self.bin_count
53
- end = max - (self.scale/2.0) / self.bin_count
54
- step = self.scale / self.bin_count
55
- self.step = step
56
- #print(f" start = {start}, end = {end}, step = {step} ")
57
-
58
- bins = torch.range(start, end + 0.0001, step).float()
59
- self.register_buffer('bins', bins)
60
-
61
-
62
- self.cp = 1.0 - 0.5 * smooth_eps
63
- self.cn = 0.5 * smooth_eps
64
-
65
- self.BCEbins = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([BCE_weight]))
66
- self.MSELoss = nn.MSELoss()
67
-
68
- def get_length(self):
69
- return self.length
70
-
71
- def forward(self, pred):
72
- assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length)
73
-
74
- pred_reg = (pred[..., 0] * self.reg_scale - self.reg_scale/2.0) * self.step
75
- pred_bin = pred[..., 1:(1+self.bin_count)]
76
-
77
- _, bin_idx = torch.max(pred_bin, dim=-1)
78
- bin_bias = self.bins[bin_idx]
79
-
80
- if self.use_fw_regression:
81
- result = pred_reg + bin_bias
82
- else:
83
- result = bin_bias
84
- result = result.clamp(min=self.min, max=self.max)
85
-
86
- return result
87
-
88
-
89
- def training_loss(self, pred, target):
90
- assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length)
91
- assert pred.shape[0] == target.shape[0], 'pred.shape=%d is not equal to the target.shape=%d' % (pred.shape[0], target.shape[0])
92
- device = pred.device
93
-
94
- pred_reg = (pred[..., 0].sigmoid() * self.reg_scale - self.reg_scale/2.0) * self.step
95
- pred_bin = pred[..., 1:(1+self.bin_count)]
96
-
97
- diff_bin_target = torch.abs(target[..., None] - self.bins)
98
- _, bin_idx = torch.min(diff_bin_target, dim=-1)
99
-
100
- bin_bias = self.bins[bin_idx]
101
- bin_bias.requires_grad = False
102
- result = pred_reg + bin_bias
103
-
104
- target_bins = torch.full_like(pred_bin, self.cn, device=device) # targets
105
- n = pred.shape[0]
106
- target_bins[range(n), bin_idx] = self.cp
107
-
108
- loss_bin = self.BCEbins(pred_bin, target_bins) # BCE
109
-
110
- if self.use_loss_regression:
111
- loss_regression = self.MSELoss(result, target) # MSE
112
- loss = loss_bin + loss_regression
113
- else:
114
- loss = loss_bin
115
-
116
- out_result = result.clamp(min=self.min, max=self.max)
117
-
118
- return loss, out_result
119
-
120
-
121
- class FocalLoss(nn.Module):
122
- # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
123
- def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
124
- super(FocalLoss, self).__init__()
125
- self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
126
- self.gamma = gamma
127
- self.alpha = alpha
128
- self.reduction = loss_fcn.reduction
129
- self.loss_fcn.reduction = 'none' # required to apply FL to each element
130
-
131
- def forward(self, pred, true):
132
- loss = self.loss_fcn(pred, true)
133
- # p_t = torch.exp(-loss)
134
- # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
135
-
136
- # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
137
- pred_prob = torch.sigmoid(pred) # prob from logits
138
- p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
139
- alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
140
- modulating_factor = (1.0 - p_t) ** self.gamma
141
- loss *= alpha_factor * modulating_factor
142
-
143
- if self.reduction == 'mean':
144
- return loss.mean()
145
- elif self.reduction == 'sum':
146
- return loss.sum()
147
- else: # 'none'
148
- return loss
149
-
150
-
151
- class QFocalLoss(nn.Module):
152
- # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
153
- def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
154
- super(QFocalLoss, self).__init__()
155
- self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
156
- self.gamma = gamma
157
- self.alpha = alpha
158
- self.reduction = loss_fcn.reduction
159
- self.loss_fcn.reduction = 'none' # required to apply FL to each element
160
-
161
- def forward(self, pred, true):
162
- loss = self.loss_fcn(pred, true)
163
-
164
- pred_prob = torch.sigmoid(pred) # prob from logits
165
- alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
166
- modulating_factor = torch.abs(true - pred_prob) ** self.gamma
167
- loss *= alpha_factor * modulating_factor
168
-
169
- if self.reduction == 'mean':
170
- return loss.mean()
171
- elif self.reduction == 'sum':
172
- return loss.sum()
173
- else: # 'none'
174
- return loss
175
-
176
- class RankSort(torch.autograd.Function):
177
- @staticmethod
178
- def forward(ctx, logits, targets, delta_RS=0.50, eps=1e-10):
179
-
180
- classification_grads=torch.zeros(logits.shape).cuda()
181
-
182
- #Filter fg logits
183
- fg_labels = (targets > 0.)
184
- fg_logits = logits[fg_labels]
185
- fg_targets = targets[fg_labels]
186
- fg_num = len(fg_logits)
187
-
188
- #Do not use bg with scores less than minimum fg logit
189
- #since changing its score does not have an effect on precision
190
- threshold_logit = torch.min(fg_logits)-delta_RS
191
- relevant_bg_labels=((targets==0) & (logits>=threshold_logit))
192
-
193
- relevant_bg_logits = logits[relevant_bg_labels]
194
- relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
195
- sorting_error=torch.zeros(fg_num).cuda()
196
- ranking_error=torch.zeros(fg_num).cuda()
197
- fg_grad=torch.zeros(fg_num).cuda()
198
-
199
- #sort the fg logits
200
- order=torch.argsort(fg_logits)
201
- #Loops over each positive following the order
202
- for ii in order:
203
- # Difference Transforms (x_ij)
204
- fg_relations=fg_logits-fg_logits[ii]
205
- bg_relations=relevant_bg_logits-fg_logits[ii]
206
-
207
- if delta_RS > 0:
208
- fg_relations=torch.clamp(fg_relations/(2*delta_RS)+0.5,min=0,max=1)
209
- bg_relations=torch.clamp(bg_relations/(2*delta_RS)+0.5,min=0,max=1)
210
- else:
211
- fg_relations = (fg_relations >= 0).float()
212
- bg_relations = (bg_relations >= 0).float()
213
-
214
- # Rank of ii among pos and false positive number (bg with larger scores)
215
- rank_pos=torch.sum(fg_relations)
216
- FP_num=torch.sum(bg_relations)
217
-
218
- # Rank of ii among all examples
219
- rank=rank_pos+FP_num
220
-
221
- # Ranking error of example ii. target_ranking_error is always 0. (Eq. 7)
222
- ranking_error[ii]=FP_num/rank
223
-
224
- # Current sorting error of example ii. (Eq. 7)
225
- current_sorting_error = torch.sum(fg_relations*(1-fg_targets))/rank_pos
226
-
227
- #Find examples in the target sorted order for example ii
228
- iou_relations = (fg_targets >= fg_targets[ii])
229
- target_sorted_order = iou_relations * fg_relations
230
-
231
- #The rank of ii among positives in sorted order
232
- rank_pos_target = torch.sum(target_sorted_order)
233
-
234
- #Compute target sorting error. (Eq. 8)
235
- #Since target ranking error is 0, this is also total target error
236
- target_sorting_error= torch.sum(target_sorted_order*(1-fg_targets))/rank_pos_target
237
-
238
- #Compute sorting error on example ii
239
- sorting_error[ii] = current_sorting_error - target_sorting_error
240
-
241
- #Identity Update for Ranking Error
242
- if FP_num > eps:
243
- #For ii the update is the ranking error
244
- fg_grad[ii] -= ranking_error[ii]
245
- #For negatives, distribute error via ranking pmf (i.e. bg_relations/FP_num)
246
- relevant_bg_grad += (bg_relations*(ranking_error[ii]/FP_num))
247
-
248
- #Find the positives that are misranked (the cause of the error)
249
- #These are the ones with smaller IoU but larger logits
250
- missorted_examples = (~ iou_relations) * fg_relations
251
-
252
- #Denominotor of sorting pmf
253
- sorting_pmf_denom = torch.sum(missorted_examples)
254
-
255
- #Identity Update for Sorting Error
256
- if sorting_pmf_denom > eps:
257
- #For ii the update is the sorting error
258
- fg_grad[ii] -= sorting_error[ii]
259
- #For positives, distribute error via sorting pmf (i.e. missorted_examples/sorting_pmf_denom)
260
- fg_grad += (missorted_examples*(sorting_error[ii]/sorting_pmf_denom))
261
-
262
- #Normalize gradients by number of positives
263
- classification_grads[fg_labels]= (fg_grad/fg_num)
264
- classification_grads[relevant_bg_labels]= (relevant_bg_grad/fg_num)
265
-
266
- ctx.save_for_backward(classification_grads)
267
-
268
- return ranking_error.mean(), sorting_error.mean()
269
-
270
- @staticmethod
271
- def backward(ctx, out_grad1, out_grad2):
272
- g1, =ctx.saved_tensors
273
- return g1*out_grad1, None, None, None
274
-
275
- class aLRPLoss(torch.autograd.Function):
276
- @staticmethod
277
- def forward(ctx, logits, targets, regression_losses, delta=1., eps=1e-5):
278
- classification_grads=torch.zeros(logits.shape).cuda()
279
-
280
- #Filter fg logits
281
- fg_labels = (targets == 1)
282
- fg_logits = logits[fg_labels]
283
- fg_num = len(fg_logits)
284
-
285
- #Do not use bg with scores less than minimum fg logit
286
- #since changing its score does not have an effect on precision
287
- threshold_logit = torch.min(fg_logits)-delta
288
-
289
- #Get valid bg logits
290
- relevant_bg_labels=((targets==0)&(logits>=threshold_logit))
291
- relevant_bg_logits=logits[relevant_bg_labels]
292
- relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
293
- rank=torch.zeros(fg_num).cuda()
294
- prec=torch.zeros(fg_num).cuda()
295
- fg_grad=torch.zeros(fg_num).cuda()
296
-
297
- max_prec=0
298
- #sort the fg logits
299
- order=torch.argsort(fg_logits)
300
- #Loops over each positive following the order
301
- for ii in order:
302
- #x_ij s as score differences with fgs
303
- fg_relations=fg_logits-fg_logits[ii]
304
- #Apply piecewise linear function and determine relations with fgs
305
- fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1)
306
- #Discard i=j in the summation in rank_pos
307
- fg_relations[ii]=0
308
-
309
- #x_ij s as score differences with bgs
310
- bg_relations=relevant_bg_logits-fg_logits[ii]
311
- #Apply piecewise linear function and determine relations with bgs
312
- bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1)
313
-
314
- #Compute the rank of the example within fgs and number of bgs with larger scores
315
- rank_pos=1+torch.sum(fg_relations)
316
- FP_num=torch.sum(bg_relations)
317
- #Store the total since it is normalizer also for aLRP Regression error
318
- rank[ii]=rank_pos+FP_num
319
-
320
- #Compute precision for this example to compute classification loss
321
- prec[ii]=rank_pos/rank[ii]
322
- #For stability, set eps to a infinitesmall value (e.g. 1e-6), then compute grads
323
- if FP_num > eps:
324
- fg_grad[ii] = -(torch.sum(fg_relations*regression_losses)+FP_num)/rank[ii]
325
- relevant_bg_grad += (bg_relations*(-fg_grad[ii]/FP_num))
326
-
327
- #aLRP with grad formulation fg gradient
328
- classification_grads[fg_labels]= fg_grad
329
- #aLRP with grad formulation bg gradient
330
- classification_grads[relevant_bg_labels]= relevant_bg_grad
331
-
332
- classification_grads /= (fg_num)
333
-
334
- cls_loss=1-prec.mean()
335
- ctx.save_for_backward(classification_grads)
336
-
337
- return cls_loss, rank, order
338
-
339
- @staticmethod
340
- def backward(ctx, out_grad1, out_grad2, out_grad3):
341
- g1, =ctx.saved_tensors
342
- return g1*out_grad1, None, None, None, None
343
-
344
-
345
- class APLoss(torch.autograd.Function):
346
- @staticmethod
347
- def forward(ctx, logits, targets, delta=1.):
348
- classification_grads=torch.zeros(logits.shape).cuda()
349
-
350
- #Filter fg logits
351
- fg_labels = (targets == 1)
352
- fg_logits = logits[fg_labels]
353
- fg_num = len(fg_logits)
354
-
355
- #Do not use bg with scores less than minimum fg logit
356
- #since changing its score does not have an effect on precision
357
- threshold_logit = torch.min(fg_logits)-delta
358
-
359
- #Get valid bg logits
360
- relevant_bg_labels=((targets==0)&(logits>=threshold_logit))
361
- relevant_bg_logits=logits[relevant_bg_labels]
362
- relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
363
- rank=torch.zeros(fg_num).cuda()
364
- prec=torch.zeros(fg_num).cuda()
365
- fg_grad=torch.zeros(fg_num).cuda()
366
-
367
- max_prec=0
368
- #sort the fg logits
369
- order=torch.argsort(fg_logits)
370
- #Loops over each positive following the order
371
- for ii in order:
372
- #x_ij s as score differences with fgs
373
- fg_relations=fg_logits-fg_logits[ii]
374
- #Apply piecewise linear function and determine relations with fgs
375
- fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1)
376
- #Discard i=j in the summation in rank_pos
377
- fg_relations[ii]=0
378
-
379
- #x_ij s as score differences with bgs
380
- bg_relations=relevant_bg_logits-fg_logits[ii]
381
- #Apply piecewise linear function and determine relations with bgs
382
- bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1)
383
-
384
- #Compute the rank of the example within fgs and number of bgs with larger scores
385
- rank_pos=1+torch.sum(fg_relations)
386
- FP_num=torch.sum(bg_relations)
387
- #Store the total since it is normalizer also for aLRP Regression error
388
- rank[ii]=rank_pos+FP_num
389
-
390
- #Compute precision for this example
391
- current_prec=rank_pos/rank[ii]
392
-
393
- #Compute interpolated AP and store gradients for relevant bg examples
394
- if (max_prec<=current_prec):
395
- max_prec=current_prec
396
- relevant_bg_grad += (bg_relations/rank[ii])
397
- else:
398
- relevant_bg_grad += (bg_relations/rank[ii])*(((1-max_prec)/(1-current_prec)))
399
-
400
- #Store fg gradients
401
- fg_grad[ii]=-(1-max_prec)
402
- prec[ii]=max_prec
403
-
404
- #aLRP with grad formulation fg gradient
405
- classification_grads[fg_labels]= fg_grad
406
- #aLRP with grad formulation bg gradient
407
- classification_grads[relevant_bg_labels]= relevant_bg_grad
408
-
409
- classification_grads /= fg_num
410
-
411
- cls_loss=1-prec.mean()
412
- ctx.save_for_backward(classification_grads)
413
-
414
- return cls_loss
415
-
416
- @staticmethod
417
- def backward(ctx, out_grad1):
418
- g1, =ctx.saved_tensors
419
- return g1*out_grad1, None, None
420
-
421
-
422
- class ComputeLoss:
423
- # Compute losses
424
- def __init__(self, model, autobalance=False):
425
- super(ComputeLoss, self).__init__()
426
- device = next(model.parameters()).device # get model device
427
- h = model.hyp # hyperparameters
428
-
429
- # Define criteria
430
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
431
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
432
-
433
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
434
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
435
-
436
- # Focal loss
437
- g = h['fl_gamma'] # focal loss gamma
438
- if g > 0:
439
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
440
-
441
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
442
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
443
- #self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.1, .05]) # P3-P7
444
- #self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.5, 0.4, .1]) # P3-P7
445
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
446
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
447
- for k in 'na', 'nc', 'nl', 'anchors':
448
- setattr(self, k, getattr(det, k))
449
-
450
- def __call__(self, p, targets): # predictions, targets, model
451
- device = targets.device
452
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
453
- tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
454
-
455
- # Losses
456
- for i, pi in enumerate(p): # layer index, layer predictions
457
- b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
458
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
459
-
460
- n = b.shape[0] # number of targets
461
- if n:
462
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
463
-
464
- # Regression
465
- pxy = ps[:, :2].sigmoid() * 2. - 0.5
466
- pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
467
- pbox = torch.cat((pxy, pwh), 1) # predicted box
468
- iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
469
- lbox += (1.0 - iou).mean() # iou loss
470
-
471
- # Objectness
472
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
473
-
474
- # Classification
475
- if self.nc > 1: # cls loss (only if multiple classes)
476
- t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
477
- t[range(n), tcls[i]] = self.cp
478
- #t[t==self.cp] = iou.detach().clamp(0).type(t.dtype)
479
- lcls += self.BCEcls(ps[:, 5:], t) # BCE
480
-
481
- # Append targets to text file
482
- # with open('targets.txt', 'a') as file:
483
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
484
-
485
- obji = self.BCEobj(pi[..., 4], tobj)
486
- lobj += obji * self.balance[i] # obj loss
487
- if self.autobalance:
488
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
489
-
490
- if self.autobalance:
491
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
492
- lbox *= self.hyp['box']
493
- lobj *= self.hyp['obj']
494
- lcls *= self.hyp['cls']
495
- bs = tobj.shape[0] # batch size
496
-
497
- loss = lbox + lobj + lcls
498
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
499
-
500
- def build_targets(self, p, targets):
501
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
502
- na, nt = self.na, targets.shape[0] # number of anchors, targets
503
- tcls, tbox, indices, anch = [], [], [], []
504
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
505
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
506
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
507
-
508
- g = 0.5 # bias
509
- off = torch.tensor([[0, 0],
510
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
511
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
512
- ], device=targets.device).float() * g # offsets
513
-
514
- for i in range(self.nl):
515
- anchors = self.anchors[i]
516
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
517
-
518
- # Match targets to anchors
519
- t = targets * gain
520
- if nt:
521
- # Matches
522
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
523
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
524
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
525
- t = t[j] # filter
526
-
527
- # Offsets
528
- gxy = t[:, 2:4] # grid xy
529
- gxi = gain[[2, 3]] - gxy # inverse
530
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
531
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
532
- j = torch.stack((torch.ones_like(j), j, k, l, m))
533
- t = t.repeat((5, 1, 1))[j]
534
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
535
- else:
536
- t = targets[0]
537
- offsets = 0
538
-
539
- # Define
540
- b, c = t[:, :2].long().T # image, class
541
- gxy = t[:, 2:4] # grid xy
542
- gwh = t[:, 4:6] # grid wh
543
- gij = (gxy - offsets).long()
544
- gi, gj = gij.T # grid xy indices
545
-
546
- # Append
547
- a = t[:, 6].long() # anchor indices
548
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
549
- tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
550
- anch.append(anchors[a]) # anchors
551
- tcls.append(c) # class
552
-
553
- return tcls, tbox, indices, anch
554
-
555
-
556
- class ComputeLossOTA:
557
- # Compute losses
558
- def __init__(self, model, autobalance=False):
559
- super(ComputeLossOTA, self).__init__()
560
- device = next(model.parameters()).device # get model device
561
- h = model.hyp # hyperparameters
562
-
563
- # Define criteria
564
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
565
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
566
-
567
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
568
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
569
-
570
- # Focal loss
571
- g = h['fl_gamma'] # focal loss gamma
572
- if g > 0:
573
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
574
-
575
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
576
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
577
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
578
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
579
- for k in 'na', 'nc', 'nl', 'anchors', 'stride':
580
- setattr(self, k, getattr(det, k))
581
-
582
- def __call__(self, p, targets, imgs): # predictions, targets, model
583
- device = targets.device
584
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
585
- bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs)
586
- pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p]
587
-
588
-
589
- # Losses
590
- for i, pi in enumerate(p): # layer index, layer predictions
591
- b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
592
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
593
-
594
- n = b.shape[0] # number of targets
595
- if n:
596
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
597
-
598
- # Regression
599
- grid = torch.stack([gi, gj], dim=1)
600
- pxy = ps[:, :2].sigmoid() * 2. - 0.5
601
- #pxy = ps[:, :2].sigmoid() * 3. - 1.
602
- pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
603
- pbox = torch.cat((pxy, pwh), 1) # predicted box
604
- selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
605
- selected_tbox[:, :2] -= grid
606
- iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
607
- lbox += (1.0 - iou).mean() # iou loss
608
-
609
- # Objectness
610
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
611
-
612
- # Classification
613
- selected_tcls = targets[i][:, 1].long()
614
- if self.nc > 1: # cls loss (only if multiple classes)
615
- t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
616
- t[range(n), selected_tcls] = self.cp
617
- lcls += self.BCEcls(ps[:, 5:], t) # BCE
618
-
619
- # Append targets to text file
620
- # with open('targets.txt', 'a') as file:
621
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
622
-
623
- obji = self.BCEobj(pi[..., 4], tobj)
624
- lobj += obji * self.balance[i] # obj loss
625
- if self.autobalance:
626
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
627
-
628
- if self.autobalance:
629
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
630
- lbox *= self.hyp['box']
631
- lobj *= self.hyp['obj']
632
- lcls *= self.hyp['cls']
633
- bs = tobj.shape[0] # batch size
634
-
635
- loss = lbox + lobj + lcls
636
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
637
-
638
- def build_targets(self, p, targets, imgs):
639
-
640
- #indices, anch = self.find_positive(p, targets)
641
- indices, anch = self.find_3_positive(p, targets)
642
- #indices, anch = self.find_4_positive(p, targets)
643
- #indices, anch = self.find_5_positive(p, targets)
644
- #indices, anch = self.find_9_positive(p, targets)
645
- device = torch.device(targets.device)
646
- matching_bs = [[] for pp in p]
647
- matching_as = [[] for pp in p]
648
- matching_gjs = [[] for pp in p]
649
- matching_gis = [[] for pp in p]
650
- matching_targets = [[] for pp in p]
651
- matching_anchs = [[] for pp in p]
652
-
653
- nl = len(p)
654
-
655
- for batch_idx in range(p[0].shape[0]):
656
-
657
- b_idx = targets[:, 0]==batch_idx
658
- this_target = targets[b_idx]
659
- if this_target.shape[0] == 0:
660
- continue
661
-
662
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
663
- txyxy = xywh2xyxy(txywh)
664
-
665
- pxyxys = []
666
- p_cls = []
667
- p_obj = []
668
- from_which_layer = []
669
- all_b = []
670
- all_a = []
671
- all_gj = []
672
- all_gi = []
673
- all_anch = []
674
-
675
- for i, pi in enumerate(p):
676
-
677
- b, a, gj, gi = indices[i]
678
- idx = (b == batch_idx)
679
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
680
- all_b.append(b)
681
- all_a.append(a)
682
- all_gj.append(gj)
683
- all_gi.append(gi)
684
- all_anch.append(anch[i][idx])
685
- from_which_layer.append((torch.ones(size=(len(b),)) * i).to(device))
686
-
687
- fg_pred = pi[b, a, gj, gi]
688
- p_obj.append(fg_pred[:, 4:5])
689
- p_cls.append(fg_pred[:, 5:])
690
-
691
- grid = torch.stack([gi, gj], dim=1)
692
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
693
- #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
694
- pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
695
- pxywh = torch.cat([pxy, pwh], dim=-1)
696
- pxyxy = xywh2xyxy(pxywh)
697
- pxyxys.append(pxyxy)
698
-
699
- pxyxys = torch.cat(pxyxys, dim=0)
700
- if pxyxys.shape[0] == 0:
701
- continue
702
- p_obj = torch.cat(p_obj, dim=0)
703
- p_cls = torch.cat(p_cls, dim=0)
704
- from_which_layer = torch.cat(from_which_layer, dim=0)
705
- all_b = torch.cat(all_b, dim=0)
706
- all_a = torch.cat(all_a, dim=0)
707
- all_gj = torch.cat(all_gj, dim=0)
708
- all_gi = torch.cat(all_gi, dim=0)
709
- all_anch = torch.cat(all_anch, dim=0)
710
-
711
- pair_wise_iou = box_iou(txyxy, pxyxys)
712
-
713
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
714
-
715
- top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1)
716
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
717
-
718
- gt_cls_per_image = (
719
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
720
- .float()
721
- .unsqueeze(1)
722
- .repeat(1, pxyxys.shape[0], 1)
723
- )
724
-
725
- num_gt = this_target.shape[0]
726
- cls_preds_ = (
727
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
728
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
729
- )
730
-
731
- y = cls_preds_.sqrt_()
732
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
733
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
734
- ).sum(-1)
735
- del cls_preds_
736
-
737
- cost = (
738
- pair_wise_cls_loss
739
- + 3.0 * pair_wise_iou_loss
740
- )
741
-
742
- matching_matrix = torch.zeros_like(cost, device=device)
743
-
744
- for gt_idx in range(num_gt):
745
- _, pos_idx = torch.topk(
746
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
747
- )
748
- matching_matrix[gt_idx][pos_idx] = 1.0
749
-
750
- del top_k, dynamic_ks
751
- anchor_matching_gt = matching_matrix.sum(0)
752
- if (anchor_matching_gt > 1).sum() > 0:
753
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
754
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
755
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
756
- fg_mask_inboxes = (matching_matrix.sum(0) > 0.0).to(device)
757
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
758
-
759
- from_which_layer = from_which_layer[fg_mask_inboxes]
760
- all_b = all_b[fg_mask_inboxes]
761
- all_a = all_a[fg_mask_inboxes]
762
- all_gj = all_gj[fg_mask_inboxes]
763
- all_gi = all_gi[fg_mask_inboxes]
764
- all_anch = all_anch[fg_mask_inboxes]
765
-
766
- this_target = this_target[matched_gt_inds]
767
-
768
- for i in range(nl):
769
- layer_idx = from_which_layer == i
770
- matching_bs[i].append(all_b[layer_idx])
771
- matching_as[i].append(all_a[layer_idx])
772
- matching_gjs[i].append(all_gj[layer_idx])
773
- matching_gis[i].append(all_gi[layer_idx])
774
- matching_targets[i].append(this_target[layer_idx])
775
- matching_anchs[i].append(all_anch[layer_idx])
776
-
777
- for i in range(nl):
778
- if matching_targets[i] != []:
779
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
780
- matching_as[i] = torch.cat(matching_as[i], dim=0)
781
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
782
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
783
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
784
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
785
- else:
786
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
787
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
788
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
789
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
790
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
791
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
792
-
793
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
794
-
795
- def find_3_positive(self, p, targets):
796
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
797
- na, nt = self.na, targets.shape[0] # number of anchors, targets
798
- indices, anch = [], []
799
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
800
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
801
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
802
-
803
- g = 0.5 # bias
804
- off = torch.tensor([[0, 0],
805
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
806
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
807
- ], device=targets.device).float() * g # offsets
808
-
809
- for i in range(self.nl):
810
- anchors = self.anchors[i]
811
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
812
-
813
- # Match targets to anchors
814
- t = targets * gain
815
- if nt:
816
- # Matches
817
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
818
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
819
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
820
- t = t[j] # filter
821
-
822
- # Offsets
823
- gxy = t[:, 2:4] # grid xy
824
- gxi = gain[[2, 3]] - gxy # inverse
825
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
826
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
827
- j = torch.stack((torch.ones_like(j), j, k, l, m))
828
- t = t.repeat((5, 1, 1))[j]
829
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
830
- else:
831
- t = targets[0]
832
- offsets = 0
833
-
834
- # Define
835
- b, c = t[:, :2].long().T # image, class
836
- gxy = t[:, 2:4] # grid xy
837
- gwh = t[:, 4:6] # grid wh
838
- gij = (gxy - offsets).long()
839
- gi, gj = gij.T # grid xy indices
840
-
841
- # Append
842
- a = t[:, 6].long() # anchor indices
843
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
844
- anch.append(anchors[a]) # anchors
845
-
846
- return indices, anch
847
-
848
-
849
- class ComputeLossBinOTA:
850
- # Compute losses
851
- def __init__(self, model, autobalance=False):
852
- super(ComputeLossBinOTA, self).__init__()
853
- device = next(model.parameters()).device # get model device
854
- h = model.hyp # hyperparameters
855
-
856
- # Define criteria
857
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
858
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
859
- #MSEangle = nn.MSELoss().to(device)
860
-
861
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
862
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
863
-
864
- # Focal loss
865
- g = h['fl_gamma'] # focal loss gamma
866
- if g > 0:
867
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
868
-
869
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
870
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
871
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
872
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
873
- for k in 'na', 'nc', 'nl', 'anchors', 'stride', 'bin_count':
874
- setattr(self, k, getattr(det, k))
875
-
876
- #xy_bin_sigmoid = SigmoidBin(bin_count=11, min=-0.5, max=1.5, use_loss_regression=False).to(device)
877
- wh_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0, use_loss_regression=False).to(device)
878
- #angle_bin_sigmoid = SigmoidBin(bin_count=31, min=-1.1, max=1.1, use_loss_regression=False).to(device)
879
- self.wh_bin_sigmoid = wh_bin_sigmoid
880
-
881
- def __call__(self, p, targets, imgs): # predictions, targets, model
882
- device = targets.device
883
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
884
- bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs)
885
- pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p]
886
-
887
-
888
- # Losses
889
- for i, pi in enumerate(p): # layer index, layer predictions
890
- b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
891
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
892
-
893
- obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2 # x,y, w-bce, h-bce # xy_bin_sigmoid.get_length()*2
894
-
895
- n = b.shape[0] # number of targets
896
- if n:
897
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
898
-
899
- # Regression
900
- grid = torch.stack([gi, gj], dim=1)
901
- selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
902
- selected_tbox[:, :2] -= grid
903
-
904
- #pxy = ps[:, :2].sigmoid() * 2. - 0.5
905
- ##pxy = ps[:, :2].sigmoid() * 3. - 1.
906
- #pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
907
- #pbox = torch.cat((pxy, pwh), 1) # predicted box
908
-
909
- #x_loss, px = xy_bin_sigmoid.training_loss(ps[..., 0:12], tbox[i][..., 0])
910
- #y_loss, py = xy_bin_sigmoid.training_loss(ps[..., 12:24], tbox[i][..., 1])
911
- w_loss, pw = self.wh_bin_sigmoid.training_loss(ps[..., 2:(3+self.bin_count)], selected_tbox[..., 2] / anchors[i][..., 0])
912
- h_loss, ph = self.wh_bin_sigmoid.training_loss(ps[..., (3+self.bin_count):obj_idx], selected_tbox[..., 3] / anchors[i][..., 1])
913
-
914
- pw *= anchors[i][..., 0]
915
- ph *= anchors[i][..., 1]
916
-
917
- px = ps[:, 0].sigmoid() * 2. - 0.5
918
- py = ps[:, 1].sigmoid() * 2. - 0.5
919
-
920
- lbox += w_loss + h_loss # + x_loss + y_loss
921
-
922
- #print(f"\n px = {px.shape}, py = {py.shape}, pw = {pw.shape}, ph = {ph.shape} \n")
923
-
924
- pbox = torch.cat((px.unsqueeze(1), py.unsqueeze(1), pw.unsqueeze(1), ph.unsqueeze(1)), 1).to(device) # predicted box
925
-
926
-
927
-
928
-
929
- iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
930
- lbox += (1.0 - iou).mean() # iou loss
931
-
932
- # Objectness
933
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
934
-
935
- # Classification
936
- selected_tcls = targets[i][:, 1].long()
937
- if self.nc > 1: # cls loss (only if multiple classes)
938
- t = torch.full_like(ps[:, (1+obj_idx):], self.cn, device=device) # targets
939
- t[range(n), selected_tcls] = self.cp
940
- lcls += self.BCEcls(ps[:, (1+obj_idx):], t) # BCE
941
-
942
- # Append targets to text file
943
- # with open('targets.txt', 'a') as file:
944
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
945
-
946
- obji = self.BCEobj(pi[..., obj_idx], tobj)
947
- lobj += obji * self.balance[i] # obj loss
948
- if self.autobalance:
949
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
950
-
951
- if self.autobalance:
952
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
953
- lbox *= self.hyp['box']
954
- lobj *= self.hyp['obj']
955
- lcls *= self.hyp['cls']
956
- bs = tobj.shape[0] # batch size
957
-
958
- loss = lbox + lobj + lcls
959
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
960
-
961
- def build_targets(self, p, targets, imgs):
962
-
963
- #indices, anch = self.find_positive(p, targets)
964
- indices, anch = self.find_3_positive(p, targets)
965
- #indices, anch = self.find_4_positive(p, targets)
966
- #indices, anch = self.find_5_positive(p, targets)
967
- #indices, anch = self.find_9_positive(p, targets)
968
-
969
- matching_bs = [[] for pp in p]
970
- matching_as = [[] for pp in p]
971
- matching_gjs = [[] for pp in p]
972
- matching_gis = [[] for pp in p]
973
- matching_targets = [[] for pp in p]
974
- matching_anchs = [[] for pp in p]
975
-
976
- nl = len(p)
977
-
978
- for batch_idx in range(p[0].shape[0]):
979
-
980
- b_idx = targets[:, 0]==batch_idx
981
- this_target = targets[b_idx]
982
- if this_target.shape[0] == 0:
983
- continue
984
-
985
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
986
- txyxy = xywh2xyxy(txywh)
987
-
988
- pxyxys = []
989
- p_cls = []
990
- p_obj = []
991
- from_which_layer = []
992
- all_b = []
993
- all_a = []
994
- all_gj = []
995
- all_gi = []
996
- all_anch = []
997
-
998
- for i, pi in enumerate(p):
999
-
1000
- obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2
1001
-
1002
- b, a, gj, gi = indices[i]
1003
- idx = (b == batch_idx)
1004
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
1005
- all_b.append(b)
1006
- all_a.append(a)
1007
- all_gj.append(gj)
1008
- all_gi.append(gi)
1009
- all_anch.append(anch[i][idx])
1010
- from_which_layer.append(torch.ones(size=(len(b),)) * i)
1011
-
1012
- fg_pred = pi[b, a, gj, gi]
1013
- p_obj.append(fg_pred[:, obj_idx:(obj_idx+1)])
1014
- p_cls.append(fg_pred[:, (obj_idx+1):])
1015
-
1016
- grid = torch.stack([gi, gj], dim=1)
1017
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
1018
- #pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
1019
- pw = self.wh_bin_sigmoid.forward(fg_pred[..., 2:(3+self.bin_count)].sigmoid()) * anch[i][idx][:, 0] * self.stride[i]
1020
- ph = self.wh_bin_sigmoid.forward(fg_pred[..., (3+self.bin_count):obj_idx].sigmoid()) * anch[i][idx][:, 1] * self.stride[i]
1021
-
1022
- pxywh = torch.cat([pxy, pw.unsqueeze(1), ph.unsqueeze(1)], dim=-1)
1023
- pxyxy = xywh2xyxy(pxywh)
1024
- pxyxys.append(pxyxy)
1025
-
1026
- pxyxys = torch.cat(pxyxys, dim=0)
1027
- if pxyxys.shape[0] == 0:
1028
- continue
1029
- p_obj = torch.cat(p_obj, dim=0)
1030
- p_cls = torch.cat(p_cls, dim=0)
1031
- from_which_layer = torch.cat(from_which_layer, dim=0)
1032
- all_b = torch.cat(all_b, dim=0)
1033
- all_a = torch.cat(all_a, dim=0)
1034
- all_gj = torch.cat(all_gj, dim=0)
1035
- all_gi = torch.cat(all_gi, dim=0)
1036
- all_anch = torch.cat(all_anch, dim=0)
1037
-
1038
- pair_wise_iou = box_iou(txyxy, pxyxys)
1039
-
1040
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
1041
-
1042
- top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1)
1043
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
1044
-
1045
- gt_cls_per_image = (
1046
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
1047
- .float()
1048
- .unsqueeze(1)
1049
- .repeat(1, pxyxys.shape[0], 1)
1050
- )
1051
-
1052
- num_gt = this_target.shape[0]
1053
- cls_preds_ = (
1054
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1055
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1056
- )
1057
-
1058
- y = cls_preds_.sqrt_()
1059
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
1060
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
1061
- ).sum(-1)
1062
- del cls_preds_
1063
-
1064
- cost = (
1065
- pair_wise_cls_loss
1066
- + 3.0 * pair_wise_iou_loss
1067
- )
1068
-
1069
- matching_matrix = torch.zeros_like(cost)
1070
-
1071
- for gt_idx in range(num_gt):
1072
- _, pos_idx = torch.topk(
1073
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
1074
- )
1075
- matching_matrix[gt_idx][pos_idx] = 1.0
1076
-
1077
- del top_k, dynamic_ks
1078
- anchor_matching_gt = matching_matrix.sum(0)
1079
- if (anchor_matching_gt > 1).sum() > 0:
1080
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
1081
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
1082
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
1083
- fg_mask_inboxes = matching_matrix.sum(0) > 0.0
1084
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
1085
-
1086
- from_which_layer = from_which_layer[fg_mask_inboxes]
1087
- all_b = all_b[fg_mask_inboxes]
1088
- all_a = all_a[fg_mask_inboxes]
1089
- all_gj = all_gj[fg_mask_inboxes]
1090
- all_gi = all_gi[fg_mask_inboxes]
1091
- all_anch = all_anch[fg_mask_inboxes]
1092
-
1093
- this_target = this_target[matched_gt_inds]
1094
-
1095
- for i in range(nl):
1096
- layer_idx = from_which_layer == i
1097
- matching_bs[i].append(all_b[layer_idx])
1098
- matching_as[i].append(all_a[layer_idx])
1099
- matching_gjs[i].append(all_gj[layer_idx])
1100
- matching_gis[i].append(all_gi[layer_idx])
1101
- matching_targets[i].append(this_target[layer_idx])
1102
- matching_anchs[i].append(all_anch[layer_idx])
1103
-
1104
- for i in range(nl):
1105
- if matching_targets[i] != []:
1106
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
1107
- matching_as[i] = torch.cat(matching_as[i], dim=0)
1108
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
1109
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
1110
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
1111
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
1112
- else:
1113
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1114
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1115
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1116
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1117
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1118
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1119
-
1120
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
1121
-
1122
- def find_3_positive(self, p, targets):
1123
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
1124
- na, nt = self.na, targets.shape[0] # number of anchors, targets
1125
- indices, anch = [], []
1126
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
1127
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
1128
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
1129
-
1130
- g = 0.5 # bias
1131
- off = torch.tensor([[0, 0],
1132
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
1133
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
1134
- ], device=targets.device).float() * g # offsets
1135
-
1136
- for i in range(self.nl):
1137
- anchors = self.anchors[i]
1138
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
1139
-
1140
- # Match targets to anchors
1141
- t = targets * gain
1142
- if nt:
1143
- # Matches
1144
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
1145
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
1146
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
1147
- t = t[j] # filter
1148
-
1149
- # Offsets
1150
- gxy = t[:, 2:4] # grid xy
1151
- gxi = gain[[2, 3]] - gxy # inverse
1152
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
1153
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
1154
- j = torch.stack((torch.ones_like(j), j, k, l, m))
1155
- t = t.repeat((5, 1, 1))[j]
1156
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
1157
- else:
1158
- t = targets[0]
1159
- offsets = 0
1160
-
1161
- # Define
1162
- b, c = t[:, :2].long().T # image, class
1163
- gxy = t[:, 2:4] # grid xy
1164
- gwh = t[:, 4:6] # grid wh
1165
- gij = (gxy - offsets).long()
1166
- gi, gj = gij.T # grid xy indices
1167
-
1168
- # Append
1169
- a = t[:, 6].long() # anchor indices
1170
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
1171
- anch.append(anchors[a]) # anchors
1172
-
1173
- return indices, anch
1174
-
1175
-
1176
- class ComputeLossAuxOTA:
1177
- # Compute losses
1178
- def __init__(self, model, autobalance=False):
1179
- super(ComputeLossAuxOTA, self).__init__()
1180
- device = next(model.parameters()).device # get model device
1181
- h = model.hyp # hyperparameters
1182
-
1183
- # Define criteria
1184
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
1185
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
1186
-
1187
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
1188
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
1189
-
1190
- # Focal loss
1191
- g = h['fl_gamma'] # focal loss gamma
1192
- if g > 0:
1193
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
1194
-
1195
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
1196
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
1197
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
1198
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
1199
- for k in 'na', 'nc', 'nl', 'anchors', 'stride':
1200
- setattr(self, k, getattr(det, k))
1201
-
1202
- def __call__(self, p, targets, imgs): # predictions, targets, model
1203
- device = targets.device
1204
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
1205
- bs_aux, as_aux_, gjs_aux, gis_aux, targets_aux, anchors_aux = self.build_targets2(p[:self.nl], targets, imgs)
1206
- bs, as_, gjs, gis, targets, anchors = self.build_targets(p[:self.nl], targets, imgs)
1207
- pre_gen_gains_aux = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]]
1208
- pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]]
1209
-
1210
-
1211
- # Losses
1212
- for i in range(self.nl): # layer index, layer predictions
1213
- pi = p[i]
1214
- pi_aux = p[i+self.nl]
1215
- b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
1216
- b_aux, a_aux, gj_aux, gi_aux = bs_aux[i], as_aux_[i], gjs_aux[i], gis_aux[i] # image, anchor, gridy, gridx
1217
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
1218
- tobj_aux = torch.zeros_like(pi_aux[..., 0], device=device) # target obj
1219
-
1220
- n = b.shape[0] # number of targets
1221
- if n:
1222
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
1223
-
1224
- # Regression
1225
- grid = torch.stack([gi, gj], dim=1)
1226
- pxy = ps[:, :2].sigmoid() * 2. - 0.5
1227
- pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
1228
- pbox = torch.cat((pxy, pwh), 1) # predicted box
1229
- selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
1230
- selected_tbox[:, :2] -= grid
1231
- iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
1232
- lbox += (1.0 - iou).mean() # iou loss
1233
-
1234
- # Objectness
1235
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
1236
-
1237
- # Classification
1238
- selected_tcls = targets[i][:, 1].long()
1239
- if self.nc > 1: # cls loss (only if multiple classes)
1240
- t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
1241
- t[range(n), selected_tcls] = self.cp
1242
- lcls += self.BCEcls(ps[:, 5:], t) # BCE
1243
-
1244
- # Append targets to text file
1245
- # with open('targets.txt', 'a') as file:
1246
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
1247
-
1248
- n_aux = b_aux.shape[0] # number of targets
1249
- if n_aux:
1250
- ps_aux = pi_aux[b_aux, a_aux, gj_aux, gi_aux] # prediction subset corresponding to targets
1251
- grid_aux = torch.stack([gi_aux, gj_aux], dim=1)
1252
- pxy_aux = ps_aux[:, :2].sigmoid() * 2. - 0.5
1253
- #pxy_aux = ps_aux[:, :2].sigmoid() * 3. - 1.
1254
- pwh_aux = (ps_aux[:, 2:4].sigmoid() * 2) ** 2 * anchors_aux[i]
1255
- pbox_aux = torch.cat((pxy_aux, pwh_aux), 1) # predicted box
1256
- selected_tbox_aux = targets_aux[i][:, 2:6] * pre_gen_gains_aux[i]
1257
- selected_tbox_aux[:, :2] -= grid_aux
1258
- iou_aux = bbox_iou(pbox_aux.T, selected_tbox_aux, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
1259
- lbox += 0.25 * (1.0 - iou_aux).mean() # iou loss
1260
-
1261
- # Objectness
1262
- tobj_aux[b_aux, a_aux, gj_aux, gi_aux] = (1.0 - self.gr) + self.gr * iou_aux.detach().clamp(0).type(tobj_aux.dtype) # iou ratio
1263
-
1264
- # Classification
1265
- selected_tcls_aux = targets_aux[i][:, 1].long()
1266
- if self.nc > 1: # cls loss (only if multiple classes)
1267
- t_aux = torch.full_like(ps_aux[:, 5:], self.cn, device=device) # targets
1268
- t_aux[range(n_aux), selected_tcls_aux] = self.cp
1269
- lcls += 0.25 * self.BCEcls(ps_aux[:, 5:], t_aux) # BCE
1270
-
1271
- obji = self.BCEobj(pi[..., 4], tobj)
1272
- obji_aux = self.BCEobj(pi_aux[..., 4], tobj_aux)
1273
- lobj += obji * self.balance[i] + 0.25 * obji_aux * self.balance[i] # obj loss
1274
- if self.autobalance:
1275
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
1276
-
1277
- if self.autobalance:
1278
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
1279
- lbox *= self.hyp['box']
1280
- lobj *= self.hyp['obj']
1281
- lcls *= self.hyp['cls']
1282
- bs = tobj.shape[0] # batch size
1283
-
1284
- loss = lbox + lobj + lcls
1285
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
1286
-
1287
- def build_targets(self, p, targets, imgs):
1288
-
1289
- indices, anch = self.find_3_positive(p, targets)
1290
-
1291
- matching_bs = [[] for pp in p]
1292
- matching_as = [[] for pp in p]
1293
- matching_gjs = [[] for pp in p]
1294
- matching_gis = [[] for pp in p]
1295
- matching_targets = [[] for pp in p]
1296
- matching_anchs = [[] for pp in p]
1297
-
1298
- nl = len(p)
1299
-
1300
- for batch_idx in range(p[0].shape[0]):
1301
-
1302
- b_idx = targets[:, 0]==batch_idx
1303
- this_target = targets[b_idx]
1304
- if this_target.shape[0] == 0:
1305
- continue
1306
-
1307
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
1308
- txyxy = xywh2xyxy(txywh)
1309
-
1310
- pxyxys = []
1311
- p_cls = []
1312
- p_obj = []
1313
- from_which_layer = []
1314
- all_b = []
1315
- all_a = []
1316
- all_gj = []
1317
- all_gi = []
1318
- all_anch = []
1319
-
1320
- for i, pi in enumerate(p):
1321
-
1322
- b, a, gj, gi = indices[i]
1323
- idx = (b == batch_idx)
1324
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
1325
- all_b.append(b)
1326
- all_a.append(a)
1327
- all_gj.append(gj)
1328
- all_gi.append(gi)
1329
- all_anch.append(anch[i][idx])
1330
- from_which_layer.append(torch.ones(size=(len(b),)) * i)
1331
-
1332
- fg_pred = pi[b, a, gj, gi]
1333
- p_obj.append(fg_pred[:, 4:5])
1334
- p_cls.append(fg_pred[:, 5:])
1335
-
1336
- grid = torch.stack([gi, gj], dim=1)
1337
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
1338
- #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
1339
- pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
1340
- pxywh = torch.cat([pxy, pwh], dim=-1)
1341
- pxyxy = xywh2xyxy(pxywh)
1342
- pxyxys.append(pxyxy)
1343
-
1344
- pxyxys = torch.cat(pxyxys, dim=0)
1345
- if pxyxys.shape[0] == 0:
1346
- continue
1347
- p_obj = torch.cat(p_obj, dim=0)
1348
- p_cls = torch.cat(p_cls, dim=0)
1349
- from_which_layer = torch.cat(from_which_layer, dim=0)
1350
- all_b = torch.cat(all_b, dim=0)
1351
- all_a = torch.cat(all_a, dim=0)
1352
- all_gj = torch.cat(all_gj, dim=0)
1353
- all_gi = torch.cat(all_gi, dim=0)
1354
- all_anch = torch.cat(all_anch, dim=0)
1355
-
1356
- pair_wise_iou = box_iou(txyxy, pxyxys)
1357
-
1358
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
1359
-
1360
- top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1)
1361
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
1362
-
1363
- gt_cls_per_image = (
1364
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
1365
- .float()
1366
- .unsqueeze(1)
1367
- .repeat(1, pxyxys.shape[0], 1)
1368
- )
1369
-
1370
- num_gt = this_target.shape[0]
1371
- cls_preds_ = (
1372
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1373
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1374
- )
1375
-
1376
- y = cls_preds_.sqrt_()
1377
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
1378
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
1379
- ).sum(-1)
1380
- del cls_preds_
1381
-
1382
- cost = (
1383
- pair_wise_cls_loss
1384
- + 3.0 * pair_wise_iou_loss
1385
- )
1386
-
1387
- matching_matrix = torch.zeros_like(cost)
1388
-
1389
- for gt_idx in range(num_gt):
1390
- _, pos_idx = torch.topk(
1391
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
1392
- )
1393
- matching_matrix[gt_idx][pos_idx] = 1.0
1394
-
1395
- del top_k, dynamic_ks
1396
- anchor_matching_gt = matching_matrix.sum(0)
1397
- if (anchor_matching_gt > 1).sum() > 0:
1398
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
1399
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
1400
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
1401
- fg_mask_inboxes = matching_matrix.sum(0) > 0.0
1402
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
1403
-
1404
- from_which_layer = from_which_layer[fg_mask_inboxes]
1405
- all_b = all_b[fg_mask_inboxes]
1406
- all_a = all_a[fg_mask_inboxes]
1407
- all_gj = all_gj[fg_mask_inboxes]
1408
- all_gi = all_gi[fg_mask_inboxes]
1409
- all_anch = all_anch[fg_mask_inboxes]
1410
-
1411
- this_target = this_target[matched_gt_inds]
1412
-
1413
- for i in range(nl):
1414
- layer_idx = from_which_layer == i
1415
- matching_bs[i].append(all_b[layer_idx])
1416
- matching_as[i].append(all_a[layer_idx])
1417
- matching_gjs[i].append(all_gj[layer_idx])
1418
- matching_gis[i].append(all_gi[layer_idx])
1419
- matching_targets[i].append(this_target[layer_idx])
1420
- matching_anchs[i].append(all_anch[layer_idx])
1421
-
1422
- for i in range(nl):
1423
- if matching_targets[i] != []:
1424
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
1425
- matching_as[i] = torch.cat(matching_as[i], dim=0)
1426
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
1427
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
1428
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
1429
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
1430
- else:
1431
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1432
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1433
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1434
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1435
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1436
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1437
-
1438
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
1439
-
1440
- def build_targets2(self, p, targets, imgs):
1441
-
1442
- indices, anch = self.find_5_positive(p, targets)
1443
-
1444
- matching_bs = [[] for pp in p]
1445
- matching_as = [[] for pp in p]
1446
- matching_gjs = [[] for pp in p]
1447
- matching_gis = [[] for pp in p]
1448
- matching_targets = [[] for pp in p]
1449
- matching_anchs = [[] for pp in p]
1450
-
1451
- nl = len(p)
1452
-
1453
- for batch_idx in range(p[0].shape[0]):
1454
-
1455
- b_idx = targets[:, 0]==batch_idx
1456
- this_target = targets[b_idx]
1457
- if this_target.shape[0] == 0:
1458
- continue
1459
-
1460
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
1461
- txyxy = xywh2xyxy(txywh)
1462
-
1463
- pxyxys = []
1464
- p_cls = []
1465
- p_obj = []
1466
- from_which_layer = []
1467
- all_b = []
1468
- all_a = []
1469
- all_gj = []
1470
- all_gi = []
1471
- all_anch = []
1472
-
1473
- for i, pi in enumerate(p):
1474
-
1475
- b, a, gj, gi = indices[i]
1476
- idx = (b == batch_idx)
1477
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
1478
- all_b.append(b)
1479
- all_a.append(a)
1480
- all_gj.append(gj)
1481
- all_gi.append(gi)
1482
- all_anch.append(anch[i][idx])
1483
- from_which_layer.append(torch.ones(size=(len(b),)) * i)
1484
-
1485
- fg_pred = pi[b, a, gj, gi]
1486
- p_obj.append(fg_pred[:, 4:5])
1487
- p_cls.append(fg_pred[:, 5:])
1488
-
1489
- grid = torch.stack([gi, gj], dim=1)
1490
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
1491
- #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
1492
- pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
1493
- pxywh = torch.cat([pxy, pwh], dim=-1)
1494
- pxyxy = xywh2xyxy(pxywh)
1495
- pxyxys.append(pxyxy)
1496
-
1497
- pxyxys = torch.cat(pxyxys, dim=0)
1498
- if pxyxys.shape[0] == 0:
1499
- continue
1500
- p_obj = torch.cat(p_obj, dim=0)
1501
- p_cls = torch.cat(p_cls, dim=0)
1502
- from_which_layer = torch.cat(from_which_layer, dim=0)
1503
- all_b = torch.cat(all_b, dim=0)
1504
- all_a = torch.cat(all_a, dim=0)
1505
- all_gj = torch.cat(all_gj, dim=0)
1506
- all_gi = torch.cat(all_gi, dim=0)
1507
- all_anch = torch.cat(all_anch, dim=0)
1508
-
1509
- pair_wise_iou = box_iou(txyxy, pxyxys)
1510
-
1511
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
1512
-
1513
- top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1)
1514
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
1515
-
1516
- gt_cls_per_image = (
1517
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
1518
- .float()
1519
- .unsqueeze(1)
1520
- .repeat(1, pxyxys.shape[0], 1)
1521
- )
1522
-
1523
- num_gt = this_target.shape[0]
1524
- cls_preds_ = (
1525
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1526
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1527
- )
1528
-
1529
- y = cls_preds_.sqrt_()
1530
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
1531
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
1532
- ).sum(-1)
1533
- del cls_preds_
1534
-
1535
- cost = (
1536
- pair_wise_cls_loss
1537
- + 3.0 * pair_wise_iou_loss
1538
- )
1539
-
1540
- matching_matrix = torch.zeros_like(cost)
1541
-
1542
- for gt_idx in range(num_gt):
1543
- _, pos_idx = torch.topk(
1544
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
1545
- )
1546
- matching_matrix[gt_idx][pos_idx] = 1.0
1547
-
1548
- del top_k, dynamic_ks
1549
- anchor_matching_gt = matching_matrix.sum(0)
1550
- if (anchor_matching_gt > 1).sum() > 0:
1551
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
1552
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
1553
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
1554
- fg_mask_inboxes = matching_matrix.sum(0) > 0.0
1555
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
1556
-
1557
- from_which_layer = from_which_layer[fg_mask_inboxes]
1558
- all_b = all_b[fg_mask_inboxes]
1559
- all_a = all_a[fg_mask_inboxes]
1560
- all_gj = all_gj[fg_mask_inboxes]
1561
- all_gi = all_gi[fg_mask_inboxes]
1562
- all_anch = all_anch[fg_mask_inboxes]
1563
-
1564
- this_target = this_target[matched_gt_inds]
1565
-
1566
- for i in range(nl):
1567
- layer_idx = from_which_layer == i
1568
- matching_bs[i].append(all_b[layer_idx])
1569
- matching_as[i].append(all_a[layer_idx])
1570
- matching_gjs[i].append(all_gj[layer_idx])
1571
- matching_gis[i].append(all_gi[layer_idx])
1572
- matching_targets[i].append(this_target[layer_idx])
1573
- matching_anchs[i].append(all_anch[layer_idx])
1574
-
1575
- for i in range(nl):
1576
- if matching_targets[i] != []:
1577
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
1578
- matching_as[i] = torch.cat(matching_as[i], dim=0)
1579
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
1580
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
1581
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
1582
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
1583
- else:
1584
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1585
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1586
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1587
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1588
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1589
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1590
-
1591
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
1592
-
1593
- def find_5_positive(self, p, targets):
1594
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
1595
- na, nt = self.na, targets.shape[0] # number of anchors, targets
1596
- indices, anch = [], []
1597
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
1598
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
1599
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
1600
-
1601
- g = 1.0 # bias
1602
- off = torch.tensor([[0, 0],
1603
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
1604
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
1605
- ], device=targets.device).float() * g # offsets
1606
-
1607
- for i in range(self.nl):
1608
- anchors = self.anchors[i]
1609
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
1610
-
1611
- # Match targets to anchors
1612
- t = targets * gain
1613
- if nt:
1614
- # Matches
1615
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
1616
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
1617
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
1618
- t = t[j] # filter
1619
-
1620
- # Offsets
1621
- gxy = t[:, 2:4] # grid xy
1622
- gxi = gain[[2, 3]] - gxy # inverse
1623
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
1624
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
1625
- j = torch.stack((torch.ones_like(j), j, k, l, m))
1626
- t = t.repeat((5, 1, 1))[j]
1627
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
1628
- else:
1629
- t = targets[0]
1630
- offsets = 0
1631
-
1632
- # Define
1633
- b, c = t[:, :2].long().T # image, class
1634
- gxy = t[:, 2:4] # grid xy
1635
- gwh = t[:, 4:6] # grid wh
1636
- gij = (gxy - offsets).long()
1637
- gi, gj = gij.T # grid xy indices
1638
-
1639
- # Append
1640
- a = t[:, 6].long() # anchor indices
1641
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
1642
- anch.append(anchors[a]) # anchors
1643
-
1644
- return indices, anch
1645
-
1646
- def find_3_positive(self, p, targets):
1647
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
1648
- na, nt = self.na, targets.shape[0] # number of anchors, targets
1649
- indices, anch = [], []
1650
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
1651
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
1652
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
1653
-
1654
- g = 0.5 # bias
1655
- off = torch.tensor([[0, 0],
1656
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
1657
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
1658
- ], device=targets.device).float() * g # offsets
1659
-
1660
- for i in range(self.nl):
1661
- anchors = self.anchors[i]
1662
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
1663
-
1664
- # Match targets to anchors
1665
- t = targets * gain
1666
- if nt:
1667
- # Matches
1668
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
1669
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
1670
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
1671
- t = t[j] # filter
1672
-
1673
- # Offsets
1674
- gxy = t[:, 2:4] # grid xy
1675
- gxi = gain[[2, 3]] - gxy # inverse
1676
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
1677
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
1678
- j = torch.stack((torch.ones_like(j), j, k, l, m))
1679
- t = t.repeat((5, 1, 1))[j]
1680
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
1681
- else:
1682
- t = targets[0]
1683
- offsets = 0
1684
-
1685
- # Define
1686
- b, c = t[:, :2].long().T # image, class
1687
- gxy = t[:, 2:4] # grid xy
1688
- gwh = t[:, 4:6] # grid wh
1689
- gij = (gxy - offsets).long()
1690
- gi, gj = gij.T # grid xy indices
1691
-
1692
- # Append
1693
- a = t[:, 6].long() # anchor indices
1694
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
1695
- anch.append(anchors[a]) # anchors
1696
-
1697
- return indices, anch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cedula/utils/metrics.py DELETED
@@ -1,227 +0,0 @@
1
- # Model validation metrics
2
-
3
- from pathlib import Path
4
-
5
- import matplotlib.pyplot as plt
6
- import numpy as np
7
- import torch
8
-
9
- from . import general
10
-
11
-
12
- def fitness(x):
13
- # Model fitness as a weighted combination of metrics
14
- w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
15
- return (x[:, :4] * w).sum(1)
16
-
17
-
18
- def ap_per_class(tp, conf, pred_cls, target_cls, v5_metric=False, plot=False, save_dir='.', names=()):
19
- """ Compute the average precision, given the recall and precision curves.
20
- Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
21
- # Arguments
22
- tp: True positives (nparray, nx1 or nx10).
23
- conf: Objectness value from 0-1 (nparray).
24
- pred_cls: Predicted object classes (nparray).
25
- target_cls: True object classes (nparray).
26
- plot: Plot precision-recall curve at mAP@0.5
27
- save_dir: Plot save directory
28
- # Returns
29
- The average precision as computed in py-faster-rcnn.
30
- """
31
-
32
- # Sort by objectness
33
- i = np.argsort(-conf)
34
- tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
35
-
36
- # Find unique classes
37
- unique_classes = np.unique(target_cls)
38
- nc = unique_classes.shape[0] # number of classes, number of detections
39
-
40
- # Create Precision-Recall curve and compute AP for each class
41
- px, py = np.linspace(0, 1, 1000), [] # for plotting
42
- ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
43
- for ci, c in enumerate(unique_classes):
44
- i = pred_cls == c
45
- n_l = (target_cls == c).sum() # number of labels
46
- n_p = i.sum() # number of predictions
47
-
48
- if n_p == 0 or n_l == 0:
49
- continue
50
- else:
51
- # Accumulate FPs and TPs
52
- fpc = (1 - tp[i]).cumsum(0)
53
- tpc = tp[i].cumsum(0)
54
-
55
- # Recall
56
- recall = tpc / (n_l + 1e-16) # recall curve
57
- r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
58
-
59
- # Precision
60
- precision = tpc / (tpc + fpc) # precision curve
61
- p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
62
-
63
- # AP from recall-precision curve
64
- for j in range(tp.shape[1]):
65
- ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j], v5_metric=v5_metric)
66
- if plot and j == 0:
67
- py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
68
-
69
- # Compute F1 (harmonic mean of precision and recall)
70
- f1 = 2 * p * r / (p + r + 1e-16)
71
- if plot:
72
- plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
73
- plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
74
- plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
75
- plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
76
-
77
- i = f1.mean(0).argmax() # max F1 index
78
- return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
79
-
80
-
81
- def compute_ap(recall, precision, v5_metric=False):
82
- """ Compute the average precision, given the recall and precision curves
83
- # Arguments
84
- recall: The recall curve (list)
85
- precision: The precision curve (list)
86
- v5_metric: Assume maximum recall to be 1.0, as in YOLOv5, MMDetetion etc.
87
- # Returns
88
- Average precision, precision curve, recall curve
89
- """
90
-
91
- # Append sentinel values to beginning and end
92
- if v5_metric: # New YOLOv5 metric, same as MMDetection and Detectron2 repositories
93
- mrec = np.concatenate(([0.], recall, [1.0]))
94
- else: # Old YOLOv5 metric, i.e. default YOLOv7 metric
95
- mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
96
- mpre = np.concatenate(([1.], precision, [0.]))
97
-
98
- # Compute the precision envelope
99
- mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
100
-
101
- # Integrate area under curve
102
- method = 'interp' # methods: 'continuous', 'interp'
103
- if method == 'interp':
104
- x = np.linspace(0, 1, 101) # 101-point interp (COCO)
105
- ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
106
- else: # 'continuous'
107
- i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
108
- ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
109
-
110
- return ap, mpre, mrec
111
-
112
-
113
- class ConfusionMatrix:
114
- # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
115
- def __init__(self, nc, conf=0.25, iou_thres=0.45):
116
- self.matrix = np.zeros((nc + 1, nc + 1))
117
- self.nc = nc # number of classes
118
- self.conf = conf
119
- self.iou_thres = iou_thres
120
-
121
- def process_batch(self, detections, labels):
122
- """
123
- Return intersection-over-union (Jaccard index) of boxes.
124
- Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
125
- Arguments:
126
- detections (Array[N, 6]), x1, y1, x2, y2, conf, class
127
- labels (Array[M, 5]), class, x1, y1, x2, y2
128
- Returns:
129
- None, updates confusion matrix accordingly
130
- """
131
- detections = detections[detections[:, 4] > self.conf]
132
- gt_classes = labels[:, 0].int()
133
- detection_classes = detections[:, 5].int()
134
- iou = general.box_iou(labels[:, 1:], detections[:, :4])
135
-
136
- x = torch.where(iou > self.iou_thres)
137
- if x[0].shape[0]:
138
- matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
139
- if x[0].shape[0] > 1:
140
- matches = matches[matches[:, 2].argsort()[::-1]]
141
- matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
142
- matches = matches[matches[:, 2].argsort()[::-1]]
143
- matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
144
- else:
145
- matches = np.zeros((0, 3))
146
-
147
- n = matches.shape[0] > 0
148
- m0, m1, _ = matches.transpose().astype(np.int16)
149
- for i, gc in enumerate(gt_classes):
150
- j = m0 == i
151
- if n and sum(j) == 1:
152
- self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
153
- else:
154
- self.matrix[self.nc, gc] += 1 # background FP
155
-
156
- if n:
157
- for i, dc in enumerate(detection_classes):
158
- if not any(m1 == i):
159
- self.matrix[dc, self.nc] += 1 # background FN
160
-
161
- def matrix(self):
162
- return self.matrix
163
-
164
- def plot(self, save_dir='', names=()):
165
- try:
166
- import seaborn as sn
167
-
168
- array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
169
- array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
170
-
171
- fig = plt.figure(figsize=(12, 9), tight_layout=True)
172
- sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
173
- labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
174
- sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
175
- xticklabels=names + ['background FP'] if labels else "auto",
176
- yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
177
- fig.axes[0].set_xlabel('True')
178
- fig.axes[0].set_ylabel('Predicted')
179
- fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
180
- except Exception as e:
181
- pass
182
-
183
- def print(self):
184
- for i in range(self.nc + 1):
185
- print(' '.join(map(str, self.matrix[i])))
186
-
187
-
188
- # Plots ----------------------------------------------------------------------------------------------------------------
189
-
190
- def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
191
- # Precision-recall curve
192
- fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
193
- py = np.stack(py, axis=1)
194
-
195
- if 0 < len(names) < 21: # display per-class legend if < 21 classes
196
- for i, y in enumerate(py.T):
197
- ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
198
- else:
199
- ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
200
-
201
- ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
202
- ax.set_xlabel('Recall')
203
- ax.set_ylabel('Precision')
204
- ax.set_xlim(0, 1)
205
- ax.set_ylim(0, 1)
206
- plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
207
- fig.savefig(Path(save_dir), dpi=250)
208
-
209
-
210
- def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
211
- # Metric-confidence curve
212
- fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
213
-
214
- if 0 < len(names) < 21: # display per-class legend if < 21 classes
215
- for i, y in enumerate(py):
216
- ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
217
- else:
218
- ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
219
-
220
- y = py.mean(0)
221
- ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
222
- ax.set_xlabel(xlabel)
223
- ax.set_ylabel(ylabel)
224
- ax.set_xlim(0, 1)
225
- ax.set_ylim(0, 1)
226
- plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
227
- fig.savefig(Path(save_dir), dpi=250)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cedula/utils/plots.py DELETED
@@ -1,489 +0,0 @@
1
- # Plotting utils
2
-
3
- import glob
4
- import math
5
- import os
6
- import random
7
- from copy import copy
8
- from pathlib import Path
9
-
10
- import cv2
11
- import matplotlib
12
- import matplotlib.pyplot as plt
13
- import numpy as np
14
- import pandas as pd
15
- import seaborn as sns
16
- import torch
17
- import yaml
18
- from PIL import Image, ImageDraw, ImageFont
19
- from scipy.signal import butter, filtfilt
20
-
21
- from utils.general import xywh2xyxy, xyxy2xywh
22
- from utils.metrics import fitness
23
-
24
- # Settings
25
- matplotlib.rc('font', **{'size': 11})
26
- matplotlib.use('Agg') # for writing to files only
27
-
28
-
29
- def color_list():
30
- # Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
31
- def hex2rgb(h):
32
- return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
33
-
34
- return [hex2rgb(h) for h in matplotlib.colors.TABLEAU_COLORS.values()] # or BASE_ (8), CSS4_ (148), XKCD_ (949)
35
-
36
-
37
- def hist2d(x, y, n=100):
38
- # 2d histogram used in labels.png and evolve.png
39
- xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
40
- hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
41
- xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
42
- yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
43
- return np.log(hist[xidx, yidx])
44
-
45
-
46
- def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
47
- # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
48
- def butter_lowpass(cutoff, fs, order):
49
- nyq = 0.5 * fs
50
- normal_cutoff = cutoff / nyq
51
- return butter(order, normal_cutoff, btype='low', analog=False)
52
-
53
- b, a = butter_lowpass(cutoff, fs, order=order)
54
- return filtfilt(b, a, data) # forward-backward filter
55
-
56
-
57
- def plot_one_box(x, img, color=None, label=None, line_thickness=3):
58
- # Plots one bounding box on image img
59
- tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
60
- color = color or [random.randint(0, 255) for _ in range(3)]
61
- c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
62
- cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
63
- if label:
64
- tf = max(tl - 1, 1) # font thickness
65
- t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
66
- c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
67
- cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
68
- cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
69
-
70
-
71
- def plot_one_box_PIL(box, img, color=None, label=None, line_thickness=None):
72
- img = Image.fromarray(img)
73
- draw = ImageDraw.Draw(img)
74
- line_thickness = line_thickness or max(int(min(img.size) / 200), 2)
75
- draw.rectangle(box, width=line_thickness, outline=tuple(color)) # plot
76
- if label:
77
- fontsize = max(round(max(img.size) / 40), 12)
78
- font = ImageFont.truetype("Arial.ttf", fontsize)
79
- txt_width, txt_height = font.getsize(label)
80
- draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=tuple(color))
81
- draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
82
- return np.asarray(img)
83
-
84
-
85
- def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
86
- # Compares the two methods for width-height anchor multiplication
87
- # https://github.com/ultralytics/yolov3/issues/168
88
- x = np.arange(-4.0, 4.0, .1)
89
- ya = np.exp(x)
90
- yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
91
-
92
- fig = plt.figure(figsize=(6, 3), tight_layout=True)
93
- plt.plot(x, ya, '.-', label='YOLOv3')
94
- plt.plot(x, yb ** 2, '.-', label='YOLOR ^2')
95
- plt.plot(x, yb ** 1.6, '.-', label='YOLOR ^1.6')
96
- plt.xlim(left=-4, right=4)
97
- plt.ylim(bottom=0, top=6)
98
- plt.xlabel('input')
99
- plt.ylabel('output')
100
- plt.grid()
101
- plt.legend()
102
- fig.savefig('comparison.png', dpi=200)
103
-
104
-
105
- def output_to_target(output):
106
- # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
107
- targets = []
108
- for i, o in enumerate(output):
109
- for *box, conf, cls in o.cpu().numpy():
110
- targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
111
- return np.array(targets)
112
-
113
-
114
- def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
115
- # Plot image grid with labels
116
-
117
- if isinstance(images, torch.Tensor):
118
- images = images.cpu().float().numpy()
119
- if isinstance(targets, torch.Tensor):
120
- targets = targets.cpu().numpy()
121
-
122
- # un-normalise
123
- if np.max(images[0]) <= 1:
124
- images *= 255
125
-
126
- tl = 3 # line thickness
127
- tf = max(tl - 1, 1) # font thickness
128
- bs, _, h, w = images.shape # batch size, _, height, width
129
- bs = min(bs, max_subplots) # limit plot images
130
- ns = np.ceil(bs ** 0.5) # number of subplots (square)
131
-
132
- # Check if we should resize
133
- scale_factor = max_size / max(h, w)
134
- if scale_factor < 1:
135
- h = math.ceil(scale_factor * h)
136
- w = math.ceil(scale_factor * w)
137
-
138
- colors = color_list() # list of colors
139
- mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
140
- for i, img in enumerate(images):
141
- if i == max_subplots: # if last batch has fewer images than we expect
142
- break
143
-
144
- block_x = int(w * (i // ns))
145
- block_y = int(h * (i % ns))
146
-
147
- img = img.transpose(1, 2, 0)
148
- if scale_factor < 1:
149
- img = cv2.resize(img, (w, h))
150
-
151
- mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
152
- if len(targets) > 0:
153
- image_targets = targets[targets[:, 0] == i]
154
- boxes = xywh2xyxy(image_targets[:, 2:6]).T
155
- classes = image_targets[:, 1].astype('int')
156
- labels = image_targets.shape[1] == 6 # labels if no conf column
157
- conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
158
-
159
- if boxes.shape[1]:
160
- if boxes.max() <= 1.01: # if normalized with tolerance 0.01
161
- boxes[[0, 2]] *= w # scale to pixels
162
- boxes[[1, 3]] *= h
163
- elif scale_factor < 1: # absolute coords need scale if image scales
164
- boxes *= scale_factor
165
- boxes[[0, 2]] += block_x
166
- boxes[[1, 3]] += block_y
167
- for j, box in enumerate(boxes.T):
168
- cls = int(classes[j])
169
- color = colors[cls % len(colors)]
170
- cls = names[cls] if names else cls
171
- if labels or conf[j] > 0.25: # 0.25 conf thresh
172
- label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
173
- plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
174
-
175
- # Draw image filename labels
176
- if paths:
177
- label = Path(paths[i]).name[:40] # trim to 40 char
178
- t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
179
- cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
180
- lineType=cv2.LINE_AA)
181
-
182
- # Image border
183
- cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
184
-
185
- if fname:
186
- r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
187
- mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
188
- # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
189
- Image.fromarray(mosaic).save(fname) # PIL save
190
- return mosaic
191
-
192
-
193
- def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
194
- # Plot LR simulating training for full epochs
195
- optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
196
- y = []
197
- for _ in range(epochs):
198
- scheduler.step()
199
- y.append(optimizer.param_groups[0]['lr'])
200
- plt.plot(y, '.-', label='LR')
201
- plt.xlabel('epoch')
202
- plt.ylabel('LR')
203
- plt.grid()
204
- plt.xlim(0, epochs)
205
- plt.ylim(0)
206
- plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
207
- plt.close()
208
-
209
-
210
- def plot_test_txt(): # from utils.plots import *; plot_test()
211
- # Plot test.txt histograms
212
- x = np.loadtxt('test.txt', dtype=np.float32)
213
- box = xyxy2xywh(x[:, :4])
214
- cx, cy = box[:, 0], box[:, 1]
215
-
216
- fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
217
- ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
218
- ax.set_aspect('equal')
219
- plt.savefig('hist2d.png', dpi=300)
220
-
221
- fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
222
- ax[0].hist(cx, bins=600)
223
- ax[1].hist(cy, bins=600)
224
- plt.savefig('hist1d.png', dpi=200)
225
-
226
-
227
- def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
228
- # Plot targets.txt histograms
229
- x = np.loadtxt('targets.txt', dtype=np.float32).T
230
- s = ['x targets', 'y targets', 'width targets', 'height targets']
231
- fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
232
- ax = ax.ravel()
233
- for i in range(4):
234
- ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
235
- ax[i].legend()
236
- ax[i].set_title(s[i])
237
- plt.savefig('targets.jpg', dpi=200)
238
-
239
-
240
- def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
241
- # Plot study.txt generated by test.py
242
- fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
243
- # ax = ax.ravel()
244
-
245
- fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
246
- # for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolor-p6', 'yolor-w6', 'yolor-e6', 'yolor-d6']]:
247
- for f in sorted(Path(path).glob('study*.txt')):
248
- y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
249
- x = np.arange(y.shape[1]) if x is None else np.array(x)
250
- s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
251
- # for i in range(7):
252
- # ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
253
- # ax[i].set_title(s[i])
254
-
255
- j = y[3].argmax() + 1
256
- ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
257
- label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
258
-
259
- ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
260
- 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
261
-
262
- ax2.grid(alpha=0.2)
263
- ax2.set_yticks(np.arange(20, 60, 5))
264
- ax2.set_xlim(0, 57)
265
- ax2.set_ylim(30, 55)
266
- ax2.set_xlabel('GPU Speed (ms/img)')
267
- ax2.set_ylabel('COCO AP val')
268
- ax2.legend(loc='lower right')
269
- plt.savefig(str(Path(path).name) + '.png', dpi=300)
270
-
271
-
272
- def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
273
- # plot dataset labels
274
- print('Plotting labels... ')
275
- c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
276
- nc = int(c.max() + 1) # number of classes
277
- colors = color_list()
278
- x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
279
-
280
- # seaborn correlogram
281
- sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
282
- plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
283
- plt.close()
284
-
285
- # matplotlib labels
286
- matplotlib.use('svg') # faster
287
- ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
288
- ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
289
- ax[0].set_ylabel('instances')
290
- if 0 < len(names) < 30:
291
- ax[0].set_xticks(range(len(names)))
292
- ax[0].set_xticklabels(names, rotation=90, fontsize=10)
293
- else:
294
- ax[0].set_xlabel('classes')
295
- sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
296
- sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
297
-
298
- # rectangles
299
- labels[:, 1:3] = 0.5 # center
300
- labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
301
- img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
302
- for cls, *box in labels[:1000]:
303
- ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot
304
- ax[1].imshow(img)
305
- ax[1].axis('off')
306
-
307
- for a in [0, 1, 2, 3]:
308
- for s in ['top', 'right', 'left', 'bottom']:
309
- ax[a].spines[s].set_visible(False)
310
-
311
- plt.savefig(save_dir / 'labels.jpg', dpi=200)
312
- matplotlib.use('Agg')
313
- plt.close()
314
-
315
- # loggers
316
- for k, v in loggers.items() or {}:
317
- if k == 'wandb' and v:
318
- v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False)
319
-
320
-
321
- def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
322
- # Plot hyperparameter evolution results in evolve.txt
323
- with open(yaml_file) as f:
324
- hyp = yaml.load(f, Loader=yaml.SafeLoader)
325
- x = np.loadtxt('evolve.txt', ndmin=2)
326
- f = fitness(x)
327
- # weights = (f - f.min()) ** 2 # for weighted results
328
- plt.figure(figsize=(10, 12), tight_layout=True)
329
- matplotlib.rc('font', **{'size': 8})
330
- for i, (k, v) in enumerate(hyp.items()):
331
- y = x[:, i + 7]
332
- # mu = (y * weights).sum() / weights.sum() # best weighted result
333
- mu = y[f.argmax()] # best single result
334
- plt.subplot(6, 5, i + 1)
335
- plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
336
- plt.plot(mu, f.max(), 'k+', markersize=15)
337
- plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
338
- if i % 5 != 0:
339
- plt.yticks([])
340
- print('%15s: %.3g' % (k, mu))
341
- plt.savefig('evolve.png', dpi=200)
342
- print('\nPlot saved as evolve.png')
343
-
344
-
345
- def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
346
- # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
347
- ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
348
- s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
349
- files = list(Path(save_dir).glob('frames*.txt'))
350
- for fi, f in enumerate(files):
351
- try:
352
- results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
353
- n = results.shape[1] # number of rows
354
- x = np.arange(start, min(stop, n) if stop else n)
355
- results = results[:, x]
356
- t = (results[0] - results[0].min()) # set t0=0s
357
- results[0] = x
358
- for i, a in enumerate(ax):
359
- if i < len(results):
360
- label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
361
- a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
362
- a.set_title(s[i])
363
- a.set_xlabel('time (s)')
364
- # if fi == len(files) - 1:
365
- # a.set_ylim(bottom=0)
366
- for side in ['top', 'right']:
367
- a.spines[side].set_visible(False)
368
- else:
369
- a.remove()
370
- except Exception as e:
371
- print('Warning: Plotting error for %s; %s' % (f, e))
372
-
373
- ax[1].legend()
374
- plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
375
-
376
-
377
- def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
378
- # Plot training 'results*.txt', overlaying train and val losses
379
- s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
380
- t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
381
- for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
382
- results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
383
- n = results.shape[1] # number of rows
384
- x = range(start, min(stop, n) if stop else n)
385
- fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
386
- ax = ax.ravel()
387
- for i in range(5):
388
- for j in [i, i + 5]:
389
- y = results[j, x]
390
- ax[i].plot(x, y, marker='.', label=s[j])
391
- # y_smooth = butter_lowpass_filtfilt(y)
392
- # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
393
-
394
- ax[i].set_title(t[i])
395
- ax[i].legend()
396
- ax[i].set_ylabel(f) if i == 0 else None # add filename
397
- fig.savefig(f.replace('.txt', '.png'), dpi=200)
398
-
399
-
400
- def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
401
- # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
402
- fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
403
- ax = ax.ravel()
404
- s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
405
- 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
406
- if bucket:
407
- # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
408
- files = ['results%g.txt' % x for x in id]
409
- c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
410
- os.system(c)
411
- else:
412
- files = list(Path(save_dir).glob('results*.txt'))
413
- assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
414
- for fi, f in enumerate(files):
415
- try:
416
- results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
417
- n = results.shape[1] # number of rows
418
- x = range(start, min(stop, n) if stop else n)
419
- for i in range(10):
420
- y = results[i, x]
421
- if i in [0, 1, 2, 5, 6, 7]:
422
- y[y == 0] = np.nan # don't show zero loss values
423
- # y /= y[0] # normalize
424
- label = labels[fi] if len(labels) else f.stem
425
- ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
426
- ax[i].set_title(s[i])
427
- # if i in [5, 6, 7]: # share train and val loss y axes
428
- # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
429
- except Exception as e:
430
- print('Warning: Plotting error for %s; %s' % (f, e))
431
-
432
- ax[1].legend()
433
- fig.savefig(Path(save_dir) / 'results.png', dpi=200)
434
-
435
-
436
- def output_to_keypoint(output):
437
- # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
438
- targets = []
439
- for i, o in enumerate(output):
440
- kpts = o[:,6:]
441
- o = o[:,:6]
442
- for index, (*box, conf, cls) in enumerate(o.detach().cpu().numpy()):
443
- targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf, *list(kpts.detach().cpu().numpy()[index])])
444
- return np.array(targets)
445
-
446
-
447
- def plot_skeleton_kpts(im, kpts, steps, orig_shape=None):
448
- #Plot the skeleton and keypointsfor coco datatset
449
- palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102],
450
- [230, 230, 0], [255, 153, 255], [153, 204, 255],
451
- [255, 102, 255], [255, 51, 255], [102, 178, 255],
452
- [51, 153, 255], [255, 153, 153], [255, 102, 102],
453
- [255, 51, 51], [153, 255, 153], [102, 255, 102],
454
- [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0],
455
- [255, 255, 255]])
456
-
457
- skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12],
458
- [7, 13], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3],
459
- [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]
460
-
461
- pose_limb_color = palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
462
- pose_kpt_color = palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
463
- radius = 5
464
- num_kpts = len(kpts) // steps
465
-
466
- for kid in range(num_kpts):
467
- r, g, b = pose_kpt_color[kid]
468
- x_coord, y_coord = kpts[steps * kid], kpts[steps * kid + 1]
469
- if not (x_coord % 640 == 0 or y_coord % 640 == 0):
470
- if steps == 3:
471
- conf = kpts[steps * kid + 2]
472
- if conf < 0.5:
473
- continue
474
- cv2.circle(im, (int(x_coord), int(y_coord)), radius, (int(r), int(g), int(b)), -1)
475
-
476
- for sk_id, sk in enumerate(skeleton):
477
- r, g, b = pose_limb_color[sk_id]
478
- pos1 = (int(kpts[(sk[0]-1)*steps]), int(kpts[(sk[0]-1)*steps+1]))
479
- pos2 = (int(kpts[(sk[1]-1)*steps]), int(kpts[(sk[1]-1)*steps+1]))
480
- if steps == 3:
481
- conf1 = kpts[(sk[0]-1)*steps+2]
482
- conf2 = kpts[(sk[1]-1)*steps+2]
483
- if conf1<0.5 or conf2<0.5:
484
- continue
485
- if pos1[0]%640 == 0 or pos1[1]%640==0 or pos1[0]<0 or pos1[1]<0:
486
- continue
487
- if pos2[0] % 640 == 0 or pos2[1] % 640 == 0 or pos2[0]<0 or pos2[1]<0:
488
- continue
489
- cv2.line(im, pos1, pos2, (int(r), int(g), int(b)), thickness=2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cedula/utils/torch_utils.py DELETED
@@ -1,374 +0,0 @@
1
- # YOLOR PyTorch utils
2
-
3
- import datetime
4
- import logging
5
- import math
6
- import os
7
- import platform
8
- import subprocess
9
- import time
10
- from contextlib import contextmanager
11
- from copy import deepcopy
12
- from pathlib import Path
13
-
14
- import torch
15
- import torch.backends.cudnn as cudnn
16
- import torch.nn as nn
17
- import torch.nn.functional as F
18
- import torchvision
19
-
20
- try:
21
- import thop # for FLOPS computation
22
- except ImportError:
23
- thop = None
24
- logger = logging.getLogger(__name__)
25
-
26
-
27
- @contextmanager
28
- def torch_distributed_zero_first(local_rank: int):
29
- """
30
- Decorator to make all processes in distributed training wait for each local_master to do something.
31
- """
32
- if local_rank not in [-1, 0]:
33
- torch.distributed.barrier()
34
- yield
35
- if local_rank == 0:
36
- torch.distributed.barrier()
37
-
38
-
39
- def init_torch_seeds(seed=0):
40
- # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
41
- torch.manual_seed(seed)
42
- if seed == 0: # slower, more reproducible
43
- cudnn.benchmark, cudnn.deterministic = False, True
44
- else: # faster, less reproducible
45
- cudnn.benchmark, cudnn.deterministic = True, False
46
-
47
-
48
- def date_modified(path=__file__):
49
- # return human-readable file modification date, i.e. '2021-3-26'
50
- t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
51
- return f'{t.year}-{t.month}-{t.day}'
52
-
53
-
54
- def git_describe(path=Path(__file__).parent): # path must be a directory
55
- # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
56
- s = f'git -C {path} describe --tags --long --always'
57
- try:
58
- return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
59
- except subprocess.CalledProcessError as e:
60
- return '' # not a git repository
61
-
62
-
63
- def select_device(device='', batch_size=None):
64
- # device = 'cpu' or '0' or '0,1,2,3'
65
- s = f'YOLOR 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
66
- cpu = device.lower() == 'cpu'
67
- if cpu:
68
- os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
69
- elif device: # non-cpu device requested
70
- os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
71
- assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
72
-
73
- cuda = not cpu and torch.cuda.is_available()
74
- if cuda:
75
- n = torch.cuda.device_count()
76
- if n > 1 and batch_size: # check that batch_size is compatible with device_count
77
- assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
78
- space = ' ' * len(s)
79
- for i, d in enumerate(device.split(',') if device else range(n)):
80
- p = torch.cuda.get_device_properties(i)
81
- s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
82
- else:
83
- s += 'CPU\n'
84
-
85
- logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
86
- return torch.device('cuda:0' if cuda else 'cpu')
87
-
88
-
89
- def time_synchronized():
90
- # pytorch-accurate time
91
- if torch.cuda.is_available():
92
- torch.cuda.synchronize()
93
- return time.time()
94
-
95
-
96
- def profile(x, ops, n=100, device=None):
97
- # profile a pytorch module or list of modules. Example usage:
98
- # x = torch.randn(16, 3, 640, 640) # input
99
- # m1 = lambda x: x * torch.sigmoid(x)
100
- # m2 = nn.SiLU()
101
- # profile(x, [m1, m2], n=100) # profile speed over 100 iterations
102
-
103
- device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
104
- x = x.to(device)
105
- x.requires_grad = True
106
- print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
107
- print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
108
- for m in ops if isinstance(ops, list) else [ops]:
109
- m = m.to(device) if hasattr(m, 'to') else m # device
110
- m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
111
- dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
112
- try:
113
- flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
114
- except:
115
- flops = 0
116
-
117
- for _ in range(n):
118
- t[0] = time_synchronized()
119
- y = m(x)
120
- t[1] = time_synchronized()
121
- try:
122
- _ = y.sum().backward()
123
- t[2] = time_synchronized()
124
- except: # no backward method
125
- t[2] = float('nan')
126
- dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
127
- dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
128
-
129
- s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
130
- s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
131
- p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
132
- print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
133
-
134
-
135
- def is_parallel(model):
136
- return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
137
-
138
-
139
- def intersect_dicts(da, db, exclude=()):
140
- # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
141
- return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
142
-
143
-
144
- def initialize_weights(model):
145
- for m in model.modules():
146
- t = type(m)
147
- if t is nn.Conv2d:
148
- pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
149
- elif t is nn.BatchNorm2d:
150
- m.eps = 1e-3
151
- m.momentum = 0.03
152
- elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
153
- m.inplace = True
154
-
155
-
156
- def find_modules(model, mclass=nn.Conv2d):
157
- # Finds layer indices matching module class 'mclass'
158
- return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
159
-
160
-
161
- def sparsity(model):
162
- # Return global model sparsity
163
- a, b = 0., 0.
164
- for p in model.parameters():
165
- a += p.numel()
166
- b += (p == 0).sum()
167
- return b / a
168
-
169
-
170
- def prune(model, amount=0.3):
171
- # Prune model to requested global sparsity
172
- import torch.nn.utils.prune as prune
173
- print('Pruning model... ', end='')
174
- for name, m in model.named_modules():
175
- if isinstance(m, nn.Conv2d):
176
- prune.l1_unstructured(m, name='weight', amount=amount) # prune
177
- prune.remove(m, 'weight') # make permanent
178
- print(' %.3g global sparsity' % sparsity(model))
179
-
180
-
181
- def fuse_conv_and_bn(conv, bn):
182
- # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
183
- fusedconv = nn.Conv2d(conv.in_channels,
184
- conv.out_channels,
185
- kernel_size=conv.kernel_size,
186
- stride=conv.stride,
187
- padding=conv.padding,
188
- groups=conv.groups,
189
- bias=True).requires_grad_(False).to(conv.weight.device)
190
-
191
- # prepare filters
192
- w_conv = conv.weight.clone().view(conv.out_channels, -1)
193
- w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
194
- fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
195
-
196
- # prepare spatial bias
197
- b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
198
- b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
199
- fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
200
-
201
- return fusedconv
202
-
203
-
204
- def model_info(model, verbose=False, img_size=640):
205
- # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
206
- n_p = sum(x.numel() for x in model.parameters()) # number parameters
207
- n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
208
- if verbose:
209
- print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
210
- for i, (name, p) in enumerate(model.named_parameters()):
211
- name = name.replace('module_list.', '')
212
- print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
213
- (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
214
-
215
- try: # FLOPS
216
- from thop import profile
217
- stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
218
- img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
219
- flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
220
- img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
221
- fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
222
- except (ImportError, Exception):
223
- fs = ''
224
-
225
- logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
226
-
227
-
228
- def load_classifier(name='resnet101', n=2):
229
- # Loads a pretrained model reshaped to n-class output
230
- model = torchvision.models.__dict__[name](pretrained=True)
231
-
232
- # ResNet model properties
233
- # input_size = [3, 224, 224]
234
- # input_space = 'RGB'
235
- # input_range = [0, 1]
236
- # mean = [0.485, 0.456, 0.406]
237
- # std = [0.229, 0.224, 0.225]
238
-
239
- # Reshape output to n classes
240
- filters = model.fc.weight.shape[1]
241
- model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
242
- model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
243
- model.fc.out_features = n
244
- return model
245
-
246
-
247
- def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
248
- # scales img(bs,3,y,x) by ratio constrained to gs-multiple
249
- if ratio == 1.0:
250
- return img
251
- else:
252
- h, w = img.shape[2:]
253
- s = (int(h * ratio), int(w * ratio)) # new size
254
- img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
255
- if not same_shape: # pad/crop img
256
- h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
257
- return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
258
-
259
-
260
- def copy_attr(a, b, include=(), exclude=()):
261
- # Copy attributes from b to a, options to only include [...] and to exclude [...]
262
- for k, v in b.__dict__.items():
263
- if (len(include) and k not in include) or k.startswith('_') or k in exclude:
264
- continue
265
- else:
266
- setattr(a, k, v)
267
-
268
-
269
- class ModelEMA:
270
- """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
271
- Keep a moving average of everything in the model state_dict (parameters and buffers).
272
- This is intended to allow functionality like
273
- https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
274
- A smoothed version of the weights is necessary for some training schemes to perform well.
275
- This class is sensitive where it is initialized in the sequence of model init,
276
- GPU assignment and distributed training wrappers.
277
- """
278
-
279
- def __init__(self, model, decay=0.9999, updates=0):
280
- # Create EMA
281
- self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
282
- # if next(model.parameters()).device.type != 'cpu':
283
- # self.ema.half() # FP16 EMA
284
- self.updates = updates # number of EMA updates
285
- self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
286
- for p in self.ema.parameters():
287
- p.requires_grad_(False)
288
-
289
- def update(self, model):
290
- # Update EMA parameters
291
- with torch.no_grad():
292
- self.updates += 1
293
- d = self.decay(self.updates)
294
-
295
- msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
296
- for k, v in self.ema.state_dict().items():
297
- if v.dtype.is_floating_point:
298
- v *= d
299
- v += (1. - d) * msd[k].detach()
300
-
301
- def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
302
- # Update EMA attributes
303
- copy_attr(self.ema, model, include, exclude)
304
-
305
-
306
- class BatchNormXd(torch.nn.modules.batchnorm._BatchNorm):
307
- def _check_input_dim(self, input):
308
- # The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
309
- # is this method that is overwritten by the sub-class
310
- # This original goal of this method was for tensor sanity checks
311
- # If you're ok bypassing those sanity checks (eg. if you trust your inference
312
- # to provide the right dimensional inputs), then you can just use this method
313
- # for easy conversion from SyncBatchNorm
314
- # (unfortunately, SyncBatchNorm does not store the original class - if it did
315
- # we could return the one that was originally created)
316
- return
317
-
318
- def revert_sync_batchnorm(module):
319
- # this is very similar to the function that it is trying to revert:
320
- # https://github.com/pytorch/pytorch/blob/c8b3686a3e4ba63dc59e5dcfe5db3430df256833/torch/nn/modules/batchnorm.py#L679
321
- module_output = module
322
- if isinstance(module, torch.nn.modules.batchnorm.SyncBatchNorm):
323
- new_cls = BatchNormXd
324
- module_output = BatchNormXd(module.num_features,
325
- module.eps, module.momentum,
326
- module.affine,
327
- module.track_running_stats)
328
- if module.affine:
329
- with torch.no_grad():
330
- module_output.weight = module.weight
331
- module_output.bias = module.bias
332
- module_output.running_mean = module.running_mean
333
- module_output.running_var = module.running_var
334
- module_output.num_batches_tracked = module.num_batches_tracked
335
- if hasattr(module, "qconfig"):
336
- module_output.qconfig = module.qconfig
337
- for name, child in module.named_children():
338
- module_output.add_module(name, revert_sync_batchnorm(child))
339
- del module
340
- return module_output
341
-
342
-
343
- class TracedModel(nn.Module):
344
-
345
- def __init__(self, model=None, device=None, img_size=(640,640)):
346
- super(TracedModel, self).__init__()
347
-
348
- print(" Convert model to Traced-model... ")
349
- self.stride = model.stride
350
- self.names = model.names
351
- self.model = model
352
-
353
- self.model = revert_sync_batchnorm(self.model)
354
- self.model.to('cpu')
355
- self.model.eval()
356
-
357
- self.detect_layer = self.model.model[-1]
358
- self.model.traced = True
359
-
360
- rand_example = torch.rand(1, 3, img_size, img_size)
361
-
362
- traced_script_module = torch.jit.trace(self.model, rand_example, strict=False)
363
- #traced_script_module = torch.jit.script(self.model)
364
- traced_script_module.save("traced_model.pt")
365
- print(" traced_script_module saved! ")
366
- self.model = traced_script_module
367
- self.model.to(device)
368
- self.detect_layer.to(device)
369
- print(" model is traced! \n")
370
-
371
- def forward(self, x, augment=False, profile=False):
372
- out = self.model(x)
373
- out = self.detect_layer(out)
374
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
license/.DS_Store CHANGED
Binary files a/license/.DS_Store and b/license/.DS_Store differ
 
license/best.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:00bc306cd607b5ec22b8b499b81689081e2b478dd712dfa832955dc6c37684b4
3
- size 162520891
 
 
 
 
license/models/common.py DELETED
@@ -1,2019 +0,0 @@
1
- import math
2
- from copy import copy
3
- from pathlib import Path
4
-
5
- import numpy as np
6
- import pandas as pd
7
- import requests
8
- import torch
9
- import torch.nn as nn
10
- import torch.nn.functional as F
11
- from torchvision.ops import DeformConv2d
12
- from PIL import Image
13
- from torch.cuda import amp
14
-
15
- from utils.datasets import letterbox
16
- from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh
17
- from utils.plots import color_list, plot_one_box
18
- from utils.torch_utils import time_synchronized
19
-
20
-
21
- # #### basic ####
22
-
23
- def autopad(k, p=None): # kernel, padding
24
- # Pad to 'same'
25
- if p is None:
26
- p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
27
- return p
28
-
29
-
30
- class MP(nn.Module):
31
- def __init__(self, k=2):
32
- super(MP, self).__init__()
33
- self.m = nn.MaxPool2d(kernel_size=k, stride=k)
34
-
35
- def forward(self, x):
36
- return self.m(x)
37
-
38
-
39
- class SP(nn.Module):
40
- def __init__(self, k=3, s=1):
41
- super(SP, self).__init__()
42
- self.m = nn.MaxPool2d(kernel_size=k, stride=s, padding=k // 2)
43
-
44
- def forward(self, x):
45
- return self.m(x)
46
-
47
-
48
- class ReOrg(nn.Module):
49
- def __init__(self):
50
- super(ReOrg, self).__init__()
51
-
52
- def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
53
- return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
54
-
55
-
56
- class Concat(nn.Module):
57
- def __init__(self, dimension=1):
58
- super(Concat, self).__init__()
59
- self.d = dimension
60
-
61
- def forward(self, x):
62
- return torch.cat(x, self.d)
63
-
64
-
65
- class Chuncat(nn.Module):
66
- def __init__(self, dimension=1):
67
- super(Chuncat, self).__init__()
68
- self.d = dimension
69
-
70
- def forward(self, x):
71
- x1 = []
72
- x2 = []
73
- for xi in x:
74
- xi1, xi2 = xi.chunk(2, self.d)
75
- x1.append(xi1)
76
- x2.append(xi2)
77
- return torch.cat(x1+x2, self.d)
78
-
79
-
80
- class Shortcut(nn.Module):
81
- def __init__(self, dimension=0):
82
- super(Shortcut, self).__init__()
83
- self.d = dimension
84
-
85
- def forward(self, x):
86
- return x[0]+x[1]
87
-
88
-
89
- class Foldcut(nn.Module):
90
- def __init__(self, dimension=0):
91
- super(Foldcut, self).__init__()
92
- self.d = dimension
93
-
94
- def forward(self, x):
95
- x1, x2 = x.chunk(2, self.d)
96
- return x1+x2
97
-
98
-
99
- class Conv(nn.Module):
100
- # Standard convolution
101
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
102
- super(Conv, self).__init__()
103
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
104
- self.bn = nn.BatchNorm2d(c2)
105
- self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
106
-
107
- def forward(self, x):
108
- return self.act(self.bn(self.conv(x)))
109
-
110
- def fuseforward(self, x):
111
- return self.act(self.conv(x))
112
-
113
-
114
- class RobustConv(nn.Module):
115
- # Robust convolution (use high kernel size 7-11 for: downsampling and other layers). Train for 300 - 450 epochs.
116
- def __init__(self, c1, c2, k=7, s=1, p=None, g=1, act=True, layer_scale_init_value=1e-6): # ch_in, ch_out, kernel, stride, padding, groups
117
- super(RobustConv, self).__init__()
118
- self.conv_dw = Conv(c1, c1, k=k, s=s, p=p, g=c1, act=act)
119
- self.conv1x1 = nn.Conv2d(c1, c2, 1, 1, 0, groups=1, bias=True)
120
- self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(c2)) if layer_scale_init_value > 0 else None
121
-
122
- def forward(self, x):
123
- x = x.to(memory_format=torch.channels_last)
124
- x = self.conv1x1(self.conv_dw(x))
125
- if self.gamma is not None:
126
- x = x.mul(self.gamma.reshape(1, -1, 1, 1))
127
- return x
128
-
129
-
130
- class RobustConv2(nn.Module):
131
- # Robust convolution 2 (use [32, 5, 2] or [32, 7, 4] or [32, 11, 8] for one of the paths in CSP).
132
- def __init__(self, c1, c2, k=7, s=4, p=None, g=1, act=True, layer_scale_init_value=1e-6): # ch_in, ch_out, kernel, stride, padding, groups
133
- super(RobustConv2, self).__init__()
134
- self.conv_strided = Conv(c1, c1, k=k, s=s, p=p, g=c1, act=act)
135
- self.conv_deconv = nn.ConvTranspose2d(in_channels=c1, out_channels=c2, kernel_size=s, stride=s,
136
- padding=0, bias=True, dilation=1, groups=1
137
- )
138
- self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(c2)) if layer_scale_init_value > 0 else None
139
-
140
- def forward(self, x):
141
- x = self.conv_deconv(self.conv_strided(x))
142
- if self.gamma is not None:
143
- x = x.mul(self.gamma.reshape(1, -1, 1, 1))
144
- return x
145
-
146
-
147
- def DWConv(c1, c2, k=1, s=1, act=True):
148
- # Depthwise convolution
149
- return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
150
-
151
-
152
- class GhostConv(nn.Module):
153
- # Ghost Convolution https://github.com/huawei-noah/ghostnet
154
- def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
155
- super(GhostConv, self).__init__()
156
- c_ = c2 // 2 # hidden channels
157
- self.cv1 = Conv(c1, c_, k, s, None, g, act)
158
- self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
159
-
160
- def forward(self, x):
161
- y = self.cv1(x)
162
- return torch.cat([y, self.cv2(y)], 1)
163
-
164
-
165
- class Stem(nn.Module):
166
- # Stem
167
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
168
- super(Stem, self).__init__()
169
- c_ = int(c2/2) # hidden channels
170
- self.cv1 = Conv(c1, c_, 3, 2)
171
- self.cv2 = Conv(c_, c_, 1, 1)
172
- self.cv3 = Conv(c_, c_, 3, 2)
173
- self.pool = torch.nn.MaxPool2d(2, stride=2)
174
- self.cv4 = Conv(2 * c_, c2, 1, 1)
175
-
176
- def forward(self, x):
177
- x = self.cv1(x)
178
- return self.cv4(torch.cat((self.cv3(self.cv2(x)), self.pool(x)), dim=1))
179
-
180
-
181
- class DownC(nn.Module):
182
- # Spatial pyramid pooling layer used in YOLOv3-SPP
183
- def __init__(self, c1, c2, n=1, k=2):
184
- super(DownC, self).__init__()
185
- c_ = int(c1) # hidden channels
186
- self.cv1 = Conv(c1, c_, 1, 1)
187
- self.cv2 = Conv(c_, c2//2, 3, k)
188
- self.cv3 = Conv(c1, c2//2, 1, 1)
189
- self.mp = nn.MaxPool2d(kernel_size=k, stride=k)
190
-
191
- def forward(self, x):
192
- return torch.cat((self.cv2(self.cv1(x)), self.cv3(self.mp(x))), dim=1)
193
-
194
-
195
- class SPP(nn.Module):
196
- # Spatial pyramid pooling layer used in YOLOv3-SPP
197
- def __init__(self, c1, c2, k=(5, 9, 13)):
198
- super(SPP, self).__init__()
199
- c_ = c1 // 2 # hidden channels
200
- self.cv1 = Conv(c1, c_, 1, 1)
201
- self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
202
- self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
203
-
204
- def forward(self, x):
205
- x = self.cv1(x)
206
- return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
207
-
208
-
209
- class Bottleneck(nn.Module):
210
- # Darknet bottleneck
211
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
212
- super(Bottleneck, self).__init__()
213
- c_ = int(c2 * e) # hidden channels
214
- self.cv1 = Conv(c1, c_, 1, 1)
215
- self.cv2 = Conv(c_, c2, 3, 1, g=g)
216
- self.add = shortcut and c1 == c2
217
-
218
- def forward(self, x):
219
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
220
-
221
-
222
- class Res(nn.Module):
223
- # ResNet bottleneck
224
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
225
- super(Res, self).__init__()
226
- c_ = int(c2 * e) # hidden channels
227
- self.cv1 = Conv(c1, c_, 1, 1)
228
- self.cv2 = Conv(c_, c_, 3, 1, g=g)
229
- self.cv3 = Conv(c_, c2, 1, 1)
230
- self.add = shortcut and c1 == c2
231
-
232
- def forward(self, x):
233
- return x + self.cv3(self.cv2(self.cv1(x))) if self.add else self.cv3(self.cv2(self.cv1(x)))
234
-
235
-
236
- class ResX(Res):
237
- # ResNet bottleneck
238
- def __init__(self, c1, c2, shortcut=True, g=32, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
239
- super().__init__(c1, c2, shortcut, g, e)
240
- c_ = int(c2 * e) # hidden channels
241
-
242
-
243
- class Ghost(nn.Module):
244
- # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
245
- def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
246
- super(Ghost, self).__init__()
247
- c_ = c2 // 2
248
- self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
249
- DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
250
- GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
251
- self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
252
- Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
253
-
254
- def forward(self, x):
255
- return self.conv(x) + self.shortcut(x)
256
-
257
- # #### end of basic #####
258
-
259
-
260
- # #### cspnet #####
261
-
262
- class SPPCSPC(nn.Module):
263
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
264
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
265
- super(SPPCSPC, self).__init__()
266
- c_ = int(2 * c2 * e) # hidden channels
267
- self.cv1 = Conv(c1, c_, 1, 1)
268
- self.cv2 = Conv(c1, c_, 1, 1)
269
- self.cv3 = Conv(c_, c_, 3, 1)
270
- self.cv4 = Conv(c_, c_, 1, 1)
271
- self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
272
- self.cv5 = Conv(4 * c_, c_, 1, 1)
273
- self.cv6 = Conv(c_, c_, 3, 1)
274
- self.cv7 = Conv(2 * c_, c2, 1, 1)
275
-
276
- def forward(self, x):
277
- x1 = self.cv4(self.cv3(self.cv1(x)))
278
- y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
279
- y2 = self.cv2(x)
280
- return self.cv7(torch.cat((y1, y2), dim=1))
281
-
282
- class GhostSPPCSPC(SPPCSPC):
283
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
284
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
285
- super().__init__(c1, c2, n, shortcut, g, e, k)
286
- c_ = int(2 * c2 * e) # hidden channels
287
- self.cv1 = GhostConv(c1, c_, 1, 1)
288
- self.cv2 = GhostConv(c1, c_, 1, 1)
289
- self.cv3 = GhostConv(c_, c_, 3, 1)
290
- self.cv4 = GhostConv(c_, c_, 1, 1)
291
- self.cv5 = GhostConv(4 * c_, c_, 1, 1)
292
- self.cv6 = GhostConv(c_, c_, 3, 1)
293
- self.cv7 = GhostConv(2 * c_, c2, 1, 1)
294
-
295
-
296
- class GhostStem(Stem):
297
- # Stem
298
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
299
- super().__init__(c1, c2, k, s, p, g, act)
300
- c_ = int(c2/2) # hidden channels
301
- self.cv1 = GhostConv(c1, c_, 3, 2)
302
- self.cv2 = GhostConv(c_, c_, 1, 1)
303
- self.cv3 = GhostConv(c_, c_, 3, 2)
304
- self.cv4 = GhostConv(2 * c_, c2, 1, 1)
305
-
306
-
307
- class BottleneckCSPA(nn.Module):
308
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
309
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
310
- super(BottleneckCSPA, self).__init__()
311
- c_ = int(c2 * e) # hidden channels
312
- self.cv1 = Conv(c1, c_, 1, 1)
313
- self.cv2 = Conv(c1, c_, 1, 1)
314
- self.cv3 = Conv(2 * c_, c2, 1, 1)
315
- self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
316
-
317
- def forward(self, x):
318
- y1 = self.m(self.cv1(x))
319
- y2 = self.cv2(x)
320
- return self.cv3(torch.cat((y1, y2), dim=1))
321
-
322
-
323
- class BottleneckCSPB(nn.Module):
324
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
325
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
326
- super(BottleneckCSPB, self).__init__()
327
- c_ = int(c2) # hidden channels
328
- self.cv1 = Conv(c1, c_, 1, 1)
329
- self.cv2 = Conv(c_, c_, 1, 1)
330
- self.cv3 = Conv(2 * c_, c2, 1, 1)
331
- self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
332
-
333
- def forward(self, x):
334
- x1 = self.cv1(x)
335
- y1 = self.m(x1)
336
- y2 = self.cv2(x1)
337
- return self.cv3(torch.cat((y1, y2), dim=1))
338
-
339
-
340
- class BottleneckCSPC(nn.Module):
341
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
342
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
343
- super(BottleneckCSPC, self).__init__()
344
- c_ = int(c2 * e) # hidden channels
345
- self.cv1 = Conv(c1, c_, 1, 1)
346
- self.cv2 = Conv(c1, c_, 1, 1)
347
- self.cv3 = Conv(c_, c_, 1, 1)
348
- self.cv4 = Conv(2 * c_, c2, 1, 1)
349
- self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
350
-
351
- def forward(self, x):
352
- y1 = self.cv3(self.m(self.cv1(x)))
353
- y2 = self.cv2(x)
354
- return self.cv4(torch.cat((y1, y2), dim=1))
355
-
356
-
357
- class ResCSPA(BottleneckCSPA):
358
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
359
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
360
- super().__init__(c1, c2, n, shortcut, g, e)
361
- c_ = int(c2 * e) # hidden channels
362
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
363
-
364
-
365
- class ResCSPB(BottleneckCSPB):
366
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
367
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
368
- super().__init__(c1, c2, n, shortcut, g, e)
369
- c_ = int(c2) # hidden channels
370
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
371
-
372
-
373
- class ResCSPC(BottleneckCSPC):
374
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
375
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
376
- super().__init__(c1, c2, n, shortcut, g, e)
377
- c_ = int(c2 * e) # hidden channels
378
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
379
-
380
-
381
- class ResXCSPA(ResCSPA):
382
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
383
- def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
384
- super().__init__(c1, c2, n, shortcut, g, e)
385
- c_ = int(c2 * e) # hidden channels
386
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
387
-
388
-
389
- class ResXCSPB(ResCSPB):
390
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
391
- def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
392
- super().__init__(c1, c2, n, shortcut, g, e)
393
- c_ = int(c2) # hidden channels
394
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
395
-
396
-
397
- class ResXCSPC(ResCSPC):
398
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
399
- def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
400
- super().__init__(c1, c2, n, shortcut, g, e)
401
- c_ = int(c2 * e) # hidden channels
402
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
403
-
404
-
405
- class GhostCSPA(BottleneckCSPA):
406
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
407
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
408
- super().__init__(c1, c2, n, shortcut, g, e)
409
- c_ = int(c2 * e) # hidden channels
410
- self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
411
-
412
-
413
- class GhostCSPB(BottleneckCSPB):
414
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
415
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
416
- super().__init__(c1, c2, n, shortcut, g, e)
417
- c_ = int(c2) # hidden channels
418
- self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
419
-
420
-
421
- class GhostCSPC(BottleneckCSPC):
422
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
423
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
424
- super().__init__(c1, c2, n, shortcut, g, e)
425
- c_ = int(c2 * e) # hidden channels
426
- self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
427
-
428
- # #### end of cspnet #####
429
-
430
-
431
- # #### yolor #####
432
-
433
- class ImplicitA(nn.Module):
434
- def __init__(self, channel, mean=0., std=.02):
435
- super(ImplicitA, self).__init__()
436
- self.channel = channel
437
- self.mean = mean
438
- self.std = std
439
- self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
440
- nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
441
-
442
- def forward(self, x):
443
- return self.implicit + x
444
-
445
-
446
- class ImplicitM(nn.Module):
447
- def __init__(self, channel, mean=1., std=.02):
448
- super(ImplicitM, self).__init__()
449
- self.channel = channel
450
- self.mean = mean
451
- self.std = std
452
- self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))
453
- nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
454
-
455
- def forward(self, x):
456
- return self.implicit * x
457
-
458
- # #### end of yolor #####
459
-
460
-
461
- # #### repvgg #####
462
-
463
- class RepConv(nn.Module):
464
- # Represented convolution
465
- # https://arxiv.org/abs/2101.03697
466
-
467
- def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True, deploy=False):
468
- super(RepConv, self).__init__()
469
-
470
- self.deploy = deploy
471
- self.groups = g
472
- self.in_channels = c1
473
- self.out_channels = c2
474
-
475
- assert k == 3
476
- assert autopad(k, p) == 1
477
-
478
- padding_11 = autopad(k, p) - k // 2
479
-
480
- self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
481
-
482
- if deploy:
483
- self.rbr_reparam = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=True)
484
-
485
- else:
486
- self.rbr_identity = (nn.BatchNorm2d(num_features=c1) if c2 == c1 and s == 1 else None)
487
-
488
- self.rbr_dense = nn.Sequential(
489
- nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False),
490
- nn.BatchNorm2d(num_features=c2),
491
- )
492
-
493
- self.rbr_1x1 = nn.Sequential(
494
- nn.Conv2d( c1, c2, 1, s, padding_11, groups=g, bias=False),
495
- nn.BatchNorm2d(num_features=c2),
496
- )
497
-
498
- def forward(self, inputs):
499
- if hasattr(self, "rbr_reparam"):
500
- return self.act(self.rbr_reparam(inputs))
501
-
502
- if self.rbr_identity is None:
503
- id_out = 0
504
- else:
505
- id_out = self.rbr_identity(inputs)
506
-
507
- return self.act(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)
508
-
509
- def get_equivalent_kernel_bias(self):
510
- kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
511
- kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
512
- kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
513
- return (
514
- kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid,
515
- bias3x3 + bias1x1 + biasid,
516
- )
517
-
518
- def _pad_1x1_to_3x3_tensor(self, kernel1x1):
519
- if kernel1x1 is None:
520
- return 0
521
- else:
522
- return nn.functional.pad(kernel1x1, [1, 1, 1, 1])
523
-
524
- def _fuse_bn_tensor(self, branch):
525
- if branch is None:
526
- return 0, 0
527
- if isinstance(branch, nn.Sequential):
528
- kernel = branch[0].weight
529
- running_mean = branch[1].running_mean
530
- running_var = branch[1].running_var
531
- gamma = branch[1].weight
532
- beta = branch[1].bias
533
- eps = branch[1].eps
534
- else:
535
- assert isinstance(branch, nn.BatchNorm2d)
536
- if not hasattr(self, "id_tensor"):
537
- input_dim = self.in_channels // self.groups
538
- kernel_value = np.zeros(
539
- (self.in_channels, input_dim, 3, 3), dtype=np.float32
540
- )
541
- for i in range(self.in_channels):
542
- kernel_value[i, i % input_dim, 1, 1] = 1
543
- self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
544
- kernel = self.id_tensor
545
- running_mean = branch.running_mean
546
- running_var = branch.running_var
547
- gamma = branch.weight
548
- beta = branch.bias
549
- eps = branch.eps
550
- std = (running_var + eps).sqrt()
551
- t = (gamma / std).reshape(-1, 1, 1, 1)
552
- return kernel * t, beta - running_mean * gamma / std
553
-
554
- def repvgg_convert(self):
555
- kernel, bias = self.get_equivalent_kernel_bias()
556
- return (
557
- kernel.detach().cpu().numpy(),
558
- bias.detach().cpu().numpy(),
559
- )
560
-
561
- def fuse_conv_bn(self, conv, bn):
562
-
563
- std = (bn.running_var + bn.eps).sqrt()
564
- bias = bn.bias - bn.running_mean * bn.weight / std
565
-
566
- t = (bn.weight / std).reshape(-1, 1, 1, 1)
567
- weights = conv.weight * t
568
-
569
- bn = nn.Identity()
570
- conv = nn.Conv2d(in_channels = conv.in_channels,
571
- out_channels = conv.out_channels,
572
- kernel_size = conv.kernel_size,
573
- stride=conv.stride,
574
- padding = conv.padding,
575
- dilation = conv.dilation,
576
- groups = conv.groups,
577
- bias = True,
578
- padding_mode = conv.padding_mode)
579
-
580
- conv.weight = torch.nn.Parameter(weights)
581
- conv.bias = torch.nn.Parameter(bias)
582
- return conv
583
-
584
- def fuse_repvgg_block(self):
585
- if self.deploy:
586
- return
587
- print(f"RepConv.fuse_repvgg_block")
588
-
589
- self.rbr_dense = self.fuse_conv_bn(self.rbr_dense[0], self.rbr_dense[1])
590
-
591
- self.rbr_1x1 = self.fuse_conv_bn(self.rbr_1x1[0], self.rbr_1x1[1])
592
- rbr_1x1_bias = self.rbr_1x1.bias
593
- weight_1x1_expanded = torch.nn.functional.pad(self.rbr_1x1.weight, [1, 1, 1, 1])
594
-
595
- # Fuse self.rbr_identity
596
- if (isinstance(self.rbr_identity, nn.BatchNorm2d) or isinstance(self.rbr_identity, nn.modules.batchnorm.SyncBatchNorm)):
597
- # print(f"fuse: rbr_identity == BatchNorm2d or SyncBatchNorm")
598
- identity_conv_1x1 = nn.Conv2d(
599
- in_channels=self.in_channels,
600
- out_channels=self.out_channels,
601
- kernel_size=1,
602
- stride=1,
603
- padding=0,
604
- groups=self.groups,
605
- bias=False)
606
- identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.to(self.rbr_1x1.weight.data.device)
607
- identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.squeeze().squeeze()
608
- # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
609
- identity_conv_1x1.weight.data.fill_(0.0)
610
- identity_conv_1x1.weight.data.fill_diagonal_(1.0)
611
- identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.unsqueeze(2).unsqueeze(3)
612
- # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
613
-
614
- identity_conv_1x1 = self.fuse_conv_bn(identity_conv_1x1, self.rbr_identity)
615
- bias_identity_expanded = identity_conv_1x1.bias
616
- weight_identity_expanded = torch.nn.functional.pad(identity_conv_1x1.weight, [1, 1, 1, 1])
617
- else:
618
- # print(f"fuse: rbr_identity != BatchNorm2d, rbr_identity = {self.rbr_identity}")
619
- bias_identity_expanded = torch.nn.Parameter( torch.zeros_like(rbr_1x1_bias) )
620
- weight_identity_expanded = torch.nn.Parameter( torch.zeros_like(weight_1x1_expanded) )
621
-
622
-
623
- #print(f"self.rbr_1x1.weight = {self.rbr_1x1.weight.shape}, ")
624
- #print(f"weight_1x1_expanded = {weight_1x1_expanded.shape}, ")
625
- #print(f"self.rbr_dense.weight = {self.rbr_dense.weight.shape}, ")
626
-
627
- self.rbr_dense.weight = torch.nn.Parameter(self.rbr_dense.weight + weight_1x1_expanded + weight_identity_expanded)
628
- self.rbr_dense.bias = torch.nn.Parameter(self.rbr_dense.bias + rbr_1x1_bias + bias_identity_expanded)
629
-
630
- self.rbr_reparam = self.rbr_dense
631
- self.deploy = True
632
-
633
- if self.rbr_identity is not None:
634
- del self.rbr_identity
635
- self.rbr_identity = None
636
-
637
- if self.rbr_1x1 is not None:
638
- del self.rbr_1x1
639
- self.rbr_1x1 = None
640
-
641
- if self.rbr_dense is not None:
642
- del self.rbr_dense
643
- self.rbr_dense = None
644
-
645
-
646
- class RepBottleneck(Bottleneck):
647
- # Standard bottleneck
648
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
649
- super().__init__(c1, c2, shortcut=True, g=1, e=0.5)
650
- c_ = int(c2 * e) # hidden channels
651
- self.cv2 = RepConv(c_, c2, 3, 1, g=g)
652
-
653
-
654
- class RepBottleneckCSPA(BottleneckCSPA):
655
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
656
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
657
- super().__init__(c1, c2, n, shortcut, g, e)
658
- c_ = int(c2 * e) # hidden channels
659
- self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
660
-
661
-
662
- class RepBottleneckCSPB(BottleneckCSPB):
663
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
664
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
665
- super().__init__(c1, c2, n, shortcut, g, e)
666
- c_ = int(c2) # hidden channels
667
- self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
668
-
669
-
670
- class RepBottleneckCSPC(BottleneckCSPC):
671
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
672
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
673
- super().__init__(c1, c2, n, shortcut, g, e)
674
- c_ = int(c2 * e) # hidden channels
675
- self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
676
-
677
-
678
- class RepRes(Res):
679
- # Standard bottleneck
680
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
681
- super().__init__(c1, c2, shortcut, g, e)
682
- c_ = int(c2 * e) # hidden channels
683
- self.cv2 = RepConv(c_, c_, 3, 1, g=g)
684
-
685
-
686
- class RepResCSPA(ResCSPA):
687
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
688
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
689
- super().__init__(c1, c2, n, shortcut, g, e)
690
- c_ = int(c2 * e) # hidden channels
691
- self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
692
-
693
-
694
- class RepResCSPB(ResCSPB):
695
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
696
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
697
- super().__init__(c1, c2, n, shortcut, g, e)
698
- c_ = int(c2) # hidden channels
699
- self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
700
-
701
-
702
- class RepResCSPC(ResCSPC):
703
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
704
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
705
- super().__init__(c1, c2, n, shortcut, g, e)
706
- c_ = int(c2 * e) # hidden channels
707
- self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
708
-
709
-
710
- class RepResX(ResX):
711
- # Standard bottleneck
712
- def __init__(self, c1, c2, shortcut=True, g=32, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
713
- super().__init__(c1, c2, shortcut, g, e)
714
- c_ = int(c2 * e) # hidden channels
715
- self.cv2 = RepConv(c_, c_, 3, 1, g=g)
716
-
717
-
718
- class RepResXCSPA(ResXCSPA):
719
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
720
- def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
721
- super().__init__(c1, c2, n, shortcut, g, e)
722
- c_ = int(c2 * e) # hidden channels
723
- self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
724
-
725
-
726
- class RepResXCSPB(ResXCSPB):
727
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
728
- def __init__(self, c1, c2, n=1, shortcut=False, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
729
- super().__init__(c1, c2, n, shortcut, g, e)
730
- c_ = int(c2) # hidden channels
731
- self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
732
-
733
-
734
- class RepResXCSPC(ResXCSPC):
735
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
736
- def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
737
- super().__init__(c1, c2, n, shortcut, g, e)
738
- c_ = int(c2 * e) # hidden channels
739
- self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
740
-
741
- # #### end of repvgg #####
742
-
743
-
744
- # #### transformer #####
745
-
746
- class TransformerLayer(nn.Module):
747
- # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
748
- def __init__(self, c, num_heads):
749
- super().__init__()
750
- self.q = nn.Linear(c, c, bias=False)
751
- self.k = nn.Linear(c, c, bias=False)
752
- self.v = nn.Linear(c, c, bias=False)
753
- self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
754
- self.fc1 = nn.Linear(c, c, bias=False)
755
- self.fc2 = nn.Linear(c, c, bias=False)
756
-
757
- def forward(self, x):
758
- x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
759
- x = self.fc2(self.fc1(x)) + x
760
- return x
761
-
762
-
763
- class TransformerBlock(nn.Module):
764
- # Vision Transformer https://arxiv.org/abs/2010.11929
765
- def __init__(self, c1, c2, num_heads, num_layers):
766
- super().__init__()
767
- self.conv = None
768
- if c1 != c2:
769
- self.conv = Conv(c1, c2)
770
- self.linear = nn.Linear(c2, c2) # learnable position embedding
771
- self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)])
772
- self.c2 = c2
773
-
774
- def forward(self, x):
775
- if self.conv is not None:
776
- x = self.conv(x)
777
- b, _, w, h = x.shape
778
- p = x.flatten(2)
779
- p = p.unsqueeze(0)
780
- p = p.transpose(0, 3)
781
- p = p.squeeze(3)
782
- e = self.linear(p)
783
- x = p + e
784
-
785
- x = self.tr(x)
786
- x = x.unsqueeze(3)
787
- x = x.transpose(0, 3)
788
- x = x.reshape(b, self.c2, w, h)
789
- return x
790
-
791
- # #### end of transformer #####
792
-
793
-
794
- # #### yolov5 #####
795
-
796
- class Focus(nn.Module):
797
- # Focus wh information into c-space
798
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
799
- super(Focus, self).__init__()
800
- self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
801
- # self.contract = Contract(gain=2)
802
-
803
- def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
804
- return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
805
- # return self.conv(self.contract(x))
806
-
807
-
808
- class SPPF(nn.Module):
809
- # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
810
- def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
811
- super().__init__()
812
- c_ = c1 // 2 # hidden channels
813
- self.cv1 = Conv(c1, c_, 1, 1)
814
- self.cv2 = Conv(c_ * 4, c2, 1, 1)
815
- self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
816
-
817
- def forward(self, x):
818
- x = self.cv1(x)
819
- y1 = self.m(x)
820
- y2 = self.m(y1)
821
- return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
822
-
823
-
824
- class Contract(nn.Module):
825
- # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
826
- def __init__(self, gain=2):
827
- super().__init__()
828
- self.gain = gain
829
-
830
- def forward(self, x):
831
- N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
832
- s = self.gain
833
- x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
834
- x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
835
- return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
836
-
837
-
838
- class Expand(nn.Module):
839
- # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
840
- def __init__(self, gain=2):
841
- super().__init__()
842
- self.gain = gain
843
-
844
- def forward(self, x):
845
- N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
846
- s = self.gain
847
- x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
848
- x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
849
- return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
850
-
851
-
852
- class NMS(nn.Module):
853
- # Non-Maximum Suppression (NMS) module
854
- conf = 0.25 # confidence threshold
855
- iou = 0.45 # IoU threshold
856
- classes = None # (optional list) filter by class
857
-
858
- def __init__(self):
859
- super(NMS, self).__init__()
860
-
861
- def forward(self, x):
862
- return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
863
-
864
-
865
- class autoShape(nn.Module):
866
- # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
867
- conf = 0.25 # NMS confidence threshold
868
- iou = 0.45 # NMS IoU threshold
869
- classes = None # (optional list) filter by class
870
-
871
- def __init__(self, model):
872
- super(autoShape, self).__init__()
873
- self.model = model.eval()
874
-
875
- def autoshape(self):
876
- print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
877
- return self
878
-
879
- @torch.no_grad()
880
- def forward(self, imgs, size=640, augment=False, profile=False):
881
- # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
882
- # filename: imgs = 'data/samples/zidane.jpg'
883
- # URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
884
- # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
885
- # PIL: = Image.open('image.jpg') # HWC x(640,1280,3)
886
- # numpy: = np.zeros((640,1280,3)) # HWC
887
- # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
888
- # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
889
-
890
- t = [time_synchronized()]
891
- p = next(self.model.parameters()) # for device and type
892
- if isinstance(imgs, torch.Tensor): # torch
893
- with amp.autocast(enabled=p.device.type != 'cpu'):
894
- return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
895
-
896
- # Pre-process
897
- n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
898
- shape0, shape1, files = [], [], [] # image and inference shapes, filenames
899
- for i, im in enumerate(imgs):
900
- f = f'image{i}' # filename
901
- if isinstance(im, str): # filename or uri
902
- im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im
903
- elif isinstance(im, Image.Image): # PIL Image
904
- im, f = np.asarray(im), getattr(im, 'filename', f) or f
905
- files.append(Path(f).with_suffix('.jpg').name)
906
- if im.shape[0] < 5: # image in CHW
907
- im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
908
- im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
909
- s = im.shape[:2] # HWC
910
- shape0.append(s) # image shape
911
- g = (size / max(s)) # gain
912
- shape1.append([y * g for y in s])
913
- imgs[i] = im # update
914
- shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
915
- x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
916
- x = np.stack(x, 0) if n > 1 else x[0][None] # stack
917
- x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
918
- x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
919
- t.append(time_synchronized())
920
-
921
- with amp.autocast(enabled=p.device.type != 'cpu'):
922
- # Inference
923
- y = self.model(x, augment, profile)[0] # forward
924
- t.append(time_synchronized())
925
-
926
- # Post-process
927
- y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
928
- for i in range(n):
929
- scale_coords(shape1, y[i][:, :4], shape0[i])
930
-
931
- t.append(time_synchronized())
932
- return Detections(imgs, y, files, t, self.names, x.shape)
933
-
934
-
935
- class Detections:
936
- # detections class for YOLOv5 inference results
937
- def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
938
- super(Detections, self).__init__()
939
- d = pred[0].device # device
940
- gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
941
- self.imgs = imgs # list of images as numpy arrays
942
- self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
943
- self.names = names # class names
944
- self.files = files # image filenames
945
- self.xyxy = pred # xyxy pixels
946
- self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
947
- self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
948
- self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
949
- self.n = len(self.pred) # number of images (batch size)
950
- self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
951
- self.s = shape # inference BCHW shape
952
-
953
- def display(self, pprint=False, show=False, save=False, render=False, save_dir=''):
954
- colors = color_list()
955
- for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
956
- str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
957
- if pred is not None:
958
- for c in pred[:, -1].unique():
959
- n = (pred[:, -1] == c).sum() # detections per class
960
- str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
961
- if show or save or render:
962
- for *box, conf, cls in pred: # xyxy, confidence, class
963
- label = f'{self.names[int(cls)]} {conf:.2f}'
964
- plot_one_box(box, img, label=label, color=colors[int(cls) % 10])
965
- img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
966
- if pprint:
967
- print(str.rstrip(', '))
968
- if show:
969
- img.show(self.files[i]) # show
970
- if save:
971
- f = self.files[i]
972
- img.save(Path(save_dir) / f) # save
973
- print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n')
974
- if render:
975
- self.imgs[i] = np.asarray(img)
976
-
977
- def print(self):
978
- self.display(pprint=True) # print results
979
- print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
980
-
981
- def show(self):
982
- self.display(show=True) # show results
983
-
984
- def save(self, save_dir='runs/hub/exp'):
985
- save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp') # increment save_dir
986
- Path(save_dir).mkdir(parents=True, exist_ok=True)
987
- self.display(save=True, save_dir=save_dir) # save results
988
-
989
- def render(self):
990
- self.display(render=True) # render results
991
- return self.imgs
992
-
993
- def pandas(self):
994
- # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
995
- new = copy(self) # return copy
996
- ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
997
- cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
998
- for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
999
- a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
1000
- setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
1001
- return new
1002
-
1003
- def tolist(self):
1004
- # return a list of Detections objects, i.e. 'for result in results.tolist():'
1005
- x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)]
1006
- for d in x:
1007
- for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
1008
- setattr(d, k, getattr(d, k)[0]) # pop out of list
1009
- return x
1010
-
1011
- def __len__(self):
1012
- return self.n
1013
-
1014
-
1015
- class Classify(nn.Module):
1016
- # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
1017
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
1018
- super(Classify, self).__init__()
1019
- self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
1020
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
1021
- self.flat = nn.Flatten()
1022
-
1023
- def forward(self, x):
1024
- z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
1025
- return self.flat(self.conv(z)) # flatten to x(b,c2)
1026
-
1027
- # #### end of yolov5 ######
1028
-
1029
-
1030
- # #### orepa #####
1031
-
1032
- def transI_fusebn(kernel, bn):
1033
- gamma = bn.weight
1034
- std = (bn.running_var + bn.eps).sqrt()
1035
- return kernel * ((gamma / std).reshape(-1, 1, 1, 1)), bn.bias - bn.running_mean * gamma / std
1036
-
1037
-
1038
- class ConvBN(nn.Module):
1039
- def __init__(self, in_channels, out_channels, kernel_size,
1040
- stride=1, padding=0, dilation=1, groups=1, deploy=False, nonlinear=None):
1041
- super().__init__()
1042
- if nonlinear is None:
1043
- self.nonlinear = nn.Identity()
1044
- else:
1045
- self.nonlinear = nonlinear
1046
- if deploy:
1047
- self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
1048
- stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)
1049
- else:
1050
- self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
1051
- stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False)
1052
- self.bn = nn.BatchNorm2d(num_features=out_channels)
1053
-
1054
- def forward(self, x):
1055
- if hasattr(self, 'bn'):
1056
- return self.nonlinear(self.bn(self.conv(x)))
1057
- else:
1058
- return self.nonlinear(self.conv(x))
1059
-
1060
- def switch_to_deploy(self):
1061
- kernel, bias = transI_fusebn(self.conv.weight, self.bn)
1062
- conv = nn.Conv2d(in_channels=self.conv.in_channels, out_channels=self.conv.out_channels, kernel_size=self.conv.kernel_size,
1063
- stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups, bias=True)
1064
- conv.weight.data = kernel
1065
- conv.bias.data = bias
1066
- for para in self.parameters():
1067
- para.detach_()
1068
- self.__delattr__('conv')
1069
- self.__delattr__('bn')
1070
- self.conv = conv
1071
-
1072
- class OREPA_3x3_RepConv(nn.Module):
1073
-
1074
- def __init__(self, in_channels, out_channels, kernel_size,
1075
- stride=1, padding=0, dilation=1, groups=1,
1076
- internal_channels_1x1_3x3=None,
1077
- deploy=False, nonlinear=None, single_init=False):
1078
- super(OREPA_3x3_RepConv, self).__init__()
1079
- self.deploy = deploy
1080
-
1081
- if nonlinear is None:
1082
- self.nonlinear = nn.Identity()
1083
- else:
1084
- self.nonlinear = nonlinear
1085
-
1086
- self.kernel_size = kernel_size
1087
- self.in_channels = in_channels
1088
- self.out_channels = out_channels
1089
- self.groups = groups
1090
- assert padding == kernel_size // 2
1091
-
1092
- self.stride = stride
1093
- self.padding = padding
1094
- self.dilation = dilation
1095
-
1096
- self.branch_counter = 0
1097
-
1098
- self.weight_rbr_origin = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), kernel_size, kernel_size))
1099
- nn.init.kaiming_uniform_(self.weight_rbr_origin, a=math.sqrt(1.0))
1100
- self.branch_counter += 1
1101
-
1102
-
1103
- if groups < out_channels:
1104
- self.weight_rbr_avg_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
1105
- self.weight_rbr_pfir_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
1106
- nn.init.kaiming_uniform_(self.weight_rbr_avg_conv, a=1.0)
1107
- nn.init.kaiming_uniform_(self.weight_rbr_pfir_conv, a=1.0)
1108
- self.weight_rbr_avg_conv.data
1109
- self.weight_rbr_pfir_conv.data
1110
- self.register_buffer('weight_rbr_avg_avg', torch.ones(kernel_size, kernel_size).mul(1.0/kernel_size/kernel_size))
1111
- self.branch_counter += 1
1112
-
1113
- else:
1114
- raise NotImplementedError
1115
- self.branch_counter += 1
1116
-
1117
- if internal_channels_1x1_3x3 is None:
1118
- internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels # For mobilenet, it is better to have 2X internal channels
1119
-
1120
- if internal_channels_1x1_3x3 == in_channels:
1121
- self.weight_rbr_1x1_kxk_idconv1 = nn.Parameter(torch.zeros(in_channels, int(in_channels/self.groups), 1, 1))
1122
- id_value = np.zeros((in_channels, int(in_channels/self.groups), 1, 1))
1123
- for i in range(in_channels):
1124
- id_value[i, i % int(in_channels/self.groups), 0, 0] = 1
1125
- id_tensor = torch.from_numpy(id_value).type_as(self.weight_rbr_1x1_kxk_idconv1)
1126
- self.register_buffer('id_tensor', id_tensor)
1127
-
1128
- else:
1129
- self.weight_rbr_1x1_kxk_conv1 = nn.Parameter(torch.Tensor(internal_channels_1x1_3x3, int(in_channels/self.groups), 1, 1))
1130
- nn.init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv1, a=math.sqrt(1.0))
1131
- self.weight_rbr_1x1_kxk_conv2 = nn.Parameter(torch.Tensor(out_channels, int(internal_channels_1x1_3x3/self.groups), kernel_size, kernel_size))
1132
- nn.init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv2, a=math.sqrt(1.0))
1133
- self.branch_counter += 1
1134
-
1135
- expand_ratio = 8
1136
- self.weight_rbr_gconv_dw = nn.Parameter(torch.Tensor(in_channels*expand_ratio, 1, kernel_size, kernel_size))
1137
- self.weight_rbr_gconv_pw = nn.Parameter(torch.Tensor(out_channels, in_channels*expand_ratio, 1, 1))
1138
- nn.init.kaiming_uniform_(self.weight_rbr_gconv_dw, a=math.sqrt(1.0))
1139
- nn.init.kaiming_uniform_(self.weight_rbr_gconv_pw, a=math.sqrt(1.0))
1140
- self.branch_counter += 1
1141
-
1142
- if out_channels == in_channels and stride == 1:
1143
- self.branch_counter += 1
1144
-
1145
- self.vector = nn.Parameter(torch.Tensor(self.branch_counter, self.out_channels))
1146
- self.bn = nn.BatchNorm2d(out_channels)
1147
-
1148
- self.fre_init()
1149
-
1150
- nn.init.constant_(self.vector[0, :], 0.25) #origin
1151
- nn.init.constant_(self.vector[1, :], 0.25) #avg
1152
- nn.init.constant_(self.vector[2, :], 0.0) #prior
1153
- nn.init.constant_(self.vector[3, :], 0.5) #1x1_kxk
1154
- nn.init.constant_(self.vector[4, :], 0.5) #dws_conv
1155
-
1156
-
1157
- def fre_init(self):
1158
- prior_tensor = torch.Tensor(self.out_channels, self.kernel_size, self.kernel_size)
1159
- half_fg = self.out_channels/2
1160
- for i in range(self.out_channels):
1161
- for h in range(3):
1162
- for w in range(3):
1163
- if i < half_fg:
1164
- prior_tensor[i, h, w] = math.cos(math.pi*(h+0.5)*(i+1)/3)
1165
- else:
1166
- prior_tensor[i, h, w] = math.cos(math.pi*(w+0.5)*(i+1-half_fg)/3)
1167
-
1168
- self.register_buffer('weight_rbr_prior', prior_tensor)
1169
-
1170
- def weight_gen(self):
1171
-
1172
- weight_rbr_origin = torch.einsum('oihw,o->oihw', self.weight_rbr_origin, self.vector[0, :])
1173
-
1174
- weight_rbr_avg = torch.einsum('oihw,o->oihw', torch.einsum('oihw,hw->oihw', self.weight_rbr_avg_conv, self.weight_rbr_avg_avg), self.vector[1, :])
1175
-
1176
- weight_rbr_pfir = torch.einsum('oihw,o->oihw', torch.einsum('oihw,ohw->oihw', self.weight_rbr_pfir_conv, self.weight_rbr_prior), self.vector[2, :])
1177
-
1178
- weight_rbr_1x1_kxk_conv1 = None
1179
- if hasattr(self, 'weight_rbr_1x1_kxk_idconv1'):
1180
- weight_rbr_1x1_kxk_conv1 = (self.weight_rbr_1x1_kxk_idconv1 + self.id_tensor).squeeze()
1181
- elif hasattr(self, 'weight_rbr_1x1_kxk_conv1'):
1182
- weight_rbr_1x1_kxk_conv1 = self.weight_rbr_1x1_kxk_conv1.squeeze()
1183
- else:
1184
- raise NotImplementedError
1185
- weight_rbr_1x1_kxk_conv2 = self.weight_rbr_1x1_kxk_conv2
1186
-
1187
- if self.groups > 1:
1188
- g = self.groups
1189
- t, ig = weight_rbr_1x1_kxk_conv1.size()
1190
- o, tg, h, w = weight_rbr_1x1_kxk_conv2.size()
1191
- weight_rbr_1x1_kxk_conv1 = weight_rbr_1x1_kxk_conv1.view(g, int(t/g), ig)
1192
- weight_rbr_1x1_kxk_conv2 = weight_rbr_1x1_kxk_conv2.view(g, int(o/g), tg, h, w)
1193
- weight_rbr_1x1_kxk = torch.einsum('gti,gothw->goihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2).view(o, ig, h, w)
1194
- else:
1195
- weight_rbr_1x1_kxk = torch.einsum('ti,othw->oihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2)
1196
-
1197
- weight_rbr_1x1_kxk = torch.einsum('oihw,o->oihw', weight_rbr_1x1_kxk, self.vector[3, :])
1198
-
1199
- weight_rbr_gconv = self.dwsc2full(self.weight_rbr_gconv_dw, self.weight_rbr_gconv_pw, self.in_channels)
1200
- weight_rbr_gconv = torch.einsum('oihw,o->oihw', weight_rbr_gconv, self.vector[4, :])
1201
-
1202
- weight = weight_rbr_origin + weight_rbr_avg + weight_rbr_1x1_kxk + weight_rbr_pfir + weight_rbr_gconv
1203
-
1204
- return weight
1205
-
1206
- def dwsc2full(self, weight_dw, weight_pw, groups):
1207
-
1208
- t, ig, h, w = weight_dw.size()
1209
- o, _, _, _ = weight_pw.size()
1210
- tg = int(t/groups)
1211
- i = int(ig*groups)
1212
- weight_dw = weight_dw.view(groups, tg, ig, h, w)
1213
- weight_pw = weight_pw.squeeze().view(o, groups, tg)
1214
-
1215
- weight_dsc = torch.einsum('gtihw,ogt->ogihw', weight_dw, weight_pw)
1216
- return weight_dsc.view(o, i, h, w)
1217
-
1218
- def forward(self, inputs):
1219
- weight = self.weight_gen()
1220
- out = F.conv2d(inputs, weight, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
1221
-
1222
- return self.nonlinear(self.bn(out))
1223
-
1224
- class RepConv_OREPA(nn.Module):
1225
-
1226
- def __init__(self, c1, c2, k=3, s=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False, nonlinear=nn.SiLU()):
1227
- super(RepConv_OREPA, self).__init__()
1228
- self.deploy = deploy
1229
- self.groups = groups
1230
- self.in_channels = c1
1231
- self.out_channels = c2
1232
-
1233
- self.padding = padding
1234
- self.dilation = dilation
1235
- self.groups = groups
1236
-
1237
- assert k == 3
1238
- assert padding == 1
1239
-
1240
- padding_11 = padding - k // 2
1241
-
1242
- if nonlinear is None:
1243
- self.nonlinearity = nn.Identity()
1244
- else:
1245
- self.nonlinearity = nonlinear
1246
-
1247
- if use_se:
1248
- self.se = SEBlock(self.out_channels, internal_neurons=self.out_channels // 16)
1249
- else:
1250
- self.se = nn.Identity()
1251
-
1252
- if deploy:
1253
- self.rbr_reparam = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=k, stride=s,
1254
- padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode)
1255
-
1256
- else:
1257
- self.rbr_identity = nn.BatchNorm2d(num_features=self.in_channels) if self.out_channels == self.in_channels and s == 1 else None
1258
- self.rbr_dense = OREPA_3x3_RepConv(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=k, stride=s, padding=padding, groups=groups, dilation=1)
1259
- self.rbr_1x1 = ConvBN(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=1, stride=s, padding=padding_11, groups=groups, dilation=1)
1260
- print('RepVGG Block, identity = ', self.rbr_identity)
1261
-
1262
-
1263
- def forward(self, inputs):
1264
- if hasattr(self, 'rbr_reparam'):
1265
- return self.nonlinearity(self.se(self.rbr_reparam(inputs)))
1266
-
1267
- if self.rbr_identity is None:
1268
- id_out = 0
1269
- else:
1270
- id_out = self.rbr_identity(inputs)
1271
-
1272
- out1 = self.rbr_dense(inputs)
1273
- out2 = self.rbr_1x1(inputs)
1274
- out3 = id_out
1275
- out = out1 + out2 + out3
1276
-
1277
- return self.nonlinearity(self.se(out))
1278
-
1279
-
1280
- # Optional. This improves the accuracy and facilitates quantization.
1281
- # 1. Cancel the original weight decay on rbr_dense.conv.weight and rbr_1x1.conv.weight.
1282
- # 2. Use like this.
1283
- # loss = criterion(....)
1284
- # for every RepVGGBlock blk:
1285
- # loss += weight_decay_coefficient * 0.5 * blk.get_cust_L2()
1286
- # optimizer.zero_grad()
1287
- # loss.backward()
1288
-
1289
- # Not used for OREPA
1290
- def get_custom_L2(self):
1291
- K3 = self.rbr_dense.weight_gen()
1292
- K1 = self.rbr_1x1.conv.weight
1293
- t3 = (self.rbr_dense.bn.weight / ((self.rbr_dense.bn.running_var + self.rbr_dense.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
1294
- t1 = (self.rbr_1x1.bn.weight / ((self.rbr_1x1.bn.running_var + self.rbr_1x1.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
1295
-
1296
- l2_loss_circle = (K3 ** 2).sum() - (K3[:, :, 1:2, 1:2] ** 2).sum() # The L2 loss of the "circle" of weights in 3x3 kernel. Use regular L2 on them.
1297
- eq_kernel = K3[:, :, 1:2, 1:2] * t3 + K1 * t1 # The equivalent resultant central point of 3x3 kernel.
1298
- l2_loss_eq_kernel = (eq_kernel ** 2 / (t3 ** 2 + t1 ** 2)).sum() # Normalize for an L2 coefficient comparable to regular L2.
1299
- return l2_loss_eq_kernel + l2_loss_circle
1300
-
1301
- def get_equivalent_kernel_bias(self):
1302
- kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
1303
- kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
1304
- kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
1305
- return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
1306
-
1307
- def _pad_1x1_to_3x3_tensor(self, kernel1x1):
1308
- if kernel1x1 is None:
1309
- return 0
1310
- else:
1311
- return torch.nn.functional.pad(kernel1x1, [1,1,1,1])
1312
-
1313
- def _fuse_bn_tensor(self, branch):
1314
- if branch is None:
1315
- return 0, 0
1316
- if not isinstance(branch, nn.BatchNorm2d):
1317
- if isinstance(branch, OREPA_3x3_RepConv):
1318
- kernel = branch.weight_gen()
1319
- elif isinstance(branch, ConvBN):
1320
- kernel = branch.conv.weight
1321
- else:
1322
- raise NotImplementedError
1323
- running_mean = branch.bn.running_mean
1324
- running_var = branch.bn.running_var
1325
- gamma = branch.bn.weight
1326
- beta = branch.bn.bias
1327
- eps = branch.bn.eps
1328
- else:
1329
- if not hasattr(self, 'id_tensor'):
1330
- input_dim = self.in_channels // self.groups
1331
- kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
1332
- for i in range(self.in_channels):
1333
- kernel_value[i, i % input_dim, 1, 1] = 1
1334
- self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
1335
- kernel = self.id_tensor
1336
- running_mean = branch.running_mean
1337
- running_var = branch.running_var
1338
- gamma = branch.weight
1339
- beta = branch.bias
1340
- eps = branch.eps
1341
- std = (running_var + eps).sqrt()
1342
- t = (gamma / std).reshape(-1, 1, 1, 1)
1343
- return kernel * t, beta - running_mean * gamma / std
1344
-
1345
- def switch_to_deploy(self):
1346
- if hasattr(self, 'rbr_reparam'):
1347
- return
1348
- print(f"RepConv_OREPA.switch_to_deploy")
1349
- kernel, bias = self.get_equivalent_kernel_bias()
1350
- self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.in_channels, out_channels=self.rbr_dense.out_channels,
1351
- kernel_size=self.rbr_dense.kernel_size, stride=self.rbr_dense.stride,
1352
- padding=self.rbr_dense.padding, dilation=self.rbr_dense.dilation, groups=self.rbr_dense.groups, bias=True)
1353
- self.rbr_reparam.weight.data = kernel
1354
- self.rbr_reparam.bias.data = bias
1355
- for para in self.parameters():
1356
- para.detach_()
1357
- self.__delattr__('rbr_dense')
1358
- self.__delattr__('rbr_1x1')
1359
- if hasattr(self, 'rbr_identity'):
1360
- self.__delattr__('rbr_identity')
1361
-
1362
- # #### end of orepa #####
1363
-
1364
-
1365
- # #### swin transformer #####
1366
-
1367
- class WindowAttention(nn.Module):
1368
-
1369
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
1370
-
1371
- super().__init__()
1372
- self.dim = dim
1373
- self.window_size = window_size # Wh, Ww
1374
- self.num_heads = num_heads
1375
- head_dim = dim // num_heads
1376
- self.scale = qk_scale or head_dim ** -0.5
1377
-
1378
- # define a parameter table of relative position bias
1379
- self.relative_position_bias_table = nn.Parameter(
1380
- torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
1381
-
1382
- # get pair-wise relative position index for each token inside the window
1383
- coords_h = torch.arange(self.window_size[0])
1384
- coords_w = torch.arange(self.window_size[1])
1385
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
1386
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
1387
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
1388
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
1389
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
1390
- relative_coords[:, :, 1] += self.window_size[1] - 1
1391
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
1392
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
1393
- self.register_buffer("relative_position_index", relative_position_index)
1394
-
1395
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
1396
- self.attn_drop = nn.Dropout(attn_drop)
1397
- self.proj = nn.Linear(dim, dim)
1398
- self.proj_drop = nn.Dropout(proj_drop)
1399
-
1400
- nn.init.normal_(self.relative_position_bias_table, std=.02)
1401
- self.softmax = nn.Softmax(dim=-1)
1402
-
1403
- def forward(self, x, mask=None):
1404
-
1405
- B_, N, C = x.shape
1406
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
1407
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
1408
-
1409
- q = q * self.scale
1410
- attn = (q @ k.transpose(-2, -1))
1411
-
1412
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
1413
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
1414
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
1415
- attn = attn + relative_position_bias.unsqueeze(0)
1416
-
1417
- if mask is not None:
1418
- nW = mask.shape[0]
1419
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
1420
- attn = attn.view(-1, self.num_heads, N, N)
1421
- attn = self.softmax(attn)
1422
- else:
1423
- attn = self.softmax(attn)
1424
-
1425
- attn = self.attn_drop(attn)
1426
-
1427
- # print(attn.dtype, v.dtype)
1428
- try:
1429
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
1430
- except:
1431
- #print(attn.dtype, v.dtype)
1432
- x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
1433
- x = self.proj(x)
1434
- x = self.proj_drop(x)
1435
- return x
1436
-
1437
- class Mlp(nn.Module):
1438
-
1439
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
1440
- super().__init__()
1441
- out_features = out_features or in_features
1442
- hidden_features = hidden_features or in_features
1443
- self.fc1 = nn.Linear(in_features, hidden_features)
1444
- self.act = act_layer()
1445
- self.fc2 = nn.Linear(hidden_features, out_features)
1446
- self.drop = nn.Dropout(drop)
1447
-
1448
- def forward(self, x):
1449
- x = self.fc1(x)
1450
- x = self.act(x)
1451
- x = self.drop(x)
1452
- x = self.fc2(x)
1453
- x = self.drop(x)
1454
- return x
1455
-
1456
- def window_partition(x, window_size):
1457
-
1458
- B, H, W, C = x.shape
1459
- assert H % window_size == 0, 'feature map h and w can not divide by window size'
1460
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
1461
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
1462
- return windows
1463
-
1464
- def window_reverse(windows, window_size, H, W):
1465
-
1466
- B = int(windows.shape[0] / (H * W / window_size / window_size))
1467
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
1468
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
1469
- return x
1470
-
1471
-
1472
- class SwinTransformerLayer(nn.Module):
1473
-
1474
- def __init__(self, dim, num_heads, window_size=8, shift_size=0,
1475
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
1476
- act_layer=nn.SiLU, norm_layer=nn.LayerNorm):
1477
- super().__init__()
1478
- self.dim = dim
1479
- self.num_heads = num_heads
1480
- self.window_size = window_size
1481
- self.shift_size = shift_size
1482
- self.mlp_ratio = mlp_ratio
1483
- # if min(self.input_resolution) <= self.window_size:
1484
- # # if window size is larger than input resolution, we don't partition windows
1485
- # self.shift_size = 0
1486
- # self.window_size = min(self.input_resolution)
1487
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
1488
-
1489
- self.norm1 = norm_layer(dim)
1490
- self.attn = WindowAttention(
1491
- dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
1492
- qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
1493
-
1494
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
1495
- self.norm2 = norm_layer(dim)
1496
- mlp_hidden_dim = int(dim * mlp_ratio)
1497
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
1498
-
1499
- def create_mask(self, H, W):
1500
- # calculate attention mask for SW-MSA
1501
- img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
1502
- h_slices = (slice(0, -self.window_size),
1503
- slice(-self.window_size, -self.shift_size),
1504
- slice(-self.shift_size, None))
1505
- w_slices = (slice(0, -self.window_size),
1506
- slice(-self.window_size, -self.shift_size),
1507
- slice(-self.shift_size, None))
1508
- cnt = 0
1509
- for h in h_slices:
1510
- for w in w_slices:
1511
- img_mask[:, h, w, :] = cnt
1512
- cnt += 1
1513
-
1514
- mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
1515
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
1516
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
1517
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
1518
-
1519
- return attn_mask
1520
-
1521
- def forward(self, x):
1522
- # reshape x[b c h w] to x[b l c]
1523
- _, _, H_, W_ = x.shape
1524
-
1525
- Padding = False
1526
- if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
1527
- Padding = True
1528
- # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
1529
- pad_r = (self.window_size - W_ % self.window_size) % self.window_size
1530
- pad_b = (self.window_size - H_ % self.window_size) % self.window_size
1531
- x = F.pad(x, (0, pad_r, 0, pad_b))
1532
-
1533
- # print('2', x.shape)
1534
- B, C, H, W = x.shape
1535
- L = H * W
1536
- x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
1537
-
1538
- # create mask from init to forward
1539
- if self.shift_size > 0:
1540
- attn_mask = self.create_mask(H, W).to(x.device)
1541
- else:
1542
- attn_mask = None
1543
-
1544
- shortcut = x
1545
- x = self.norm1(x)
1546
- x = x.view(B, H, W, C)
1547
-
1548
- # cyclic shift
1549
- if self.shift_size > 0:
1550
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
1551
- else:
1552
- shifted_x = x
1553
-
1554
- # partition windows
1555
- x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
1556
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
1557
-
1558
- # W-MSA/SW-MSA
1559
- attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
1560
-
1561
- # merge windows
1562
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
1563
- shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
1564
-
1565
- # reverse cyclic shift
1566
- if self.shift_size > 0:
1567
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
1568
- else:
1569
- x = shifted_x
1570
- x = x.view(B, H * W, C)
1571
-
1572
- # FFN
1573
- x = shortcut + self.drop_path(x)
1574
- x = x + self.drop_path(self.mlp(self.norm2(x)))
1575
-
1576
- x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
1577
-
1578
- if Padding:
1579
- x = x[:, :, :H_, :W_] # reverse padding
1580
-
1581
- return x
1582
-
1583
-
1584
- class SwinTransformerBlock(nn.Module):
1585
- def __init__(self, c1, c2, num_heads, num_layers, window_size=8):
1586
- super().__init__()
1587
- self.conv = None
1588
- if c1 != c2:
1589
- self.conv = Conv(c1, c2)
1590
-
1591
- # remove input_resolution
1592
- self.blocks = nn.Sequential(*[SwinTransformerLayer(dim=c2, num_heads=num_heads, window_size=window_size,
1593
- shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])
1594
-
1595
- def forward(self, x):
1596
- if self.conv is not None:
1597
- x = self.conv(x)
1598
- x = self.blocks(x)
1599
- return x
1600
-
1601
-
1602
- class STCSPA(nn.Module):
1603
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1604
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1605
- super(STCSPA, self).__init__()
1606
- c_ = int(c2 * e) # hidden channels
1607
- self.cv1 = Conv(c1, c_, 1, 1)
1608
- self.cv2 = Conv(c1, c_, 1, 1)
1609
- self.cv3 = Conv(2 * c_, c2, 1, 1)
1610
- num_heads = c_ // 32
1611
- self.m = SwinTransformerBlock(c_, c_, num_heads, n)
1612
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1613
-
1614
- def forward(self, x):
1615
- y1 = self.m(self.cv1(x))
1616
- y2 = self.cv2(x)
1617
- return self.cv3(torch.cat((y1, y2), dim=1))
1618
-
1619
-
1620
- class STCSPB(nn.Module):
1621
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1622
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1623
- super(STCSPB, self).__init__()
1624
- c_ = int(c2) # hidden channels
1625
- self.cv1 = Conv(c1, c_, 1, 1)
1626
- self.cv2 = Conv(c_, c_, 1, 1)
1627
- self.cv3 = Conv(2 * c_, c2, 1, 1)
1628
- num_heads = c_ // 32
1629
- self.m = SwinTransformerBlock(c_, c_, num_heads, n)
1630
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1631
-
1632
- def forward(self, x):
1633
- x1 = self.cv1(x)
1634
- y1 = self.m(x1)
1635
- y2 = self.cv2(x1)
1636
- return self.cv3(torch.cat((y1, y2), dim=1))
1637
-
1638
-
1639
- class STCSPC(nn.Module):
1640
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1641
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1642
- super(STCSPC, self).__init__()
1643
- c_ = int(c2 * e) # hidden channels
1644
- self.cv1 = Conv(c1, c_, 1, 1)
1645
- self.cv2 = Conv(c1, c_, 1, 1)
1646
- self.cv3 = Conv(c_, c_, 1, 1)
1647
- self.cv4 = Conv(2 * c_, c2, 1, 1)
1648
- num_heads = c_ // 32
1649
- self.m = SwinTransformerBlock(c_, c_, num_heads, n)
1650
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1651
-
1652
- def forward(self, x):
1653
- y1 = self.cv3(self.m(self.cv1(x)))
1654
- y2 = self.cv2(x)
1655
- return self.cv4(torch.cat((y1, y2), dim=1))
1656
-
1657
- # #### end of swin transformer #####
1658
-
1659
-
1660
- # #### swin transformer v2 #####
1661
-
1662
- class WindowAttention_v2(nn.Module):
1663
-
1664
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
1665
- pretrained_window_size=[0, 0]):
1666
-
1667
- super().__init__()
1668
- self.dim = dim
1669
- self.window_size = window_size # Wh, Ww
1670
- self.pretrained_window_size = pretrained_window_size
1671
- self.num_heads = num_heads
1672
-
1673
- self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
1674
-
1675
- # mlp to generate continuous relative position bias
1676
- self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
1677
- nn.ReLU(inplace=True),
1678
- nn.Linear(512, num_heads, bias=False))
1679
-
1680
- # get relative_coords_table
1681
- relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
1682
- relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
1683
- relative_coords_table = torch.stack(
1684
- torch.meshgrid([relative_coords_h,
1685
- relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
1686
- if pretrained_window_size[0] > 0:
1687
- relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
1688
- relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
1689
- else:
1690
- relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
1691
- relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
1692
- relative_coords_table *= 8 # normalize to -8, 8
1693
- relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
1694
- torch.abs(relative_coords_table) + 1.0) / np.log2(8)
1695
-
1696
- self.register_buffer("relative_coords_table", relative_coords_table)
1697
-
1698
- # get pair-wise relative position index for each token inside the window
1699
- coords_h = torch.arange(self.window_size[0])
1700
- coords_w = torch.arange(self.window_size[1])
1701
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
1702
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
1703
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
1704
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
1705
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
1706
- relative_coords[:, :, 1] += self.window_size[1] - 1
1707
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
1708
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
1709
- self.register_buffer("relative_position_index", relative_position_index)
1710
-
1711
- self.qkv = nn.Linear(dim, dim * 3, bias=False)
1712
- if qkv_bias:
1713
- self.q_bias = nn.Parameter(torch.zeros(dim))
1714
- self.v_bias = nn.Parameter(torch.zeros(dim))
1715
- else:
1716
- self.q_bias = None
1717
- self.v_bias = None
1718
- self.attn_drop = nn.Dropout(attn_drop)
1719
- self.proj = nn.Linear(dim, dim)
1720
- self.proj_drop = nn.Dropout(proj_drop)
1721
- self.softmax = nn.Softmax(dim=-1)
1722
-
1723
- def forward(self, x, mask=None):
1724
-
1725
- B_, N, C = x.shape
1726
- qkv_bias = None
1727
- if self.q_bias is not None:
1728
- qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
1729
- qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
1730
- qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
1731
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
1732
-
1733
- # cosine attention
1734
- attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
1735
- logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01))).exp()
1736
- attn = attn * logit_scale
1737
-
1738
- relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
1739
- relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
1740
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
1741
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
1742
- relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
1743
- attn = attn + relative_position_bias.unsqueeze(0)
1744
-
1745
- if mask is not None:
1746
- nW = mask.shape[0]
1747
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
1748
- attn = attn.view(-1, self.num_heads, N, N)
1749
- attn = self.softmax(attn)
1750
- else:
1751
- attn = self.softmax(attn)
1752
-
1753
- attn = self.attn_drop(attn)
1754
-
1755
- try:
1756
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
1757
- except:
1758
- x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
1759
-
1760
- x = self.proj(x)
1761
- x = self.proj_drop(x)
1762
- return x
1763
-
1764
- def extra_repr(self) -> str:
1765
- return f'dim={self.dim}, window_size={self.window_size}, ' \
1766
- f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
1767
-
1768
- def flops(self, N):
1769
- # calculate flops for 1 window with token length of N
1770
- flops = 0
1771
- # qkv = self.qkv(x)
1772
- flops += N * self.dim * 3 * self.dim
1773
- # attn = (q @ k.transpose(-2, -1))
1774
- flops += self.num_heads * N * (self.dim // self.num_heads) * N
1775
- # x = (attn @ v)
1776
- flops += self.num_heads * N * N * (self.dim // self.num_heads)
1777
- # x = self.proj(x)
1778
- flops += N * self.dim * self.dim
1779
- return flops
1780
-
1781
- class Mlp_v2(nn.Module):
1782
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
1783
- super().__init__()
1784
- out_features = out_features or in_features
1785
- hidden_features = hidden_features or in_features
1786
- self.fc1 = nn.Linear(in_features, hidden_features)
1787
- self.act = act_layer()
1788
- self.fc2 = nn.Linear(hidden_features, out_features)
1789
- self.drop = nn.Dropout(drop)
1790
-
1791
- def forward(self, x):
1792
- x = self.fc1(x)
1793
- x = self.act(x)
1794
- x = self.drop(x)
1795
- x = self.fc2(x)
1796
- x = self.drop(x)
1797
- return x
1798
-
1799
-
1800
- def window_partition_v2(x, window_size):
1801
-
1802
- B, H, W, C = x.shape
1803
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
1804
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
1805
- return windows
1806
-
1807
-
1808
- def window_reverse_v2(windows, window_size, H, W):
1809
-
1810
- B = int(windows.shape[0] / (H * W / window_size / window_size))
1811
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
1812
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
1813
- return x
1814
-
1815
-
1816
- class SwinTransformerLayer_v2(nn.Module):
1817
-
1818
- def __init__(self, dim, num_heads, window_size=7, shift_size=0,
1819
- mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
1820
- act_layer=nn.SiLU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
1821
- super().__init__()
1822
- self.dim = dim
1823
- #self.input_resolution = input_resolution
1824
- self.num_heads = num_heads
1825
- self.window_size = window_size
1826
- self.shift_size = shift_size
1827
- self.mlp_ratio = mlp_ratio
1828
- #if min(self.input_resolution) <= self.window_size:
1829
- # # if window size is larger than input resolution, we don't partition windows
1830
- # self.shift_size = 0
1831
- # self.window_size = min(self.input_resolution)
1832
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
1833
-
1834
- self.norm1 = norm_layer(dim)
1835
- self.attn = WindowAttention_v2(
1836
- dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
1837
- qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
1838
- pretrained_window_size=(pretrained_window_size, pretrained_window_size))
1839
-
1840
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
1841
- self.norm2 = norm_layer(dim)
1842
- mlp_hidden_dim = int(dim * mlp_ratio)
1843
- self.mlp = Mlp_v2(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
1844
-
1845
- def create_mask(self, H, W):
1846
- # calculate attention mask for SW-MSA
1847
- img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
1848
- h_slices = (slice(0, -self.window_size),
1849
- slice(-self.window_size, -self.shift_size),
1850
- slice(-self.shift_size, None))
1851
- w_slices = (slice(0, -self.window_size),
1852
- slice(-self.window_size, -self.shift_size),
1853
- slice(-self.shift_size, None))
1854
- cnt = 0
1855
- for h in h_slices:
1856
- for w in w_slices:
1857
- img_mask[:, h, w, :] = cnt
1858
- cnt += 1
1859
-
1860
- mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
1861
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
1862
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
1863
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
1864
-
1865
- return attn_mask
1866
-
1867
- def forward(self, x):
1868
- # reshape x[b c h w] to x[b l c]
1869
- _, _, H_, W_ = x.shape
1870
-
1871
- Padding = False
1872
- if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
1873
- Padding = True
1874
- # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
1875
- pad_r = (self.window_size - W_ % self.window_size) % self.window_size
1876
- pad_b = (self.window_size - H_ % self.window_size) % self.window_size
1877
- x = F.pad(x, (0, pad_r, 0, pad_b))
1878
-
1879
- # print('2', x.shape)
1880
- B, C, H, W = x.shape
1881
- L = H * W
1882
- x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
1883
-
1884
- # create mask from init to forward
1885
- if self.shift_size > 0:
1886
- attn_mask = self.create_mask(H, W).to(x.device)
1887
- else:
1888
- attn_mask = None
1889
-
1890
- shortcut = x
1891
- x = x.view(B, H, W, C)
1892
-
1893
- # cyclic shift
1894
- if self.shift_size > 0:
1895
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
1896
- else:
1897
- shifted_x = x
1898
-
1899
- # partition windows
1900
- x_windows = window_partition_v2(shifted_x, self.window_size) # nW*B, window_size, window_size, C
1901
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
1902
-
1903
- # W-MSA/SW-MSA
1904
- attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
1905
-
1906
- # merge windows
1907
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
1908
- shifted_x = window_reverse_v2(attn_windows, self.window_size, H, W) # B H' W' C
1909
-
1910
- # reverse cyclic shift
1911
- if self.shift_size > 0:
1912
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
1913
- else:
1914
- x = shifted_x
1915
- x = x.view(B, H * W, C)
1916
- x = shortcut + self.drop_path(self.norm1(x))
1917
-
1918
- # FFN
1919
- x = x + self.drop_path(self.norm2(self.mlp(x)))
1920
- x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
1921
-
1922
- if Padding:
1923
- x = x[:, :, :H_, :W_] # reverse padding
1924
-
1925
- return x
1926
-
1927
- def extra_repr(self) -> str:
1928
- return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
1929
- f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
1930
-
1931
- def flops(self):
1932
- flops = 0
1933
- H, W = self.input_resolution
1934
- # norm1
1935
- flops += self.dim * H * W
1936
- # W-MSA/SW-MSA
1937
- nW = H * W / self.window_size / self.window_size
1938
- flops += nW * self.attn.flops(self.window_size * self.window_size)
1939
- # mlp
1940
- flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
1941
- # norm2
1942
- flops += self.dim * H * W
1943
- return flops
1944
-
1945
-
1946
- class SwinTransformer2Block(nn.Module):
1947
- def __init__(self, c1, c2, num_heads, num_layers, window_size=7):
1948
- super().__init__()
1949
- self.conv = None
1950
- if c1 != c2:
1951
- self.conv = Conv(c1, c2)
1952
-
1953
- # remove input_resolution
1954
- self.blocks = nn.Sequential(*[SwinTransformerLayer_v2(dim=c2, num_heads=num_heads, window_size=window_size,
1955
- shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])
1956
-
1957
- def forward(self, x):
1958
- if self.conv is not None:
1959
- x = self.conv(x)
1960
- x = self.blocks(x)
1961
- return x
1962
-
1963
-
1964
- class ST2CSPA(nn.Module):
1965
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1966
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1967
- super(ST2CSPA, self).__init__()
1968
- c_ = int(c2 * e) # hidden channels
1969
- self.cv1 = Conv(c1, c_, 1, 1)
1970
- self.cv2 = Conv(c1, c_, 1, 1)
1971
- self.cv3 = Conv(2 * c_, c2, 1, 1)
1972
- num_heads = c_ // 32
1973
- self.m = SwinTransformer2Block(c_, c_, num_heads, n)
1974
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1975
-
1976
- def forward(self, x):
1977
- y1 = self.m(self.cv1(x))
1978
- y2 = self.cv2(x)
1979
- return self.cv3(torch.cat((y1, y2), dim=1))
1980
-
1981
-
1982
- class ST2CSPB(nn.Module):
1983
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1984
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1985
- super(ST2CSPB, self).__init__()
1986
- c_ = int(c2) # hidden channels
1987
- self.cv1 = Conv(c1, c_, 1, 1)
1988
- self.cv2 = Conv(c_, c_, 1, 1)
1989
- self.cv3 = Conv(2 * c_, c2, 1, 1)
1990
- num_heads = c_ // 32
1991
- self.m = SwinTransformer2Block(c_, c_, num_heads, n)
1992
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1993
-
1994
- def forward(self, x):
1995
- x1 = self.cv1(x)
1996
- y1 = self.m(x1)
1997
- y2 = self.cv2(x1)
1998
- return self.cv3(torch.cat((y1, y2), dim=1))
1999
-
2000
-
2001
- class ST2CSPC(nn.Module):
2002
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
2003
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
2004
- super(ST2CSPC, self).__init__()
2005
- c_ = int(c2 * e) # hidden channels
2006
- self.cv1 = Conv(c1, c_, 1, 1)
2007
- self.cv2 = Conv(c1, c_, 1, 1)
2008
- self.cv3 = Conv(c_, c_, 1, 1)
2009
- self.cv4 = Conv(2 * c_, c2, 1, 1)
2010
- num_heads = c_ // 32
2011
- self.m = SwinTransformer2Block(c_, c_, num_heads, n)
2012
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
2013
-
2014
- def forward(self, x):
2015
- y1 = self.cv3(self.m(self.cv1(x)))
2016
- y2 = self.cv2(x)
2017
- return self.cv4(torch.cat((y1, y2), dim=1))
2018
-
2019
- # #### end of swin transformer v2 #####
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
license/models/experimental.py DELETED
@@ -1,272 +0,0 @@
1
- import numpy as np
2
- import random
3
- import torch
4
- import torch.nn as nn
5
-
6
- from models.common import Conv, DWConv
7
- from utils.google_utils import attempt_download
8
-
9
-
10
- class CrossConv(nn.Module):
11
- # Cross Convolution Downsample
12
- def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
13
- # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
14
- super(CrossConv, self).__init__()
15
- c_ = int(c2 * e) # hidden channels
16
- self.cv1 = Conv(c1, c_, (1, k), (1, s))
17
- self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
18
- self.add = shortcut and c1 == c2
19
-
20
- def forward(self, x):
21
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
22
-
23
-
24
- class Sum(nn.Module):
25
- # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
26
- def __init__(self, n, weight=False): # n: number of inputs
27
- super(Sum, self).__init__()
28
- self.weight = weight # apply weights boolean
29
- self.iter = range(n - 1) # iter object
30
- if weight:
31
- self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
32
-
33
- def forward(self, x):
34
- y = x[0] # no weight
35
- if self.weight:
36
- w = torch.sigmoid(self.w) * 2
37
- for i in self.iter:
38
- y = y + x[i + 1] * w[i]
39
- else:
40
- for i in self.iter:
41
- y = y + x[i + 1]
42
- return y
43
-
44
-
45
- class MixConv2d(nn.Module):
46
- # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
47
- def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
48
- super(MixConv2d, self).__init__()
49
- groups = len(k)
50
- if equal_ch: # equal c_ per group
51
- i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
52
- c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
53
- else: # equal weight.numel() per group
54
- b = [c2] + [0] * groups
55
- a = np.eye(groups + 1, groups, k=-1)
56
- a -= np.roll(a, 1, axis=1)
57
- a *= np.array(k) ** 2
58
- a[0] = 1
59
- c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
60
-
61
- self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
62
- self.bn = nn.BatchNorm2d(c2)
63
- self.act = nn.LeakyReLU(0.1, inplace=True)
64
-
65
- def forward(self, x):
66
- return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
67
-
68
-
69
- class Ensemble(nn.ModuleList):
70
- # Ensemble of models
71
- def __init__(self):
72
- super(Ensemble, self).__init__()
73
-
74
- def forward(self, x, augment=False):
75
- y = []
76
- for module in self:
77
- y.append(module(x, augment)[0])
78
- # y = torch.stack(y).max(0)[0] # max ensemble
79
- # y = torch.stack(y).mean(0) # mean ensemble
80
- y = torch.cat(y, 1) # nms ensemble
81
- return y, None # inference, train output
82
-
83
-
84
-
85
-
86
-
87
- class ORT_NMS(torch.autograd.Function):
88
- '''ONNX-Runtime NMS operation'''
89
- @staticmethod
90
- def forward(ctx,
91
- boxes,
92
- scores,
93
- max_output_boxes_per_class=torch.tensor([100]),
94
- iou_threshold=torch.tensor([0.45]),
95
- score_threshold=torch.tensor([0.25])):
96
- device = boxes.device
97
- batch = scores.shape[0]
98
- num_det = random.randint(0, 100)
99
- batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device)
100
- idxs = torch.arange(100, 100 + num_det).to(device)
101
- zeros = torch.zeros((num_det,), dtype=torch.int64).to(device)
102
- selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous()
103
- selected_indices = selected_indices.to(torch.int64)
104
- return selected_indices
105
-
106
- @staticmethod
107
- def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold):
108
- return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold)
109
-
110
-
111
- class TRT_NMS(torch.autograd.Function):
112
- '''TensorRT NMS operation'''
113
- @staticmethod
114
- def forward(
115
- ctx,
116
- boxes,
117
- scores,
118
- background_class=-1,
119
- box_coding=1,
120
- iou_threshold=0.45,
121
- max_output_boxes=100,
122
- plugin_version="1",
123
- score_activation=0,
124
- score_threshold=0.25,
125
- ):
126
- batch_size, num_boxes, num_classes = scores.shape
127
- num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
128
- det_boxes = torch.randn(batch_size, max_output_boxes, 4)
129
- det_scores = torch.randn(batch_size, max_output_boxes)
130
- det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
131
- return num_det, det_boxes, det_scores, det_classes
132
-
133
- @staticmethod
134
- def symbolic(g,
135
- boxes,
136
- scores,
137
- background_class=-1,
138
- box_coding=1,
139
- iou_threshold=0.45,
140
- max_output_boxes=100,
141
- plugin_version="1",
142
- score_activation=0,
143
- score_threshold=0.25):
144
- out = g.op("TRT::EfficientNMS_TRT",
145
- boxes,
146
- scores,
147
- background_class_i=background_class,
148
- box_coding_i=box_coding,
149
- iou_threshold_f=iou_threshold,
150
- max_output_boxes_i=max_output_boxes,
151
- plugin_version_s=plugin_version,
152
- score_activation_i=score_activation,
153
- score_threshold_f=score_threshold,
154
- outputs=4)
155
- nums, boxes, scores, classes = out
156
- return nums, boxes, scores, classes
157
-
158
-
159
- class ONNX_ORT(nn.Module):
160
- '''onnx module with ONNX-Runtime NMS operation.'''
161
- def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None, n_classes=80):
162
- super().__init__()
163
- self.device = device if device else torch.device("cpu")
164
- self.max_obj = torch.tensor([max_obj]).to(device)
165
- self.iou_threshold = torch.tensor([iou_thres]).to(device)
166
- self.score_threshold = torch.tensor([score_thres]).to(device)
167
- self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic
168
- self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
169
- dtype=torch.float32,
170
- device=self.device)
171
- self.n_classes=n_classes
172
-
173
- def forward(self, x):
174
- boxes = x[:, :, :4]
175
- conf = x[:, :, 4:5]
176
- scores = x[:, :, 5:]
177
- if self.n_classes == 1:
178
- scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
179
- # so there is no need to multiplicate.
180
- else:
181
- scores *= conf # conf = obj_conf * cls_conf
182
- boxes @= self.convert_matrix
183
- max_score, category_id = scores.max(2, keepdim=True)
184
- dis = category_id.float() * self.max_wh
185
- nmsbox = boxes + dis
186
- max_score_tp = max_score.transpose(1, 2).contiguous()
187
- selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold)
188
- X, Y = selected_indices[:, 0], selected_indices[:, 2]
189
- selected_boxes = boxes[X, Y, :]
190
- selected_categories = category_id[X, Y, :].float()
191
- selected_scores = max_score[X, Y, :]
192
- X = X.unsqueeze(1).float()
193
- return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1)
194
-
195
- class ONNX_TRT(nn.Module):
196
- '''onnx module with TensorRT NMS operation.'''
197
- def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None, n_classes=80):
198
- super().__init__()
199
- assert max_wh is None
200
- self.device = device if device else torch.device('cpu')
201
- self.background_class = -1,
202
- self.box_coding = 1,
203
- self.iou_threshold = iou_thres
204
- self.max_obj = max_obj
205
- self.plugin_version = '1'
206
- self.score_activation = 0
207
- self.score_threshold = score_thres
208
- self.n_classes=n_classes
209
-
210
- def forward(self, x):
211
- boxes = x[:, :, :4]
212
- conf = x[:, :, 4:5]
213
- scores = x[:, :, 5:]
214
- if self.n_classes == 1:
215
- scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
216
- # so there is no need to multiplicate.
217
- else:
218
- scores *= conf # conf = obj_conf * cls_conf
219
- num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(boxes, scores, self.background_class, self.box_coding,
220
- self.iou_threshold, self.max_obj,
221
- self.plugin_version, self.score_activation,
222
- self.score_threshold)
223
- return num_det, det_boxes, det_scores, det_classes
224
-
225
-
226
- class End2End(nn.Module):
227
- '''export onnx or tensorrt model with NMS operation.'''
228
- def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None, n_classes=80):
229
- super().__init__()
230
- device = device if device else torch.device('cpu')
231
- assert isinstance(max_wh,(int)) or max_wh is None
232
- self.model = model.to(device)
233
- self.model.model[-1].end2end = True
234
- self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT
235
- self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device, n_classes)
236
- self.end2end.eval()
237
-
238
- def forward(self, x):
239
- x = self.model(x)
240
- x = self.end2end(x)
241
- return x
242
-
243
-
244
-
245
-
246
-
247
- def attempt_load(weights, map_location=None):
248
- # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
249
- model = Ensemble()
250
- for w in weights if isinstance(weights, list) else [weights]:
251
- attempt_download(w)
252
- ckpt = torch.load(w, map_location=map_location) # load
253
- model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
254
-
255
- # Compatibility updates
256
- for m in model.modules():
257
- if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
258
- m.inplace = True # pytorch 1.7.0 compatibility
259
- elif type(m) is nn.Upsample:
260
- m.recompute_scale_factor = None # torch 1.11.0 compatibility
261
- elif type(m) is Conv:
262
- m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
263
-
264
- if len(model) == 1:
265
- return model[-1] # return model
266
- else:
267
- print('Ensemble created with %s\n' % weights)
268
- for k in ['names', 'stride']:
269
- setattr(model, k, getattr(model[-1], k))
270
- return model # return ensemble
271
-
272
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
license/models/yolo.py DELETED
@@ -1,843 +0,0 @@
1
- import argparse
2
- import logging
3
- import sys
4
- from copy import deepcopy
5
-
6
- sys.path.append('./') # to run '$ python *.py' files in subdirectories
7
- logger = logging.getLogger(__name__)
8
- import torch
9
- from models.common import *
10
- from models.experimental import *
11
- from utils.autoanchor import check_anchor_order
12
- from utils.general import make_divisible, check_file, set_logging
13
- from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
14
- select_device, copy_attr
15
- from utils.loss import SigmoidBin
16
-
17
- try:
18
- import thop # for FLOPS computation
19
- except ImportError:
20
- thop = None
21
-
22
-
23
- class Detect(nn.Module):
24
- stride = None # strides computed during build
25
- export = False # onnx export
26
- end2end = False
27
- include_nms = False
28
- concat = False
29
-
30
- def __init__(self, nc=80, anchors=(), ch=()): # detection layer
31
- super(Detect, self).__init__()
32
- self.nc = nc # number of classes
33
- self.no = nc + 5 # number of outputs per anchor
34
- self.nl = len(anchors) # number of detection layers
35
- self.na = len(anchors[0]) // 2 # number of anchors
36
- self.grid = [torch.zeros(1)] * self.nl # init grid
37
- a = torch.tensor(anchors).float().view(self.nl, -1, 2)
38
- self.register_buffer('anchors', a) # shape(nl,na,2)
39
- self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
40
- self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
41
-
42
- def forward(self, x):
43
- # x = x.copy() # for profiling
44
- z = [] # inference output
45
- self.training |= self.export
46
- for i in range(self.nl):
47
- x[i] = self.m[i](x[i]) # conv
48
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
49
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
50
-
51
- if not self.training: # inference
52
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
53
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
54
- y = x[i].sigmoid()
55
- if not torch.onnx.is_in_onnx_export():
56
- y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
57
- y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
58
- else:
59
- xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
60
- xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5)) # new xy
61
- wh = wh ** 2 * (4 * self.anchor_grid[i].data) # new wh
62
- y = torch.cat((xy, wh, conf), 4)
63
- z.append(y.view(bs, -1, self.no))
64
-
65
- if self.training:
66
- out = x
67
- elif self.end2end:
68
- out = torch.cat(z, 1)
69
- elif self.include_nms:
70
- z = self.convert(z)
71
- out = (z, )
72
- elif self.concat:
73
- out = torch.cat(z, 1)
74
- else:
75
- out = (torch.cat(z, 1), x)
76
-
77
- return out
78
-
79
- @staticmethod
80
- def _make_grid(nx=20, ny=20):
81
- yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
82
- return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
83
-
84
- def convert(self, z):
85
- z = torch.cat(z, 1)
86
- box = z[:, :, :4]
87
- conf = z[:, :, 4:5]
88
- score = z[:, :, 5:]
89
- score *= conf
90
- convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
91
- dtype=torch.float32,
92
- device=z.device)
93
- box @= convert_matrix
94
- return (box, score)
95
-
96
-
97
- class IDetect(nn.Module):
98
- stride = None # strides computed during build
99
- export = False # onnx export
100
- end2end = False
101
- include_nms = False
102
- concat = False
103
-
104
- def __init__(self, nc=80, anchors=(), ch=()): # detection layer
105
- super(IDetect, self).__init__()
106
- self.nc = nc # number of classes
107
- self.no = nc + 5 # number of outputs per anchor
108
- self.nl = len(anchors) # number of detection layers
109
- self.na = len(anchors[0]) // 2 # number of anchors
110
- self.grid = [torch.zeros(1)] * self.nl # init grid
111
- a = torch.tensor(anchors).float().view(self.nl, -1, 2)
112
- self.register_buffer('anchors', a) # shape(nl,na,2)
113
- self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
114
- self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
115
-
116
- self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
117
- self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
118
-
119
- def forward(self, x):
120
- # x = x.copy() # for profiling
121
- z = [] # inference output
122
- self.training |= self.export
123
- for i in range(self.nl):
124
- x[i] = self.m[i](self.ia[i](x[i])) # conv
125
- x[i] = self.im[i](x[i])
126
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
127
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
128
-
129
- if not self.training: # inference
130
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
131
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
132
-
133
- y = x[i].sigmoid()
134
- y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
135
- y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
136
- z.append(y.view(bs, -1, self.no))
137
-
138
- return x if self.training else (torch.cat(z, 1), x)
139
-
140
- def fuseforward(self, x):
141
- # x = x.copy() # for profiling
142
- z = [] # inference output
143
- self.training |= self.export
144
- for i in range(self.nl):
145
- x[i] = self.m[i](x[i]) # conv
146
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
147
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
148
-
149
- if not self.training: # inference
150
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
151
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
152
-
153
- y = x[i].sigmoid()
154
- if not torch.onnx.is_in_onnx_export():
155
- y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
156
- y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
157
- else:
158
- xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
159
- xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5)) # new xy
160
- wh = wh ** 2 * (4 * self.anchor_grid[i].data) # new wh
161
- y = torch.cat((xy, wh, conf), 4)
162
- z.append(y.view(bs, -1, self.no))
163
-
164
- if self.training:
165
- out = x
166
- elif self.end2end:
167
- out = torch.cat(z, 1)
168
- elif self.include_nms:
169
- z = self.convert(z)
170
- out = (z, )
171
- elif self.concat:
172
- out = torch.cat(z, 1)
173
- else:
174
- out = (torch.cat(z, 1), x)
175
-
176
- return out
177
-
178
- def fuse(self):
179
- print("IDetect.fuse")
180
- # fuse ImplicitA and Convolution
181
- for i in range(len(self.m)):
182
- c1,c2,_,_ = self.m[i].weight.shape
183
- c1_,c2_, _,_ = self.ia[i].implicit.shape
184
- self.m[i].bias += torch.matmul(self.m[i].weight.reshape(c1,c2),self.ia[i].implicit.reshape(c2_,c1_)).squeeze(1)
185
-
186
- # fuse ImplicitM and Convolution
187
- for i in range(len(self.m)):
188
- c1,c2, _,_ = self.im[i].implicit.shape
189
- self.m[i].bias *= self.im[i].implicit.reshape(c2)
190
- self.m[i].weight *= self.im[i].implicit.transpose(0,1)
191
-
192
- @staticmethod
193
- def _make_grid(nx=20, ny=20):
194
- yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
195
- return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
196
-
197
- def convert(self, z):
198
- z = torch.cat(z, 1)
199
- box = z[:, :, :4]
200
- conf = z[:, :, 4:5]
201
- score = z[:, :, 5:]
202
- score *= conf
203
- convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
204
- dtype=torch.float32,
205
- device=z.device)
206
- box @= convert_matrix
207
- return (box, score)
208
-
209
-
210
- class IKeypoint(nn.Module):
211
- stride = None # strides computed during build
212
- export = False # onnx export
213
-
214
- def __init__(self, nc=80, anchors=(), nkpt=17, ch=(), inplace=True, dw_conv_kpt=False): # detection layer
215
- super(IKeypoint, self).__init__()
216
- self.nc = nc # number of classes
217
- self.nkpt = nkpt
218
- self.dw_conv_kpt = dw_conv_kpt
219
- self.no_det=(nc + 5) # number of outputs per anchor for box and class
220
- self.no_kpt = 3*self.nkpt ## number of outputs per anchor for keypoints
221
- self.no = self.no_det+self.no_kpt
222
- self.nl = len(anchors) # number of detection layers
223
- self.na = len(anchors[0]) // 2 # number of anchors
224
- self.grid = [torch.zeros(1)] * self.nl # init grid
225
- self.flip_test = False
226
- a = torch.tensor(anchors).float().view(self.nl, -1, 2)
227
- self.register_buffer('anchors', a) # shape(nl,na,2)
228
- self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
229
- self.m = nn.ModuleList(nn.Conv2d(x, self.no_det * self.na, 1) for x in ch) # output conv
230
-
231
- self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
232
- self.im = nn.ModuleList(ImplicitM(self.no_det * self.na) for _ in ch)
233
-
234
- if self.nkpt is not None:
235
- if self.dw_conv_kpt: #keypoint head is slightly more complex
236
- self.m_kpt = nn.ModuleList(
237
- nn.Sequential(DWConv(x, x, k=3), Conv(x,x),
238
- DWConv(x, x, k=3), Conv(x, x),
239
- DWConv(x, x, k=3), Conv(x,x),
240
- DWConv(x, x, k=3), Conv(x, x),
241
- DWConv(x, x, k=3), Conv(x, x),
242
- DWConv(x, x, k=3), nn.Conv2d(x, self.no_kpt * self.na, 1)) for x in ch)
243
- else: #keypoint head is a single convolution
244
- self.m_kpt = nn.ModuleList(nn.Conv2d(x, self.no_kpt * self.na, 1) for x in ch)
245
-
246
- self.inplace = inplace # use in-place ops (e.g. slice assignment)
247
-
248
- def forward(self, x):
249
- # x = x.copy() # for profiling
250
- z = [] # inference output
251
- self.training |= self.export
252
- for i in range(self.nl):
253
- if self.nkpt is None or self.nkpt==0:
254
- x[i] = self.im[i](self.m[i](self.ia[i](x[i]))) # conv
255
- else :
256
- x[i] = torch.cat((self.im[i](self.m[i](self.ia[i](x[i]))), self.m_kpt[i](x[i])), axis=1)
257
-
258
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
259
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
260
- x_det = x[i][..., :6]
261
- x_kpt = x[i][..., 6:]
262
-
263
- if not self.training: # inference
264
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
265
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
266
- kpt_grid_x = self.grid[i][..., 0:1]
267
- kpt_grid_y = self.grid[i][..., 1:2]
268
-
269
- if self.nkpt == 0:
270
- y = x[i].sigmoid()
271
- else:
272
- y = x_det.sigmoid()
273
-
274
- if self.inplace:
275
- xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
276
- wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh
277
- if self.nkpt != 0:
278
- x_kpt[..., 0::3] = (x_kpt[..., ::3] * 2. - 0.5 + kpt_grid_x.repeat(1,1,1,1,17)) * self.stride[i] # xy
279
- x_kpt[..., 1::3] = (x_kpt[..., 1::3] * 2. - 0.5 + kpt_grid_y.repeat(1,1,1,1,17)) * self.stride[i] # xy
280
- #x_kpt[..., 0::3] = (x_kpt[..., ::3] + kpt_grid_x.repeat(1,1,1,1,17)) * self.stride[i] # xy
281
- #x_kpt[..., 1::3] = (x_kpt[..., 1::3] + kpt_grid_y.repeat(1,1,1,1,17)) * self.stride[i] # xy
282
- #print('=============')
283
- #print(self.anchor_grid[i].shape)
284
- #print(self.anchor_grid[i][...,0].unsqueeze(4).shape)
285
- #print(x_kpt[..., 0::3].shape)
286
- #x_kpt[..., 0::3] = ((x_kpt[..., 0::3].tanh() * 2.) ** 3 * self.anchor_grid[i][...,0].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_x.repeat(1,1,1,1,17) * self.stride[i] # xy
287
- #x_kpt[..., 1::3] = ((x_kpt[..., 1::3].tanh() * 2.) ** 3 * self.anchor_grid[i][...,1].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_y.repeat(1,1,1,1,17) * self.stride[i] # xy
288
- #x_kpt[..., 0::3] = (((x_kpt[..., 0::3].sigmoid() * 4.) ** 2 - 8.) * self.anchor_grid[i][...,0].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_x.repeat(1,1,1,1,17) * self.stride[i] # xy
289
- #x_kpt[..., 1::3] = (((x_kpt[..., 1::3].sigmoid() * 4.) ** 2 - 8.) * self.anchor_grid[i][...,1].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_y.repeat(1,1,1,1,17) * self.stride[i] # xy
290
- x_kpt[..., 2::3] = x_kpt[..., 2::3].sigmoid()
291
-
292
- y = torch.cat((xy, wh, y[..., 4:], x_kpt), dim = -1)
293
-
294
- else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
295
- xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
296
- wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
297
- if self.nkpt != 0:
298
- y[..., 6:] = (y[..., 6:] * 2. - 0.5 + self.grid[i].repeat((1,1,1,1,self.nkpt))) * self.stride[i] # xy
299
- y = torch.cat((xy, wh, y[..., 4:]), -1)
300
-
301
- z.append(y.view(bs, -1, self.no))
302
-
303
- return x if self.training else (torch.cat(z, 1), x)
304
-
305
- @staticmethod
306
- def _make_grid(nx=20, ny=20):
307
- yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
308
- return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
309
-
310
-
311
- class IAuxDetect(nn.Module):
312
- stride = None # strides computed during build
313
- export = False # onnx export
314
- end2end = False
315
- include_nms = False
316
- concat = False
317
-
318
- def __init__(self, nc=80, anchors=(), ch=()): # detection layer
319
- super(IAuxDetect, self).__init__()
320
- self.nc = nc # number of classes
321
- self.no = nc + 5 # number of outputs per anchor
322
- self.nl = len(anchors) # number of detection layers
323
- self.na = len(anchors[0]) // 2 # number of anchors
324
- self.grid = [torch.zeros(1)] * self.nl # init grid
325
- a = torch.tensor(anchors).float().view(self.nl, -1, 2)
326
- self.register_buffer('anchors', a) # shape(nl,na,2)
327
- self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
328
- self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[:self.nl]) # output conv
329
- self.m2 = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[self.nl:]) # output conv
330
-
331
- self.ia = nn.ModuleList(ImplicitA(x) for x in ch[:self.nl])
332
- self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch[:self.nl])
333
-
334
- def forward(self, x):
335
- # x = x.copy() # for profiling
336
- z = [] # inference output
337
- self.training |= self.export
338
- for i in range(self.nl):
339
- x[i] = self.m[i](self.ia[i](x[i])) # conv
340
- x[i] = self.im[i](x[i])
341
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
342
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
343
-
344
- x[i+self.nl] = self.m2[i](x[i+self.nl])
345
- x[i+self.nl] = x[i+self.nl].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
346
-
347
- if not self.training: # inference
348
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
349
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
350
-
351
- y = x[i].sigmoid()
352
- if not torch.onnx.is_in_onnx_export():
353
- y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
354
- y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
355
- else:
356
- xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
357
- xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5)) # new xy
358
- wh = wh ** 2 * (4 * self.anchor_grid[i].data) # new wh
359
- y = torch.cat((xy, wh, conf), 4)
360
- z.append(y.view(bs, -1, self.no))
361
-
362
- return x if self.training else (torch.cat(z, 1), x[:self.nl])
363
-
364
- def fuseforward(self, x):
365
- # x = x.copy() # for profiling
366
- z = [] # inference output
367
- self.training |= self.export
368
- for i in range(self.nl):
369
- x[i] = self.m[i](x[i]) # conv
370
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
371
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
372
-
373
- if not self.training: # inference
374
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
375
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
376
-
377
- y = x[i].sigmoid()
378
- if not torch.onnx.is_in_onnx_export():
379
- y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
380
- y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
381
- else:
382
- xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
383
- wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].data # wh
384
- y = torch.cat((xy, wh, y[..., 4:]), -1)
385
- z.append(y.view(bs, -1, self.no))
386
-
387
- if self.training:
388
- out = x
389
- elif self.end2end:
390
- out = torch.cat(z, 1)
391
- elif self.include_nms:
392
- z = self.convert(z)
393
- out = (z, )
394
- elif self.concat:
395
- out = torch.cat(z, 1)
396
- else:
397
- out = (torch.cat(z, 1), x)
398
-
399
- return out
400
-
401
- def fuse(self):
402
- print("IAuxDetect.fuse")
403
- # fuse ImplicitA and Convolution
404
- for i in range(len(self.m)):
405
- c1,c2,_,_ = self.m[i].weight.shape
406
- c1_,c2_, _,_ = self.ia[i].implicit.shape
407
- self.m[i].bias += torch.matmul(self.m[i].weight.reshape(c1,c2),self.ia[i].implicit.reshape(c2_,c1_)).squeeze(1)
408
-
409
- # fuse ImplicitM and Convolution
410
- for i in range(len(self.m)):
411
- c1,c2, _,_ = self.im[i].implicit.shape
412
- self.m[i].bias *= self.im[i].implicit.reshape(c2)
413
- self.m[i].weight *= self.im[i].implicit.transpose(0,1)
414
-
415
- @staticmethod
416
- def _make_grid(nx=20, ny=20):
417
- yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
418
- return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
419
-
420
- def convert(self, z):
421
- z = torch.cat(z, 1)
422
- box = z[:, :, :4]
423
- conf = z[:, :, 4:5]
424
- score = z[:, :, 5:]
425
- score *= conf
426
- convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
427
- dtype=torch.float32,
428
- device=z.device)
429
- box @= convert_matrix
430
- return (box, score)
431
-
432
-
433
- class IBin(nn.Module):
434
- stride = None # strides computed during build
435
- export = False # onnx export
436
-
437
- def __init__(self, nc=80, anchors=(), ch=(), bin_count=21): # detection layer
438
- super(IBin, self).__init__()
439
- self.nc = nc # number of classes
440
- self.bin_count = bin_count
441
-
442
- self.w_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0)
443
- self.h_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0)
444
- # classes, x,y,obj
445
- self.no = nc + 3 + \
446
- self.w_bin_sigmoid.get_length() + self.h_bin_sigmoid.get_length() # w-bce, h-bce
447
- # + self.x_bin_sigmoid.get_length() + self.y_bin_sigmoid.get_length()
448
-
449
- self.nl = len(anchors) # number of detection layers
450
- self.na = len(anchors[0]) // 2 # number of anchors
451
- self.grid = [torch.zeros(1)] * self.nl # init grid
452
- a = torch.tensor(anchors).float().view(self.nl, -1, 2)
453
- self.register_buffer('anchors', a) # shape(nl,na,2)
454
- self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
455
- self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
456
-
457
- self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
458
- self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
459
-
460
- def forward(self, x):
461
-
462
- #self.x_bin_sigmoid.use_fw_regression = True
463
- #self.y_bin_sigmoid.use_fw_regression = True
464
- self.w_bin_sigmoid.use_fw_regression = True
465
- self.h_bin_sigmoid.use_fw_regression = True
466
-
467
- # x = x.copy() # for profiling
468
- z = [] # inference output
469
- self.training |= self.export
470
- for i in range(self.nl):
471
- x[i] = self.m[i](self.ia[i](x[i])) # conv
472
- x[i] = self.im[i](x[i])
473
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
474
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
475
-
476
- if not self.training: # inference
477
- if self.grid[i].shape[2:4] != x[i].shape[2:4]:
478
- self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
479
-
480
- y = x[i].sigmoid()
481
- y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
482
- #y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
483
-
484
-
485
- #px = (self.x_bin_sigmoid.forward(y[..., 0:12]) + self.grid[i][..., 0]) * self.stride[i]
486
- #py = (self.y_bin_sigmoid.forward(y[..., 12:24]) + self.grid[i][..., 1]) * self.stride[i]
487
-
488
- pw = self.w_bin_sigmoid.forward(y[..., 2:24]) * self.anchor_grid[i][..., 0]
489
- ph = self.h_bin_sigmoid.forward(y[..., 24:46]) * self.anchor_grid[i][..., 1]
490
-
491
- #y[..., 0] = px
492
- #y[..., 1] = py
493
- y[..., 2] = pw
494
- y[..., 3] = ph
495
-
496
- y = torch.cat((y[..., 0:4], y[..., 46:]), dim=-1)
497
-
498
- z.append(y.view(bs, -1, y.shape[-1]))
499
-
500
- return x if self.training else (torch.cat(z, 1), x)
501
-
502
- @staticmethod
503
- def _make_grid(nx=20, ny=20):
504
- yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
505
- return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
506
-
507
-
508
- class Model(nn.Module):
509
- def __init__(self, cfg='yolor-csp-c.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
510
- super(Model, self).__init__()
511
- self.traced = False
512
- if isinstance(cfg, dict):
513
- self.yaml = cfg # model dict
514
- else: # is *.yaml
515
- import yaml # for torch hub
516
- self.yaml_file = Path(cfg).name
517
- with open(cfg) as f:
518
- self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict
519
-
520
- # Define model
521
- ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
522
- if nc and nc != self.yaml['nc']:
523
- logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
524
- self.yaml['nc'] = nc # override yaml value
525
- if anchors:
526
- logger.info(f'Overriding model.yaml anchors with anchors={anchors}')
527
- self.yaml['anchors'] = round(anchors) # override yaml value
528
- self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
529
- self.names = [str(i) for i in range(self.yaml['nc'])] # default names
530
- # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
531
-
532
- # Build strides, anchors
533
- m = self.model[-1] # Detect()
534
- if isinstance(m, Detect):
535
- s = 256 # 2x min stride
536
- m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
537
- check_anchor_order(m)
538
- m.anchors /= m.stride.view(-1, 1, 1)
539
- self.stride = m.stride
540
- self._initialize_biases() # only run once
541
- # print('Strides: %s' % m.stride.tolist())
542
- if isinstance(m, IDetect):
543
- s = 256 # 2x min stride
544
- m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
545
- check_anchor_order(m)
546
- m.anchors /= m.stride.view(-1, 1, 1)
547
- self.stride = m.stride
548
- self._initialize_biases() # only run once
549
- # print('Strides: %s' % m.stride.tolist())
550
- if isinstance(m, IAuxDetect):
551
- s = 256 # 2x min stride
552
- m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))[:4]]) # forward
553
- #print(m.stride)
554
- check_anchor_order(m)
555
- m.anchors /= m.stride.view(-1, 1, 1)
556
- self.stride = m.stride
557
- self._initialize_aux_biases() # only run once
558
- # print('Strides: %s' % m.stride.tolist())
559
- if isinstance(m, IBin):
560
- s = 256 # 2x min stride
561
- m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
562
- check_anchor_order(m)
563
- m.anchors /= m.stride.view(-1, 1, 1)
564
- self.stride = m.stride
565
- self._initialize_biases_bin() # only run once
566
- # print('Strides: %s' % m.stride.tolist())
567
- if isinstance(m, IKeypoint):
568
- s = 256 # 2x min stride
569
- m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
570
- check_anchor_order(m)
571
- m.anchors /= m.stride.view(-1, 1, 1)
572
- self.stride = m.stride
573
- self._initialize_biases_kpt() # only run once
574
- # print('Strides: %s' % m.stride.tolist())
575
-
576
- # Init weights, biases
577
- initialize_weights(self)
578
- self.info()
579
- logger.info('')
580
-
581
- def forward(self, x, augment=False, profile=False):
582
- if augment:
583
- img_size = x.shape[-2:] # height, width
584
- s = [1, 0.83, 0.67] # scales
585
- f = [None, 3, None] # flips (2-ud, 3-lr)
586
- y = [] # outputs
587
- for si, fi in zip(s, f):
588
- xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
589
- yi = self.forward_once(xi)[0] # forward
590
- # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
591
- yi[..., :4] /= si # de-scale
592
- if fi == 2:
593
- yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
594
- elif fi == 3:
595
- yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
596
- y.append(yi)
597
- return torch.cat(y, 1), None # augmented inference, train
598
- else:
599
- return self.forward_once(x, profile) # single-scale inference, train
600
-
601
- def forward_once(self, x, profile=False):
602
- y, dt = [], [] # outputs
603
- for m in self.model:
604
- if m.f != -1: # if not from previous layer
605
- x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
606
-
607
- if not hasattr(self, 'traced'):
608
- self.traced=False
609
-
610
- if self.traced:
611
- if isinstance(m, Detect) or isinstance(m, IDetect) or isinstance(m, IAuxDetect) or isinstance(m, IKeypoint):
612
- break
613
-
614
- if profile:
615
- c = isinstance(m, (Detect, IDetect, IAuxDetect, IBin))
616
- o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
617
- for _ in range(10):
618
- m(x.copy() if c else x)
619
- t = time_synchronized()
620
- for _ in range(10):
621
- m(x.copy() if c else x)
622
- dt.append((time_synchronized() - t) * 100)
623
- print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
624
-
625
- x = m(x) # run
626
-
627
- y.append(x if m.i in self.save else None) # save output
628
-
629
- if profile:
630
- print('%.1fms total' % sum(dt))
631
- return x
632
-
633
- def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
634
- # https://arxiv.org/abs/1708.02002 section 3.3
635
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
636
- m = self.model[-1] # Detect() module
637
- for mi, s in zip(m.m, m.stride): # from
638
- b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
639
- b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
640
- b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
641
- mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
642
-
643
- def _initialize_aux_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
644
- # https://arxiv.org/abs/1708.02002 section 3.3
645
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
646
- m = self.model[-1] # Detect() module
647
- for mi, mi2, s in zip(m.m, m.m2, m.stride): # from
648
- b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
649
- b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
650
- b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
651
- mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
652
- b2 = mi2.bias.view(m.na, -1) # conv.bias(255) to (3,85)
653
- b2.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
654
- b2.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
655
- mi2.bias = torch.nn.Parameter(b2.view(-1), requires_grad=True)
656
-
657
- def _initialize_biases_bin(self, cf=None): # initialize biases into Detect(), cf is class frequency
658
- # https://arxiv.org/abs/1708.02002 section 3.3
659
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
660
- m = self.model[-1] # Bin() module
661
- bc = m.bin_count
662
- for mi, s in zip(m.m, m.stride): # from
663
- b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
664
- old = b[:, (0,1,2,bc+3)].data
665
- obj_idx = 2*bc+4
666
- b[:, :obj_idx].data += math.log(0.6 / (bc + 1 - 0.99))
667
- b[:, obj_idx].data += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
668
- b[:, (obj_idx+1):].data += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
669
- b[:, (0,1,2,bc+3)].data = old
670
- mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
671
-
672
- def _initialize_biases_kpt(self, cf=None): # initialize biases into Detect(), cf is class frequency
673
- # https://arxiv.org/abs/1708.02002 section 3.3
674
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
675
- m = self.model[-1] # Detect() module
676
- for mi, s in zip(m.m, m.stride): # from
677
- b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
678
- b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
679
- b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
680
- mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
681
-
682
- def _print_biases(self):
683
- m = self.model[-1] # Detect() module
684
- for mi in m.m: # from
685
- b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
686
- print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
687
-
688
- # def _print_weights(self):
689
- # for m in self.model.modules():
690
- # if type(m) is Bottleneck:
691
- # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
692
-
693
- def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
694
- print('Fusing layers... ')
695
- for m in self.model.modules():
696
- if isinstance(m, RepConv):
697
- #print(f" fuse_repvgg_block")
698
- m.fuse_repvgg_block()
699
- elif isinstance(m, RepConv_OREPA):
700
- #print(f" switch_to_deploy")
701
- m.switch_to_deploy()
702
- elif type(m) is Conv and hasattr(m, 'bn'):
703
- m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
704
- delattr(m, 'bn') # remove batchnorm
705
- m.forward = m.fuseforward # update forward
706
- elif isinstance(m, (IDetect, IAuxDetect)):
707
- m.fuse()
708
- m.forward = m.fuseforward
709
- self.info()
710
- return self
711
-
712
- def nms(self, mode=True): # add or remove NMS module
713
- present = type(self.model[-1]) is NMS # last layer is NMS
714
- if mode and not present:
715
- print('Adding NMS... ')
716
- m = NMS() # module
717
- m.f = -1 # from
718
- m.i = self.model[-1].i + 1 # index
719
- self.model.add_module(name='%s' % m.i, module=m) # add
720
- self.eval()
721
- elif not mode and present:
722
- print('Removing NMS... ')
723
- self.model = self.model[:-1] # remove
724
- return self
725
-
726
- def autoshape(self): # add autoShape module
727
- print('Adding autoShape... ')
728
- m = autoShape(self) # wrap model
729
- copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
730
- return m
731
-
732
- def info(self, verbose=False, img_size=640): # print model information
733
- model_info(self, verbose, img_size)
734
-
735
-
736
- def parse_model(d, ch): # model_dict, input_channels(3)
737
- logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
738
- anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
739
- na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
740
- no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
741
-
742
- layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
743
- for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
744
- m = eval(m) if isinstance(m, str) else m # eval strings
745
- for j, a in enumerate(args):
746
- try:
747
- args[j] = eval(a) if isinstance(a, str) else a # eval strings
748
- except:
749
- pass
750
-
751
- n = max(round(n * gd), 1) if n > 1 else n # depth gain
752
- if m in [nn.Conv2d, Conv, RobustConv, RobustConv2, DWConv, GhostConv, RepConv, RepConv_OREPA, DownC,
753
- SPP, SPPF, SPPCSPC, GhostSPPCSPC, MixConv2d, Focus, Stem, GhostStem, CrossConv,
754
- Bottleneck, BottleneckCSPA, BottleneckCSPB, BottleneckCSPC,
755
- RepBottleneck, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC,
756
- Res, ResCSPA, ResCSPB, ResCSPC,
757
- RepRes, RepResCSPA, RepResCSPB, RepResCSPC,
758
- ResX, ResXCSPA, ResXCSPB, ResXCSPC,
759
- RepResX, RepResXCSPA, RepResXCSPB, RepResXCSPC,
760
- Ghost, GhostCSPA, GhostCSPB, GhostCSPC,
761
- SwinTransformerBlock, STCSPA, STCSPB, STCSPC,
762
- SwinTransformer2Block, ST2CSPA, ST2CSPB, ST2CSPC]:
763
- c1, c2 = ch[f], args[0]
764
- if c2 != no: # if not output
765
- c2 = make_divisible(c2 * gw, 8)
766
-
767
- args = [c1, c2, *args[1:]]
768
- if m in [DownC, SPPCSPC, GhostSPPCSPC,
769
- BottleneckCSPA, BottleneckCSPB, BottleneckCSPC,
770
- RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC,
771
- ResCSPA, ResCSPB, ResCSPC,
772
- RepResCSPA, RepResCSPB, RepResCSPC,
773
- ResXCSPA, ResXCSPB, ResXCSPC,
774
- RepResXCSPA, RepResXCSPB, RepResXCSPC,
775
- GhostCSPA, GhostCSPB, GhostCSPC,
776
- STCSPA, STCSPB, STCSPC,
777
- ST2CSPA, ST2CSPB, ST2CSPC]:
778
- args.insert(2, n) # number of repeats
779
- n = 1
780
- elif m is nn.BatchNorm2d:
781
- args = [ch[f]]
782
- elif m is Concat:
783
- c2 = sum([ch[x] for x in f])
784
- elif m is Chuncat:
785
- c2 = sum([ch[x] for x in f])
786
- elif m is Shortcut:
787
- c2 = ch[f[0]]
788
- elif m is Foldcut:
789
- c2 = ch[f] // 2
790
- elif m in [Detect, IDetect, IAuxDetect, IBin, IKeypoint]:
791
- args.append([ch[x] for x in f])
792
- if isinstance(args[1], int): # number of anchors
793
- args[1] = [list(range(args[1] * 2))] * len(f)
794
- elif m is ReOrg:
795
- c2 = ch[f] * 4
796
- elif m is Contract:
797
- c2 = ch[f] * args[0] ** 2
798
- elif m is Expand:
799
- c2 = ch[f] // args[0] ** 2
800
- else:
801
- c2 = ch[f]
802
-
803
- m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
804
- t = str(m)[8:-2].replace('__main__.', '') # module type
805
- np = sum([x.numel() for x in m_.parameters()]) # number params
806
- m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
807
- logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
808
- save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
809
- layers.append(m_)
810
- if i == 0:
811
- ch = []
812
- ch.append(c2)
813
- return nn.Sequential(*layers), sorted(save)
814
-
815
-
816
- if __name__ == '__main__':
817
- parser = argparse.ArgumentParser()
818
- parser.add_argument('--cfg', type=str, default='yolor-csp-c.yaml', help='model.yaml')
819
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
820
- parser.add_argument('--profile', action='store_true', help='profile model speed')
821
- opt = parser.parse_args()
822
- opt.cfg = check_file(opt.cfg) # check file
823
- set_logging()
824
- device = select_device(opt.device)
825
-
826
- # Create model
827
- model = Model(opt.cfg).to(device)
828
- model.train()
829
-
830
- if opt.profile:
831
- img = torch.rand(1, 3, 640, 640).to(device)
832
- y = model(img, profile=True)
833
-
834
- # Profile
835
- # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
836
- # y = model(img, profile=True)
837
-
838
- # Tensorboard
839
- # from torch.utils.tensorboard import SummaryWriter
840
- # tb_writer = SummaryWriter()
841
- # print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
842
- # tb_writer.add_graph(model.model, img) # add model to tensorboard
843
- # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
license/utils/autoanchor.py DELETED
@@ -1,160 +0,0 @@
1
- # Auto-anchor utils
2
-
3
- import numpy as np
4
- import torch
5
- import yaml
6
- from scipy.cluster.vq import kmeans
7
- from tqdm import tqdm
8
-
9
- from utils.general import colorstr
10
-
11
-
12
- def check_anchor_order(m):
13
- # Check anchor order against stride order for YOLO Detect() module m, and correct if necessary
14
- a = m.anchor_grid.prod(-1).view(-1) # anchor area
15
- da = a[-1] - a[0] # delta a
16
- ds = m.stride[-1] - m.stride[0] # delta s
17
- if da.sign() != ds.sign(): # same order
18
- print('Reversing anchor order')
19
- m.anchors[:] = m.anchors.flip(0)
20
- m.anchor_grid[:] = m.anchor_grid.flip(0)
21
-
22
-
23
- def check_anchors(dataset, model, thr=4.0, imgsz=640):
24
- # Check anchor fit to data, recompute if necessary
25
- prefix = colorstr('autoanchor: ')
26
- print(f'\n{prefix}Analyzing anchors... ', end='')
27
- m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
28
- shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
29
- scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
30
- wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
31
-
32
- def metric(k): # compute metric
33
- r = wh[:, None] / k[None]
34
- x = torch.min(r, 1. / r).min(2)[0] # ratio metric
35
- best = x.max(1)[0] # best_x
36
- aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
37
- bpr = (best > 1. / thr).float().mean() # best possible recall
38
- return bpr, aat
39
-
40
- anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
41
- bpr, aat = metric(anchors)
42
- print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
43
- if bpr < 0.98: # threshold to recompute
44
- print('. Attempting to improve anchors, please wait...')
45
- na = m.anchor_grid.numel() // 2 # number of anchors
46
- try:
47
- anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
48
- except Exception as e:
49
- print(f'{prefix}ERROR: {e}')
50
- new_bpr = metric(anchors)[0]
51
- if new_bpr > bpr: # replace anchors
52
- anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
53
- m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
54
- check_anchor_order(m)
55
- m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
56
- print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
57
- else:
58
- print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
59
- print('') # newline
60
-
61
-
62
- def kmean_anchors(path='./data/coco.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
63
- """ Creates kmeans-evolved anchors from training dataset
64
-
65
- Arguments:
66
- path: path to dataset *.yaml, or a loaded dataset
67
- n: number of anchors
68
- img_size: image size used for training
69
- thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
70
- gen: generations to evolve anchors using genetic algorithm
71
- verbose: print all results
72
-
73
- Return:
74
- k: kmeans evolved anchors
75
-
76
- Usage:
77
- from utils.autoanchor import *; _ = kmean_anchors()
78
- """
79
- thr = 1. / thr
80
- prefix = colorstr('autoanchor: ')
81
-
82
- def metric(k, wh): # compute metrics
83
- r = wh[:, None] / k[None]
84
- x = torch.min(r, 1. / r).min(2)[0] # ratio metric
85
- # x = wh_iou(wh, torch.tensor(k)) # iou metric
86
- return x, x.max(1)[0] # x, best_x
87
-
88
- def anchor_fitness(k): # mutation fitness
89
- _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
90
- return (best * (best > thr).float()).mean() # fitness
91
-
92
- def print_results(k):
93
- k = k[np.argsort(k.prod(1))] # sort small to large
94
- x, best = metric(k, wh0)
95
- bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
96
- print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
97
- print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
98
- f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
99
- for i, x in enumerate(k):
100
- print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
101
- return k
102
-
103
- if isinstance(path, str): # *.yaml file
104
- with open(path) as f:
105
- data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
106
- from utils.datasets import LoadImagesAndLabels
107
- dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
108
- else:
109
- dataset = path # dataset
110
-
111
- # Get label wh
112
- shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
113
- wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
114
-
115
- # Filter
116
- i = (wh0 < 3.0).any(1).sum()
117
- if i:
118
- print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
119
- wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
120
- # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
121
-
122
- # Kmeans calculation
123
- print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
124
- s = wh.std(0) # sigmas for whitening
125
- k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
126
- assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
127
- k *= s
128
- wh = torch.tensor(wh, dtype=torch.float32) # filtered
129
- wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
130
- k = print_results(k)
131
-
132
- # Plot
133
- # k, d = [None] * 20, [None] * 20
134
- # for i in tqdm(range(1, 21)):
135
- # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
136
- # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
137
- # ax = ax.ravel()
138
- # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
139
- # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
140
- # ax[0].hist(wh[wh[:, 0]<100, 0],400)
141
- # ax[1].hist(wh[wh[:, 1]<100, 1],400)
142
- # fig.savefig('wh.png', dpi=200)
143
-
144
- # Evolve
145
- npr = np.random
146
- f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
147
- pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
148
- for _ in pbar:
149
- v = np.ones(sh)
150
- while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
151
- v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
152
- kg = (k.copy() * v).clip(min=2.0)
153
- fg = anchor_fitness(kg)
154
- if fg > f:
155
- f, k = fg, kg.copy()
156
- pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
157
- if verbose:
158
- print_results(k)
159
-
160
- return print_results(k)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
license/utils/datasets.py DELETED
@@ -1,1358 +0,0 @@
1
- # Dataset utils and dataloaders
2
-
3
- import glob
4
- import logging
5
- import math
6
- import os
7
- import random
8
- import shutil
9
- import time
10
- from itertools import repeat
11
- from multiprocessing.pool import ThreadPool
12
- from pathlib import Path
13
- from threading import Thread
14
-
15
- import cv2
16
- import numpy as np
17
- import torch
18
- import torch.nn.functional as F
19
- from PIL import Image, ExifTags
20
- from torch.utils.data import Dataset
21
- from tqdm import tqdm
22
-
23
- import pickle
24
- from copy import deepcopy
25
- #from pycocotools import mask as maskUtils
26
- from torchvision.utils import save_image
27
- from torchvision.ops import roi_pool, roi_align, ps_roi_pool, ps_roi_align
28
-
29
- from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \
30
- resample_segments, clean_str
31
- from utils.torch_utils import torch_distributed_zero_first
32
-
33
- # Parameters
34
- help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
35
- img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes
36
- vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
37
- logger = logging.getLogger(__name__)
38
-
39
- # Get orientation exif tag
40
- for orientation in ExifTags.TAGS.keys():
41
- if ExifTags.TAGS[orientation] == 'Orientation':
42
- break
43
-
44
-
45
- def get_hash(files):
46
- # Returns a single hash value of a list of files
47
- return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
48
-
49
-
50
- def exif_size(img):
51
- # Returns exif-corrected PIL size
52
- s = img.size # (width, height)
53
- try:
54
- rotation = dict(img._getexif().items())[orientation]
55
- if rotation == 6: # rotation 270
56
- s = (s[1], s[0])
57
- elif rotation == 8: # rotation 90
58
- s = (s[1], s[0])
59
- except:
60
- pass
61
-
62
- return s
63
-
64
-
65
- def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
66
- rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
67
- # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
68
- with torch_distributed_zero_first(rank):
69
- dataset = LoadImagesAndLabels(path, imgsz, batch_size,
70
- augment=augment, # augment images
71
- hyp=hyp, # augmentation hyperparameters
72
- rect=rect, # rectangular training
73
- cache_images=cache,
74
- single_cls=opt.single_cls,
75
- stride=int(stride),
76
- pad=pad,
77
- image_weights=image_weights,
78
- prefix=prefix)
79
-
80
- batch_size = min(batch_size, len(dataset))
81
- nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
82
- sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
83
- loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
84
- # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
85
- dataloader = loader(dataset,
86
- batch_size=batch_size,
87
- num_workers=nw,
88
- sampler=sampler,
89
- pin_memory=True,
90
- collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
91
- return dataloader, dataset
92
-
93
-
94
- class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
95
- """ Dataloader that reuses workers
96
-
97
- Uses same syntax as vanilla DataLoader
98
- """
99
-
100
- def __init__(self, *args, **kwargs):
101
- super().__init__(*args, **kwargs)
102
- object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
103
- self.iterator = super().__iter__()
104
-
105
- def __len__(self):
106
- return len(self.batch_sampler.sampler)
107
-
108
- def __iter__(self):
109
- for i in range(len(self)):
110
- yield next(self.iterator)
111
-
112
-
113
- class _RepeatSampler(object):
114
- """ Sampler that repeats forever
115
-
116
- Args:
117
- sampler (Sampler)
118
- """
119
-
120
- def __init__(self, sampler):
121
- self.sampler = sampler
122
-
123
- def __iter__(self):
124
- while True:
125
- yield from iter(self.sampler)
126
-
127
- class LoadImages: # for inference
128
- def __init__(self, path, img_size=640, stride=32):
129
- p = str(Path(path).absolute()) # os-agnostic absolute path
130
- if '*' in p:
131
- files = sorted(glob.glob(p, recursive=True)) # glob
132
- elif os.path.isdir(p):
133
- files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
134
- elif os.path.isfile(p):
135
- files = [p] # files
136
- else:
137
- raise Exception(f'ERROR: {p} does not exist')
138
-
139
- images = [x for x in files if x.split('.')[-1].lower() in img_formats]
140
- videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
141
- ni, nv = len(images), len(videos)
142
-
143
- self.img_size = img_size
144
- self.stride = stride
145
- self.files = images + videos
146
- self.nf = ni + nv # number of files
147
- self.video_flag = [False] * ni + [True] * nv
148
- self.mode = 'image'
149
- if any(videos):
150
- self.new_video(videos[0]) # new video
151
- else:
152
- self.cap = None
153
- assert self.nf > 0, f'No images or videos found in {p}. ' \
154
- f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
155
-
156
- def __iter__(self):
157
- self.count = 0
158
- return self
159
-
160
- def __next__(self):
161
- if self.count == self.nf:
162
- raise StopIteration
163
- path = self.files[self.count]
164
-
165
- if self.video_flag[self.count]:
166
- # Read video
167
- self.mode = 'video'
168
- ret_val, img0 = self.cap.read()
169
- if not ret_val:
170
- self.count += 1
171
- self.cap.release()
172
- if self.count == self.nf: # last video
173
- raise StopIteration
174
- else:
175
- path = self.files[self.count]
176
- self.new_video(path)
177
- ret_val, img0 = self.cap.read()
178
-
179
- self.frame += 1
180
- print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='')
181
-
182
- else:
183
- # Read image
184
- self.count += 1
185
- img0 = cv2.imread(path) # BGR
186
- assert img0 is not None, 'Image Not Found ' + path
187
- #print(f'image {self.count}/{self.nf} {path}: ', end='')
188
-
189
- # Padded resize
190
- img = letterbox(img0, self.img_size, stride=self.stride)[0]
191
-
192
- # Convert
193
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
194
- img = np.ascontiguousarray(img)
195
-
196
- return path, img, img0, self.cap
197
-
198
- def new_video(self, path):
199
- self.frame = 0
200
- self.cap = cv2.VideoCapture(path)
201
- self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
202
-
203
- def __len__(self):
204
- return self.nf # number of files
205
-
206
- class LoadImage: # for inference
207
- def __init__(self, files = [], img_size=640, stride=32):
208
- if not len(files):
209
- raise Exception(f'ERROR: empty list')
210
-
211
- self.img_size = img_size
212
- self.stride = stride
213
- self.files = files
214
- self.nf = len(files) # number of files
215
- assert self.nf > 0, f'No images or videos found'
216
-
217
- def __iter__(self):
218
- self.count = 0
219
- return self
220
-
221
- def __next__(self):
222
- if self.count == self.nf:
223
- raise StopIteration
224
- image = self.files[self.count]
225
-
226
- # Read image
227
- self.count += 1
228
-
229
- img0 = np.array(image) #rgb
230
- img0 = cv2.cvtColor(img0, cv2.COLOR_RGB2BGR) #bgr
231
- assert img0 is not None, 'Image empty '
232
-
233
- # Padded resize
234
- img = letterbox(img0, self.img_size, stride=self.stride)[0]
235
-
236
- # Convert
237
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
238
- img = np.ascontiguousarray(img)
239
-
240
- return img, img0
241
-
242
- def __len__(self):
243
- return self.nf # number of files
244
-
245
-
246
- class LoadWebcam: # for inference
247
- def __init__(self, pipe='0', img_size=640, stride=32):
248
- self.img_size = img_size
249
- self.stride = stride
250
-
251
- if pipe.isnumeric():
252
- pipe = eval(pipe) # local camera
253
- # pipe = 'rtsp://192.168.1.64/1' # IP camera
254
- # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
255
- # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
256
-
257
- self.pipe = pipe
258
- self.cap = cv2.VideoCapture(pipe) # video capture object
259
- self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
260
-
261
- def __iter__(self):
262
- self.count = -1
263
- return self
264
-
265
- def __next__(self):
266
- self.count += 1
267
- if cv2.waitKey(1) == ord('q'): # q to quit
268
- self.cap.release()
269
- cv2.destroyAllWindows()
270
- raise StopIteration
271
-
272
- # Read frame
273
- if self.pipe == 0: # local camera
274
- ret_val, img0 = self.cap.read()
275
- img0 = cv2.flip(img0, 1) # flip left-right
276
- else: # IP camera
277
- n = 0
278
- while True:
279
- n += 1
280
- self.cap.grab()
281
- if n % 30 == 0: # skip frames
282
- ret_val, img0 = self.cap.retrieve()
283
- if ret_val:
284
- break
285
-
286
- # Print
287
- assert ret_val, f'Camera Error {self.pipe}'
288
- img_path = 'webcam.jpg'
289
- print(f'webcam {self.count}: ', end='')
290
-
291
- # Padded resize
292
- img = letterbox(img0, self.img_size, stride=self.stride)[0]
293
-
294
- # Convert
295
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
296
- img = np.ascontiguousarray(img)
297
-
298
- return img_path, img, img0, None
299
-
300
- def __len__(self):
301
- return 0
302
-
303
-
304
- class LoadStreams: # multiple IP or RTSP cameras
305
- def __init__(self, sources='streams.txt', img_size=640, stride=32):
306
- self.mode = 'stream'
307
- self.img_size = img_size
308
- self.stride = stride
309
-
310
- if os.path.isfile(sources):
311
- with open(sources, 'r') as f:
312
- sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
313
- else:
314
- sources = [sources]
315
-
316
- n = len(sources)
317
- self.imgs = [None] * n
318
- self.sources = [clean_str(x) for x in sources] # clean source names for later
319
- for i, s in enumerate(sources):
320
- # Start the thread to read frames from the video stream
321
- print(f'{i + 1}/{n}: {s}... ', end='')
322
- url = eval(s) if s.isnumeric() else s
323
- if 'youtube.com/' in str(url) or 'youtu.be/' in str(url): # if source is YouTube video
324
- check_requirements(('pafy', 'youtube_dl'))
325
- import pafy
326
- url = pafy.new(url).getbest(preftype="mp4").url
327
- cap = cv2.VideoCapture(url)
328
- assert cap.isOpened(), f'Failed to open {s}'
329
- w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
330
- h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
331
- self.fps = cap.get(cv2.CAP_PROP_FPS) % 100
332
-
333
- _, self.imgs[i] = cap.read() # guarantee first frame
334
- thread = Thread(target=self.update, args=([i, cap]), daemon=True)
335
- print(f' success ({w}x{h} at {self.fps:.2f} FPS).')
336
- thread.start()
337
- print('') # newline
338
-
339
- # check for common shapes
340
- s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) # shapes
341
- self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
342
- if not self.rect:
343
- print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
344
-
345
- def update(self, index, cap):
346
- # Read next stream frame in a daemon thread
347
- n = 0
348
- while cap.isOpened():
349
- n += 1
350
- # _, self.imgs[index] = cap.read()
351
- cap.grab()
352
- if n == 4: # read every 4th frame
353
- success, im = cap.retrieve()
354
- self.imgs[index] = im if success else self.imgs[index] * 0
355
- n = 0
356
- time.sleep(1 / self.fps) # wait time
357
-
358
- def __iter__(self):
359
- self.count = -1
360
- return self
361
-
362
- def __next__(self):
363
- self.count += 1
364
- img0 = self.imgs.copy()
365
- if cv2.waitKey(1) == ord('q'): # q to quit
366
- cv2.destroyAllWindows()
367
- raise StopIteration
368
-
369
- # Letterbox
370
- img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0]
371
-
372
- # Stack
373
- img = np.stack(img, 0)
374
-
375
- # Convert
376
- img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
377
- img = np.ascontiguousarray(img)
378
-
379
- return self.sources, img, img0, None
380
-
381
- def __len__(self):
382
- return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
383
-
384
-
385
- def img2label_paths(img_paths):
386
- # Define label paths as a function of image paths
387
- sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
388
- return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths]
389
-
390
-
391
- class LoadImagesAndLabels(Dataset): # for training/testing
392
- def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
393
- cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
394
- self.img_size = img_size
395
- self.augment = augment
396
- self.hyp = hyp
397
- self.image_weights = image_weights
398
- self.rect = False if image_weights else rect
399
- self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
400
- self.mosaic_border = [-img_size // 2, -img_size // 2]
401
- self.stride = stride
402
- self.path = path
403
- #self.albumentations = Albumentations() if augment else None
404
-
405
- try:
406
- f = [] # image files
407
- for p in path if isinstance(path, list) else [path]:
408
- p = Path(p) # os-agnostic
409
- if p.is_dir(): # dir
410
- f += glob.glob(str(p / '**' / '*.*'), recursive=True)
411
- # f = list(p.rglob('**/*.*')) # pathlib
412
- elif p.is_file(): # file
413
- with open(p, 'r') as t:
414
- t = t.read().strip().splitlines()
415
- parent = str(p.parent) + os.sep
416
- f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
417
- # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
418
- else:
419
- raise Exception(f'{prefix}{p} does not exist')
420
- self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
421
- # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib
422
- assert self.img_files, f'{prefix}No images found'
423
- except Exception as e:
424
- raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')
425
-
426
- # Check cache
427
- self.label_files = img2label_paths(self.img_files) # labels
428
- cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') # cached labels
429
- if cache_path.is_file():
430
- cache, exists = torch.load(cache_path), True # load
431
- #if cache['hash'] != get_hash(self.label_files + self.img_files) or 'version' not in cache: # changed
432
- # cache, exists = self.cache_labels(cache_path, prefix), False # re-cache
433
- else:
434
- cache, exists = self.cache_labels(cache_path, prefix), False # cache
435
-
436
- # Display cache
437
- nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total
438
- if exists:
439
- d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
440
- tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
441
- assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
442
-
443
- # Read cache
444
- cache.pop('hash') # remove hash
445
- cache.pop('version') # remove version
446
- labels, shapes, self.segments = zip(*cache.values())
447
- self.labels = list(labels)
448
- self.shapes = np.array(shapes, dtype=np.float64)
449
- self.img_files = list(cache.keys()) # update
450
- self.label_files = img2label_paths(cache.keys()) # update
451
- if single_cls:
452
- for x in self.labels:
453
- x[:, 0] = 0
454
-
455
- n = len(shapes) # number of images
456
- bi = np.floor(np.arange(n) / batch_size).astype(int) # batch index
457
- nb = bi[-1] + 1 # number of batches
458
- self.batch = bi # batch index of image
459
- self.n = n
460
- self.indices = range(n)
461
-
462
- # Rectangular Training
463
- if self.rect:
464
- # Sort by aspect ratio
465
- s = self.shapes # wh
466
- ar = s[:, 1] / s[:, 0] # aspect ratio
467
- irect = ar.argsort()
468
- self.img_files = [self.img_files[i] for i in irect]
469
- self.label_files = [self.label_files[i] for i in irect]
470
- self.labels = [self.labels[i] for i in irect]
471
- self.shapes = s[irect] # wh
472
- ar = ar[irect]
473
-
474
- # Set training image shapes
475
- shapes = [[1, 1]] * nb
476
- for i in range(nb):
477
- ari = ar[bi == i]
478
- mini, maxi = ari.min(), ari.max()
479
- if maxi < 1:
480
- shapes[i] = [maxi, 1]
481
- elif mini > 1:
482
- shapes[i] = [1, 1 / mini]
483
-
484
- self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride
485
-
486
- # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
487
- self.imgs = [None] * n
488
- if cache_images:
489
- if cache_images == 'disk':
490
- self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy')
491
- self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files]
492
- self.im_cache_dir.mkdir(parents=True, exist_ok=True)
493
- gb = 0 # Gigabytes of cached images
494
- self.img_hw0, self.img_hw = [None] * n, [None] * n
495
- results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))
496
- pbar = tqdm(enumerate(results), total=n)
497
- for i, x in pbar:
498
- if cache_images == 'disk':
499
- if not self.img_npy[i].exists():
500
- np.save(self.img_npy[i].as_posix(), x[0])
501
- gb += self.img_npy[i].stat().st_size
502
- else:
503
- self.imgs[i], self.img_hw0[i], self.img_hw[i] = x
504
- gb += self.imgs[i].nbytes
505
- pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
506
- pbar.close()
507
-
508
- def cache_labels(self, path=Path('./labels.cache'), prefix=''):
509
- # Cache dataset labels, check images and read shapes
510
- x = {} # dict
511
- nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
512
- pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
513
- for i, (im_file, lb_file) in enumerate(pbar):
514
- try:
515
- # verify images
516
- im = Image.open(im_file)
517
- im.verify() # PIL verify
518
- shape = exif_size(im) # image size
519
- segments = [] # instance segments
520
- assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
521
- assert im.format.lower() in img_formats, f'invalid image format {im.format}'
522
-
523
- # verify labels
524
- if os.path.isfile(lb_file):
525
- nf += 1 # label found
526
- with open(lb_file, 'r') as f:
527
- l = [x.split() for x in f.read().strip().splitlines()]
528
- if any([len(x) > 8 for x in l]): # is segment
529
- classes = np.array([x[0] for x in l], dtype=np.float32)
530
- segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
531
- l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
532
- l = np.array(l, dtype=np.float32)
533
- if len(l):
534
- assert l.shape[1] == 5, 'labels require 5 columns each'
535
- assert (l >= 0).all(), 'negative labels'
536
- assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
537
- assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
538
- else:
539
- ne += 1 # label empty
540
- l = np.zeros((0, 5), dtype=np.float32)
541
- else:
542
- nm += 1 # label missing
543
- l = np.zeros((0, 5), dtype=np.float32)
544
- x[im_file] = [l, shape, segments]
545
- except Exception as e:
546
- nc += 1
547
- print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
548
-
549
- pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels... " \
550
- f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
551
- pbar.close()
552
-
553
- if nf == 0:
554
- print(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
555
-
556
- x['hash'] = get_hash(self.label_files + self.img_files)
557
- x['results'] = nf, nm, ne, nc, i + 1
558
- x['version'] = 0.1 # cache version
559
- torch.save(x, path) # save for next time
560
- logging.info(f'{prefix}New cache created: {path}')
561
- return x
562
-
563
- def __len__(self):
564
- return len(self.img_files)
565
-
566
- # def __iter__(self):
567
- # self.count = -1
568
- # print('ran dataset iter')
569
- # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
570
- # return self
571
-
572
- def __getitem__(self, index):
573
- index = self.indices[index] # linear, shuffled, or image_weights
574
-
575
- hyp = self.hyp
576
- mosaic = self.mosaic and random.random() < hyp['mosaic']
577
- if mosaic:
578
- # Load mosaic
579
- if random.random() < 0.8:
580
- img, labels = load_mosaic(self, index)
581
- else:
582
- img, labels = load_mosaic9(self, index)
583
- shapes = None
584
-
585
- # MixUp https://arxiv.org/pdf/1710.09412.pdf
586
- if random.random() < hyp['mixup']:
587
- if random.random() < 0.8:
588
- img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1))
589
- else:
590
- img2, labels2 = load_mosaic9(self, random.randint(0, len(self.labels) - 1))
591
- r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
592
- img = (img * r + img2 * (1 - r)).astype(np.uint8)
593
- labels = np.concatenate((labels, labels2), 0)
594
-
595
- else:
596
- # Load image
597
- img, (h0, w0), (h, w) = load_image(self, index)
598
-
599
- # Letterbox
600
- shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
601
- img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
602
- shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
603
-
604
- labels = self.labels[index].copy()
605
- if labels.size: # normalized xywh to pixel xyxy format
606
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
607
-
608
- if self.augment:
609
- # Augment imagespace
610
- if not mosaic:
611
- img, labels = random_perspective(img, labels,
612
- degrees=hyp['degrees'],
613
- translate=hyp['translate'],
614
- scale=hyp['scale'],
615
- shear=hyp['shear'],
616
- perspective=hyp['perspective'])
617
-
618
-
619
- #img, labels = self.albumentations(img, labels)
620
-
621
- # Augment colorspace
622
- augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
623
-
624
- # Apply cutouts
625
- # if random.random() < 0.9:
626
- # labels = cutout(img, labels)
627
-
628
- if random.random() < hyp['paste_in']:
629
- sample_labels, sample_images, sample_masks = [], [], []
630
- while len(sample_labels) < 30:
631
- sample_labels_, sample_images_, sample_masks_ = load_samples(self, random.randint(0, len(self.labels) - 1))
632
- sample_labels += sample_labels_
633
- sample_images += sample_images_
634
- sample_masks += sample_masks_
635
- #print(len(sample_labels))
636
- if len(sample_labels) == 0:
637
- break
638
- labels = pastein(img, labels, sample_labels, sample_images, sample_masks)
639
-
640
- nL = len(labels) # number of labels
641
- if nL:
642
- labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
643
- labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
644
- labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
645
-
646
- if self.augment:
647
- # flip up-down
648
- if random.random() < hyp['flipud']:
649
- img = np.flipud(img)
650
- if nL:
651
- labels[:, 2] = 1 - labels[:, 2]
652
-
653
- # flip left-right
654
- if random.random() < hyp['fliplr']:
655
- img = np.fliplr(img)
656
- if nL:
657
- labels[:, 1] = 1 - labels[:, 1]
658
-
659
- labels_out = torch.zeros((nL, 6))
660
- if nL:
661
- labels_out[:, 1:] = torch.from_numpy(labels)
662
-
663
- # Convert
664
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
665
- img = np.ascontiguousarray(img)
666
-
667
- return torch.from_numpy(img), labels_out, self.img_files[index], shapes
668
-
669
- @staticmethod
670
- def collate_fn(batch):
671
- img, label, path, shapes = zip(*batch) # transposed
672
- for i, l in enumerate(label):
673
- l[:, 0] = i # add target image index for build_targets()
674
- return torch.stack(img, 0), torch.cat(label, 0), path, shapes
675
-
676
- @staticmethod
677
- def collate_fn4(batch):
678
- img, label, path, shapes = zip(*batch) # transposed
679
- n = len(shapes) // 4
680
- img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
681
-
682
- ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
683
- wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
684
- s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale
685
- for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
686
- i *= 4
687
- if random.random() < 0.5:
688
- im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
689
- 0].type(img[i].type())
690
- l = label[i]
691
- else:
692
- im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
693
- l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
694
- img4.append(im)
695
- label4.append(l)
696
-
697
- for i, l in enumerate(label4):
698
- l[:, 0] = i # add target image index for build_targets()
699
-
700
- return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
701
-
702
-
703
- # Ancillary functions --------------------------------------------------------------------------------------------------
704
- def load_image(self, index):
705
- # loads 1 image from dataset, returns img, original hw, resized hw
706
- img = self.imgs[index]
707
- if img is None: # not cached
708
- path = self.img_files[index]
709
- img = cv2.imread(path) # BGR
710
- assert img is not None, 'Image Not Found ' + path
711
- h0, w0 = img.shape[:2] # orig hw
712
- r = self.img_size / max(h0, w0) # resize image to img_size
713
- if r != 1: # always resize down, only resize up if training with augmentation
714
- interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
715
- img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
716
- return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
717
- else:
718
- return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
719
-
720
-
721
- def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
722
- r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
723
- hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
724
- dtype = img.dtype # uint8
725
-
726
- x = np.arange(0, 256, dtype=np.int16)
727
- lut_hue = ((x * r[0]) % 180).astype(dtype)
728
- lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
729
- lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
730
-
731
- img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
732
- cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
733
-
734
-
735
- def hist_equalize(img, clahe=True, bgr=False):
736
- # Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
737
- yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
738
- if clahe:
739
- c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
740
- yuv[:, :, 0] = c.apply(yuv[:, :, 0])
741
- else:
742
- yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
743
- return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
744
-
745
-
746
- def load_mosaic(self, index):
747
- # loads images in a 4-mosaic
748
-
749
- labels4, segments4 = [], []
750
- s = self.img_size
751
- yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
752
- indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
753
- for i, index in enumerate(indices):
754
- # Load image
755
- img, _, (h, w) = load_image(self, index)
756
-
757
- # place img in img4
758
- if i == 0: # top left
759
- img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
760
- x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
761
- x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
762
- elif i == 1: # top right
763
- x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
764
- x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
765
- elif i == 2: # bottom left
766
- x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
767
- x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
768
- elif i == 3: # bottom right
769
- x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
770
- x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
771
-
772
- img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
773
- padw = x1a - x1b
774
- padh = y1a - y1b
775
-
776
- # Labels
777
- labels, segments = self.labels[index].copy(), self.segments[index].copy()
778
- if labels.size:
779
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
780
- segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
781
- labels4.append(labels)
782
- segments4.extend(segments)
783
-
784
- # Concat/clip labels
785
- labels4 = np.concatenate(labels4, 0)
786
- for x in (labels4[:, 1:], *segments4):
787
- np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
788
- # img4, labels4 = replicate(img4, labels4) # replicate
789
-
790
- # Augment
791
- #img4, labels4, segments4 = remove_background(img4, labels4, segments4)
792
- #sample_segments(img4, labels4, segments4, probability=self.hyp['copy_paste'])
793
- img4, labels4, segments4 = copy_paste(img4, labels4, segments4, probability=self.hyp['copy_paste'])
794
- img4, labels4 = random_perspective(img4, labels4, segments4,
795
- degrees=self.hyp['degrees'],
796
- translate=self.hyp['translate'],
797
- scale=self.hyp['scale'],
798
- shear=self.hyp['shear'],
799
- perspective=self.hyp['perspective'],
800
- border=self.mosaic_border) # border to remove
801
-
802
- return img4, labels4
803
-
804
-
805
- def load_mosaic9(self, index):
806
- # loads images in a 9-mosaic
807
-
808
- labels9, segments9 = [], []
809
- s = self.img_size
810
- indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
811
- for i, index in enumerate(indices):
812
- # Load image
813
- img, _, (h, w) = load_image(self, index)
814
-
815
- # place img in img9
816
- if i == 0: # center
817
- img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
818
- h0, w0 = h, w
819
- c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
820
- elif i == 1: # top
821
- c = s, s - h, s + w, s
822
- elif i == 2: # top right
823
- c = s + wp, s - h, s + wp + w, s
824
- elif i == 3: # right
825
- c = s + w0, s, s + w0 + w, s + h
826
- elif i == 4: # bottom right
827
- c = s + w0, s + hp, s + w0 + w, s + hp + h
828
- elif i == 5: # bottom
829
- c = s + w0 - w, s + h0, s + w0, s + h0 + h
830
- elif i == 6: # bottom left
831
- c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
832
- elif i == 7: # left
833
- c = s - w, s + h0 - h, s, s + h0
834
- elif i == 8: # top left
835
- c = s - w, s + h0 - hp - h, s, s + h0 - hp
836
-
837
- padx, pady = c[:2]
838
- x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
839
-
840
- # Labels
841
- labels, segments = self.labels[index].copy(), self.segments[index].copy()
842
- if labels.size:
843
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
844
- segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
845
- labels9.append(labels)
846
- segments9.extend(segments)
847
-
848
- # Image
849
- img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
850
- hp, wp = h, w # height, width previous
851
-
852
- # Offset
853
- yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y
854
- img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
855
-
856
- # Concat/clip labels
857
- labels9 = np.concatenate(labels9, 0)
858
- labels9[:, [1, 3]] -= xc
859
- labels9[:, [2, 4]] -= yc
860
- c = np.array([xc, yc]) # centers
861
- segments9 = [x - c for x in segments9]
862
-
863
- for x in (labels9[:, 1:], *segments9):
864
- np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
865
- # img9, labels9 = replicate(img9, labels9) # replicate
866
-
867
- # Augment
868
- #img9, labels9, segments9 = remove_background(img9, labels9, segments9)
869
- img9, labels9, segments9 = copy_paste(img9, labels9, segments9, probability=self.hyp['copy_paste'])
870
- img9, labels9 = random_perspective(img9, labels9, segments9,
871
- degrees=self.hyp['degrees'],
872
- translate=self.hyp['translate'],
873
- scale=self.hyp['scale'],
874
- shear=self.hyp['shear'],
875
- perspective=self.hyp['perspective'],
876
- border=self.mosaic_border) # border to remove
877
-
878
- return img9, labels9
879
-
880
-
881
- def load_samples(self, index):
882
- # loads images in a 4-mosaic
883
-
884
- labels4, segments4 = [], []
885
- s = self.img_size
886
- yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
887
- indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
888
- for i, index in enumerate(indices):
889
- # Load image
890
- img, _, (h, w) = load_image(self, index)
891
-
892
- # place img in img4
893
- if i == 0: # top left
894
- img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
895
- x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
896
- x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
897
- elif i == 1: # top right
898
- x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
899
- x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
900
- elif i == 2: # bottom left
901
- x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
902
- x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
903
- elif i == 3: # bottom right
904
- x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
905
- x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
906
-
907
- img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
908
- padw = x1a - x1b
909
- padh = y1a - y1b
910
-
911
- # Labels
912
- labels, segments = self.labels[index].copy(), self.segments[index].copy()
913
- if labels.size:
914
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
915
- segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
916
- labels4.append(labels)
917
- segments4.extend(segments)
918
-
919
- # Concat/clip labels
920
- labels4 = np.concatenate(labels4, 0)
921
- for x in (labels4[:, 1:], *segments4):
922
- np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
923
- # img4, labels4 = replicate(img4, labels4) # replicate
924
-
925
- # Augment
926
- #img4, labels4, segments4 = remove_background(img4, labels4, segments4)
927
- sample_labels, sample_images, sample_masks = sample_segments(img4, labels4, segments4, probability=0.5)
928
-
929
- return sample_labels, sample_images, sample_masks
930
-
931
-
932
- def copy_paste(img, labels, segments, probability=0.5):
933
- # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
934
- n = len(segments)
935
- if probability and n:
936
- h, w, c = img.shape # height, width, channels
937
- im_new = np.zeros(img.shape, np.uint8)
938
- for j in random.sample(range(n), k=round(probability * n)):
939
- l, s = labels[j], segments[j]
940
- box = w - l[3], l[2], w - l[1], l[4]
941
- ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
942
- if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
943
- labels = np.concatenate((labels, [[l[0], *box]]), 0)
944
- segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
945
- cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
946
-
947
- result = cv2.bitwise_and(src1=img, src2=im_new)
948
- result = cv2.flip(result, 1) # augment segments (flip left-right)
949
- i = result > 0 # pixels to replace
950
- # i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
951
- img[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug
952
-
953
- return img, labels, segments
954
-
955
-
956
- def remove_background(img, labels, segments):
957
- # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
958
- n = len(segments)
959
- h, w, c = img.shape # height, width, channels
960
- im_new = np.zeros(img.shape, np.uint8)
961
- img_new = np.ones(img.shape, np.uint8) * 114
962
- for j in range(n):
963
- cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
964
-
965
- result = cv2.bitwise_and(src1=img, src2=im_new)
966
-
967
- i = result > 0 # pixels to replace
968
- img_new[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug
969
-
970
- return img_new, labels, segments
971
-
972
-
973
- def sample_segments(img, labels, segments, probability=0.5):
974
- # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
975
- n = len(segments)
976
- sample_labels = []
977
- sample_images = []
978
- sample_masks = []
979
- if probability and n:
980
- h, w, c = img.shape # height, width, channels
981
- for j in random.sample(range(n), k=round(probability * n)):
982
- l, s = labels[j], segments[j]
983
- box = l[1].astype(int).clip(0,w-1), l[2].astype(int).clip(0,h-1), l[3].astype(int).clip(0,w-1), l[4].astype(int).clip(0,h-1)
984
-
985
- #print(box)
986
- if (box[2] <= box[0]) or (box[3] <= box[1]):
987
- continue
988
-
989
- sample_labels.append(l[0])
990
-
991
- mask = np.zeros(img.shape, np.uint8)
992
-
993
- cv2.drawContours(mask, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
994
- sample_masks.append(mask[box[1]:box[3],box[0]:box[2],:])
995
-
996
- result = cv2.bitwise_and(src1=img, src2=mask)
997
- i = result > 0 # pixels to replace
998
- mask[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug
999
- #print(box)
1000
- sample_images.append(mask[box[1]:box[3],box[0]:box[2],:])
1001
-
1002
- return sample_labels, sample_images, sample_masks
1003
-
1004
-
1005
- def replicate(img, labels):
1006
- # Replicate labels
1007
- h, w = img.shape[:2]
1008
- boxes = labels[:, 1:].astype(int)
1009
- x1, y1, x2, y2 = boxes.T
1010
- s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
1011
- for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
1012
- x1b, y1b, x2b, y2b = boxes[i]
1013
- bh, bw = y2b - y1b, x2b - x1b
1014
- yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
1015
- x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
1016
- img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
1017
- labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
1018
-
1019
- return img, labels
1020
-
1021
-
1022
- def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
1023
- # Resize and pad image while meeting stride-multiple constraints
1024
- shape = img.shape[:2] # current shape [height, width]
1025
- if isinstance(new_shape, int):
1026
- new_shape = (new_shape, new_shape)
1027
-
1028
- # Scale ratio (new / old)
1029
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
1030
- if not scaleup: # only scale down, do not scale up (for better test mAP)
1031
- r = min(r, 1.0)
1032
-
1033
- # Compute padding
1034
- ratio = r, r # width, height ratios
1035
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
1036
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
1037
- if auto: # minimum rectangle
1038
- dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
1039
- elif scaleFill: # stretch
1040
- dw, dh = 0.0, 0.0
1041
- new_unpad = (new_shape[1], new_shape[0])
1042
- ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
1043
-
1044
- dw /= 2 # divide padding into 2 sides
1045
- dh /= 2
1046
-
1047
- if shape[::-1] != new_unpad: # resize
1048
- img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
1049
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
1050
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
1051
- img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
1052
- return img, ratio, (dw, dh)
1053
-
1054
-
1055
- def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
1056
- border=(0, 0)):
1057
- # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
1058
- # targets = [cls, xyxy]
1059
-
1060
- height = img.shape[0] + border[0] * 2 # shape(h,w,c)
1061
- width = img.shape[1] + border[1] * 2
1062
-
1063
- # Center
1064
- C = np.eye(3)
1065
- C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
1066
- C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
1067
-
1068
- # Perspective
1069
- P = np.eye(3)
1070
- P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
1071
- P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
1072
-
1073
- # Rotation and Scale
1074
- R = np.eye(3)
1075
- a = random.uniform(-degrees, degrees)
1076
- # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
1077
- s = random.uniform(1 - scale, 1.1 + scale)
1078
- # s = 2 ** random.uniform(-scale, scale)
1079
- R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
1080
-
1081
- # Shear
1082
- S = np.eye(3)
1083
- S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
1084
- S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
1085
-
1086
- # Translation
1087
- T = np.eye(3)
1088
- T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
1089
- T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
1090
-
1091
- # Combined rotation matrix
1092
- M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
1093
- if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
1094
- if perspective:
1095
- img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
1096
- else: # affine
1097
- img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
1098
-
1099
- # Visualize
1100
- # import matplotlib.pyplot as plt
1101
- # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
1102
- # ax[0].imshow(img[:, :, ::-1]) # base
1103
- # ax[1].imshow(img2[:, :, ::-1]) # warped
1104
-
1105
- # Transform label coordinates
1106
- n = len(targets)
1107
- if n:
1108
- use_segments = any(x.any() for x in segments)
1109
- new = np.zeros((n, 4))
1110
- if use_segments: # warp segments
1111
- segments = resample_segments(segments) # upsample
1112
- for i, segment in enumerate(segments):
1113
- xy = np.ones((len(segment), 3))
1114
- xy[:, :2] = segment
1115
- xy = xy @ M.T # transform
1116
- xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
1117
-
1118
- # clip
1119
- new[i] = segment2box(xy, width, height)
1120
-
1121
- else: # warp boxes
1122
- xy = np.ones((n * 4, 3))
1123
- xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
1124
- xy = xy @ M.T # transform
1125
- xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
1126
-
1127
- # create new boxes
1128
- x = xy[:, [0, 2, 4, 6]]
1129
- y = xy[:, [1, 3, 5, 7]]
1130
- new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
1131
-
1132
- # clip
1133
- new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
1134
- new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
1135
-
1136
- # filter candidates
1137
- i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
1138
- targets = targets[i]
1139
- targets[:, 1:5] = new[i]
1140
-
1141
- return img, targets
1142
-
1143
-
1144
- def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
1145
- # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
1146
- w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
1147
- w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
1148
- ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
1149
- return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
1150
-
1151
-
1152
- def bbox_ioa(box1, box2):
1153
- # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
1154
- box2 = box2.transpose()
1155
-
1156
- # Get the coordinates of bounding boxes
1157
- b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
1158
- b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
1159
-
1160
- # Intersection area
1161
- inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
1162
- (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
1163
-
1164
- # box2 area
1165
- box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
1166
-
1167
- # Intersection over box2 area
1168
- return inter_area / box2_area
1169
-
1170
-
1171
- def cutout(image, labels):
1172
- # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
1173
- h, w = image.shape[:2]
1174
-
1175
- # create random masks
1176
- scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
1177
- for s in scales:
1178
- mask_h = random.randint(1, int(h * s))
1179
- mask_w = random.randint(1, int(w * s))
1180
-
1181
- # box
1182
- xmin = max(0, random.randint(0, w) - mask_w // 2)
1183
- ymin = max(0, random.randint(0, h) - mask_h // 2)
1184
- xmax = min(w, xmin + mask_w)
1185
- ymax = min(h, ymin + mask_h)
1186
-
1187
- # apply random color mask
1188
- image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
1189
-
1190
- # return unobscured labels
1191
- if len(labels) and s > 0.03:
1192
- box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
1193
- ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
1194
- labels = labels[ioa < 0.60] # remove >60% obscured labels
1195
-
1196
- return labels
1197
-
1198
-
1199
- def pastein(image, labels, sample_labels, sample_images, sample_masks):
1200
- # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
1201
- h, w = image.shape[:2]
1202
-
1203
- # create random masks
1204
- scales = [0.75] * 2 + [0.5] * 4 + [0.25] * 4 + [0.125] * 4 + [0.0625] * 6 # image size fraction
1205
- for s in scales:
1206
- if random.random() < 0.2:
1207
- continue
1208
- mask_h = random.randint(1, int(h * s))
1209
- mask_w = random.randint(1, int(w * s))
1210
-
1211
- # box
1212
- xmin = max(0, random.randint(0, w) - mask_w // 2)
1213
- ymin = max(0, random.randint(0, h) - mask_h // 2)
1214
- xmax = min(w, xmin + mask_w)
1215
- ymax = min(h, ymin + mask_h)
1216
-
1217
- box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
1218
- if len(labels):
1219
- ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
1220
- else:
1221
- ioa = np.zeros(1)
1222
-
1223
- if (ioa < 0.30).all() and len(sample_labels) and (xmax > xmin+20) and (ymax > ymin+20): # allow 30% obscuration of existing labels
1224
- sel_ind = random.randint(0, len(sample_labels)-1)
1225
- #print(len(sample_labels))
1226
- #print(sel_ind)
1227
- #print((xmax-xmin, ymax-ymin))
1228
- #print(image[ymin:ymax, xmin:xmax].shape)
1229
- #print([[sample_labels[sel_ind], *box]])
1230
- #print(labels.shape)
1231
- hs, ws, cs = sample_images[sel_ind].shape
1232
- r_scale = min((ymax-ymin)/hs, (xmax-xmin)/ws)
1233
- r_w = int(ws*r_scale)
1234
- r_h = int(hs*r_scale)
1235
-
1236
- if (r_w > 10) and (r_h > 10):
1237
- r_mask = cv2.resize(sample_masks[sel_ind], (r_w, r_h))
1238
- r_image = cv2.resize(sample_images[sel_ind], (r_w, r_h))
1239
- temp_crop = image[ymin:ymin+r_h, xmin:xmin+r_w]
1240
- m_ind = r_mask > 0
1241
- if m_ind.astype(np.int32).sum() > 60:
1242
- temp_crop[m_ind] = r_image[m_ind]
1243
- #print(sample_labels[sel_ind])
1244
- #print(sample_images[sel_ind].shape)
1245
- #print(temp_crop.shape)
1246
- box = np.array([xmin, ymin, xmin+r_w, ymin+r_h], dtype=np.float32)
1247
- if len(labels):
1248
- labels = np.concatenate((labels, [[sample_labels[sel_ind], *box]]), 0)
1249
- else:
1250
- labels = np.array([[sample_labels[sel_ind], *box]])
1251
-
1252
- image[ymin:ymin+r_h, xmin:xmin+r_w] = temp_crop
1253
-
1254
- return labels
1255
-
1256
- class Albumentations:
1257
- # YOLOv5 Albumentations class (optional, only used if package is installed)
1258
- def __init__(self):
1259
- self.transform = None
1260
- import albumentations as A
1261
-
1262
- self.transform = A.Compose([
1263
- A.CLAHE(p=0.01),
1264
- A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.01),
1265
- A.RandomGamma(gamma_limit=[80, 120], p=0.01),
1266
- A.Blur(p=0.01),
1267
- A.MedianBlur(p=0.01),
1268
- A.ToGray(p=0.01),
1269
- A.ImageCompression(quality_lower=75, p=0.01),],
1270
- bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels']))
1271
-
1272
- #logging.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
1273
-
1274
- def __call__(self, im, labels, p=1.0):
1275
- if self.transform and random.random() < p:
1276
- new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
1277
- im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
1278
- return im, labels
1279
-
1280
-
1281
- def create_folder(path='./new'):
1282
- # Create folder
1283
- if os.path.exists(path):
1284
- shutil.rmtree(path) # delete output folder
1285
- os.makedirs(path) # make new output folder
1286
-
1287
-
1288
- def flatten_recursive(path='../coco'):
1289
- # Flatten a recursive directory by bringing all files to top level
1290
- new_path = Path(path + '_flat')
1291
- create_folder(new_path)
1292
- for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
1293
- shutil.copyfile(file, new_path / Path(file).name)
1294
-
1295
-
1296
- def extract_boxes(path='../coco/'): # from utils.datasets import *; extract_boxes('../coco128')
1297
- # Convert detection dataset into classification dataset, with one directory per class
1298
-
1299
- path = Path(path) # images dir
1300
- shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
1301
- files = list(path.rglob('*.*'))
1302
- n = len(files) # number of files
1303
- for im_file in tqdm(files, total=n):
1304
- if im_file.suffix[1:] in img_formats:
1305
- # image
1306
- im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
1307
- h, w = im.shape[:2]
1308
-
1309
- # labels
1310
- lb_file = Path(img2label_paths([str(im_file)])[0])
1311
- if Path(lb_file).exists():
1312
- with open(lb_file, 'r') as f:
1313
- lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
1314
-
1315
- for j, x in enumerate(lb):
1316
- c = int(x[0]) # class
1317
- f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
1318
- if not f.parent.is_dir():
1319
- f.parent.mkdir(parents=True)
1320
-
1321
- b = x[1:] * [w, h, w, h] # box
1322
- # b[2:] = b[2:].max() # rectangle to square
1323
- b[2:] = b[2:] * 1.2 + 3 # pad
1324
- b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
1325
-
1326
- b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
1327
- b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
1328
- assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
1329
-
1330
-
1331
- def autosplit(path='../coco', weights=(0.9, 0.1, 0.0), annotated_only=False):
1332
- """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
1333
- Usage: from utils.datasets import *; autosplit('../coco')
1334
- Arguments
1335
- path: Path to images directory
1336
- weights: Train, val, test weights (list)
1337
- annotated_only: Only use images with an annotated txt file
1338
- """
1339
- path = Path(path) # images dir
1340
- files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], []) # image files only
1341
- n = len(files) # number of files
1342
- indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
1343
-
1344
- txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
1345
- [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
1346
-
1347
- print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
1348
- for i, img in tqdm(zip(indices, files), total=n):
1349
- if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
1350
- with open(path / txt[i], 'a') as f:
1351
- f.write(str(img) + '\n') # add image to txt file
1352
-
1353
-
1354
- def load_segmentations(self, index):
1355
- key = '/work/handsomejw66/coco17/' + self.img_files[index]
1356
- #print(key)
1357
- # /work/handsomejw66/coco17/
1358
- return self.segs[key]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
license/utils/general.py DELETED
@@ -1,892 +0,0 @@
1
- # YOLOR general utils
2
-
3
- import glob
4
- import logging
5
- import math
6
- import os
7
- import platform
8
- import random
9
- import re
10
- import subprocess
11
- import time
12
- from pathlib import Path
13
-
14
- import cv2
15
- import numpy as np
16
- import pandas as pd
17
- import torch
18
- import torchvision
19
- import yaml
20
-
21
- from utils.google_utils import gsutil_getsize
22
- from utils.metrics import fitness
23
- from utils.torch_utils import init_torch_seeds
24
-
25
- # Settings
26
- torch.set_printoptions(linewidth=320, precision=5, profile='long')
27
- np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
28
- pd.options.display.max_columns = 10
29
- cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
30
- os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
31
-
32
-
33
- def set_logging(rank=-1):
34
- logging.basicConfig(
35
- format="%(message)s",
36
- level=logging.INFO if rank in [-1, 0] else logging.WARN)
37
-
38
-
39
- def init_seeds(seed=0):
40
- # Initialize random number generator (RNG) seeds
41
- random.seed(seed)
42
- np.random.seed(seed)
43
- init_torch_seeds(seed)
44
-
45
-
46
- def get_latest_run(search_dir='.'):
47
- # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
48
- last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
49
- return max(last_list, key=os.path.getctime) if last_list else ''
50
-
51
-
52
- def isdocker():
53
- # Is environment a Docker container
54
- return Path('/workspace').exists() # or Path('/.dockerenv').exists()
55
-
56
-
57
- def emojis(str=''):
58
- # Return platform-dependent emoji-safe version of string
59
- return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
60
-
61
-
62
- def check_online():
63
- # Check internet connectivity
64
- import socket
65
- try:
66
- socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
67
- return True
68
- except OSError:
69
- return False
70
-
71
-
72
- def check_git_status():
73
- # Recommend 'git pull' if code is out of date
74
- print(colorstr('github: '), end='')
75
- try:
76
- assert Path('.git').exists(), 'skipping check (not a git repository)'
77
- assert not isdocker(), 'skipping check (Docker image)'
78
- assert check_online(), 'skipping check (offline)'
79
-
80
- cmd = 'git fetch && git config --get remote.origin.url'
81
- url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
82
- branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
83
- n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
84
- if n > 0:
85
- s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
86
- f"Use 'git pull' to update or 'git clone {url}' to download latest."
87
- else:
88
- s = f'up to date with {url} ✅'
89
- print(emojis(s)) # emoji-safe
90
- except Exception as e:
91
- print(e)
92
-
93
-
94
- def check_requirements(requirements='requirements.txt', exclude=()):
95
- # Check installed dependencies meet requirements (pass *.txt file or list of packages)
96
- import pkg_resources as pkg
97
- prefix = colorstr('red', 'bold', 'requirements:')
98
- if isinstance(requirements, (str, Path)): # requirements.txt file
99
- file = Path(requirements)
100
- if not file.exists():
101
- print(f"{prefix} {file.resolve()} not found, check failed.")
102
- return
103
- requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
104
- else: # list or tuple of packages
105
- requirements = [x for x in requirements if x not in exclude]
106
-
107
- n = 0 # number of packages updates
108
- for r in requirements:
109
- try:
110
- pkg.require(r)
111
- except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
112
- n += 1
113
- print(f"{prefix} {e.req} not found and is required by YOLOR, attempting auto-update...")
114
- print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode())
115
-
116
- if n: # if packages updated
117
- source = file.resolve() if 'file' in locals() else requirements
118
- s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
119
- f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
120
- print(emojis(s)) # emoji-safe
121
-
122
-
123
- def check_img_size(img_size, s=32):
124
- # Verify img_size is a multiple of stride s
125
- new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
126
- if new_size != img_size:
127
- print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
128
- return new_size
129
-
130
-
131
- def check_imshow():
132
- # Check if environment supports image displays
133
- try:
134
- assert not isdocker(), 'cv2.imshow() is disabled in Docker environments'
135
- cv2.imshow('test', np.zeros((1, 1, 3)))
136
- cv2.waitKey(1)
137
- cv2.destroyAllWindows()
138
- cv2.waitKey(1)
139
- return True
140
- except Exception as e:
141
- print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
142
- return False
143
-
144
-
145
- def check_file(file):
146
- # Search for file if not found
147
- if Path(file).is_file() or file == '':
148
- return file
149
- else:
150
- files = glob.glob('./**/' + file, recursive=True) # find file
151
- assert len(files), f'File Not Found: {file}' # assert file was found
152
- assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
153
- return files[0] # return file
154
-
155
-
156
- def check_dataset(dict):
157
- # Download dataset if not found locally
158
- val, s = dict.get('val'), dict.get('download')
159
- if val and len(val):
160
- val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
161
- if not all(x.exists() for x in val):
162
- print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
163
- if s and len(s): # download script
164
- print('Downloading %s ...' % s)
165
- if s.startswith('http') and s.endswith('.zip'): # URL
166
- f = Path(s).name # filename
167
- torch.hub.download_url_to_file(s, f)
168
- r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
169
- else: # bash script
170
- r = os.system(s)
171
- print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
172
- else:
173
- raise Exception('Dataset not found.')
174
-
175
-
176
- def make_divisible(x, divisor):
177
- # Returns x evenly divisible by divisor
178
- return math.ceil(x / divisor) * divisor
179
-
180
-
181
- def clean_str(s):
182
- # Cleans a string by replacing special characters with underscore _
183
- return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
184
-
185
-
186
- def one_cycle(y1=0.0, y2=1.0, steps=100):
187
- # lambda function for sinusoidal ramp from y1 to y2
188
- return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
189
-
190
-
191
- def colorstr(*input):
192
- # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
193
- *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
194
- colors = {'black': '\033[30m', # basic colors
195
- 'red': '\033[31m',
196
- 'green': '\033[32m',
197
- 'yellow': '\033[33m',
198
- 'blue': '\033[34m',
199
- 'magenta': '\033[35m',
200
- 'cyan': '\033[36m',
201
- 'white': '\033[37m',
202
- 'bright_black': '\033[90m', # bright colors
203
- 'bright_red': '\033[91m',
204
- 'bright_green': '\033[92m',
205
- 'bright_yellow': '\033[93m',
206
- 'bright_blue': '\033[94m',
207
- 'bright_magenta': '\033[95m',
208
- 'bright_cyan': '\033[96m',
209
- 'bright_white': '\033[97m',
210
- 'end': '\033[0m', # misc
211
- 'bold': '\033[1m',
212
- 'underline': '\033[4m'}
213
- return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
214
-
215
-
216
- def labels_to_class_weights(labels, nc=80):
217
- # Get class weights (inverse frequency) from training labels
218
- if labels[0] is None: # no labels loaded
219
- return torch.Tensor()
220
-
221
- labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
222
- classes = labels[:, 0].astype(np.int32) # labels = [class xywh]
223
- weights = np.bincount(classes, minlength=nc) # occurrences per class
224
-
225
- # Prepend gridpoint count (for uCE training)
226
- # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
227
- # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
228
-
229
- weights[weights == 0] = 1 # replace empty bins with 1
230
- weights = 1 / weights # number of targets per class
231
- weights /= weights.sum() # normalize
232
- return torch.from_numpy(weights)
233
-
234
-
235
- def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
236
- # Produces image weights based on class_weights and image contents
237
- class_counts = np.array([np.bincount(x[:, 0].astype(np.int32), minlength=nc) for x in labels])
238
- image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
239
- # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
240
- return image_weights
241
-
242
-
243
- def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
244
- # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
245
- # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
246
- # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
247
- # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
248
- # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
249
- x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
250
- 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
251
- 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
252
- return x
253
-
254
-
255
- def xyxy2xywh(x):
256
- # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
257
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
258
- y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
259
- y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
260
- y[:, 2] = x[:, 2] - x[:, 0] # width
261
- y[:, 3] = x[:, 3] - x[:, 1] # height
262
- return y
263
-
264
-
265
- def xywh2xyxy(x):
266
- # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
267
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
268
- y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
269
- y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
270
- y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
271
- y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
272
- return y
273
-
274
-
275
- def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
276
- # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
277
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
278
- y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
279
- y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
280
- y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
281
- y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
282
- return y
283
-
284
-
285
- def xyn2xy(x, w=640, h=640, padw=0, padh=0):
286
- # Convert normalized segments into pixel segments, shape (n,2)
287
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
288
- y[:, 0] = w * x[:, 0] + padw # top left x
289
- y[:, 1] = h * x[:, 1] + padh # top left y
290
- return y
291
-
292
-
293
- def segment2box(segment, width=640, height=640):
294
- # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
295
- x, y = segment.T # segment xy
296
- inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
297
- x, y, = x[inside], y[inside]
298
- return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
299
-
300
-
301
- def segments2boxes(segments):
302
- # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
303
- boxes = []
304
- for s in segments:
305
- x, y = s.T # segment xy
306
- boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
307
- return xyxy2xywh(np.array(boxes)) # cls, xywh
308
-
309
-
310
- def resample_segments(segments, n=1000):
311
- # Up-sample an (n,2) segment
312
- for i, s in enumerate(segments):
313
- s = np.concatenate((s, s[0:1, :]), axis=0)
314
- x = np.linspace(0, len(s) - 1, n)
315
- xp = np.arange(len(s))
316
- segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
317
- return segments
318
-
319
-
320
- def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
321
- # Rescale coords (xyxy) from img1_shape to img0_shape
322
- if ratio_pad is None: # calculate from img0_shape
323
- gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
324
- pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
325
- else:
326
- gain = ratio_pad[0][0]
327
- pad = ratio_pad[1]
328
-
329
- coords[:, [0, 2]] -= pad[0] # x padding
330
- coords[:, [1, 3]] -= pad[1] # y padding
331
- coords[:, :4] /= gain
332
- clip_coords(coords, img0_shape)
333
- return coords
334
-
335
-
336
- def clip_coords(boxes, img_shape):
337
- # Clip bounding xyxy bounding boxes to image shape (height, width)
338
- boxes[:, 0].clamp_(0, img_shape[1]) # x1
339
- boxes[:, 1].clamp_(0, img_shape[0]) # y1
340
- boxes[:, 2].clamp_(0, img_shape[1]) # x2
341
- boxes[:, 3].clamp_(0, img_shape[0]) # y2
342
-
343
-
344
- def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
345
- # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
346
- box2 = box2.T
347
-
348
- # Get the coordinates of bounding boxes
349
- if x1y1x2y2: # x1, y1, x2, y2 = box1
350
- b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
351
- b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
352
- else: # transform from xywh to xyxy
353
- b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
354
- b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
355
- b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
356
- b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
357
-
358
- # Intersection area
359
- inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
360
- (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
361
-
362
- # Union Area
363
- w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
364
- w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
365
- union = w1 * h1 + w2 * h2 - inter + eps
366
-
367
- iou = inter / union
368
-
369
- if GIoU or DIoU or CIoU:
370
- cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
371
- ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
372
- if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
373
- c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
374
- rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
375
- (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
376
- if DIoU:
377
- return iou - rho2 / c2 # DIoU
378
- elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
379
- v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2)
380
- with torch.no_grad():
381
- alpha = v / (v - iou + (1 + eps))
382
- return iou - (rho2 / c2 + v * alpha) # CIoU
383
- else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
384
- c_area = cw * ch + eps # convex area
385
- return iou - (c_area - union) / c_area # GIoU
386
- else:
387
- return iou # IoU
388
-
389
-
390
-
391
-
392
- def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=2, eps=1e-9):
393
- # Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4
394
- box2 = box2.T
395
-
396
- # Get the coordinates of bounding boxes
397
- if x1y1x2y2: # x1, y1, x2, y2 = box1
398
- b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
399
- b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
400
- else: # transform from xywh to xyxy
401
- b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
402
- b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
403
- b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
404
- b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
405
-
406
- # Intersection area
407
- inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
408
- (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
409
-
410
- # Union Area
411
- w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
412
- w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
413
- union = w1 * h1 + w2 * h2 - inter + eps
414
-
415
- # change iou into pow(iou+eps)
416
- # iou = inter / union
417
- iou = torch.pow(inter/union + eps, alpha)
418
- # beta = 2 * alpha
419
- if GIoU or DIoU or CIoU:
420
- cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
421
- ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
422
- if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
423
- c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal
424
- rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
425
- rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
426
- rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha # center distance
427
- if DIoU:
428
- return iou - rho2 / c2 # DIoU
429
- elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
430
- v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
431
- with torch.no_grad():
432
- alpha_ciou = v / ((1 + eps) - inter / union + v)
433
- # return iou - (rho2 / c2 + v * alpha_ciou) # CIoU
434
- return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU
435
- else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
436
- # c_area = cw * ch + eps # convex area
437
- # return iou - (c_area - union) / c_area # GIoU
438
- c_area = torch.max(cw * ch + eps, union) # convex area
439
- return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU
440
- else:
441
- return iou # torch.log(iou+eps) or iou
442
-
443
-
444
- def box_iou(box1, box2):
445
- # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
446
- """
447
- Return intersection-over-union (Jaccard index) of boxes.
448
- Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
449
- Arguments:
450
- box1 (Tensor[N, 4])
451
- box2 (Tensor[M, 4])
452
- Returns:
453
- iou (Tensor[N, M]): the NxM matrix containing the pairwise
454
- IoU values for every element in boxes1 and boxes2
455
- """
456
-
457
- def box_area(box):
458
- # box = 4xn
459
- return (box[2] - box[0]) * (box[3] - box[1])
460
-
461
- area1 = box_area(box1.T)
462
- area2 = box_area(box2.T)
463
-
464
- # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
465
- inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
466
- return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
467
-
468
-
469
- def wh_iou(wh1, wh2):
470
- # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
471
- wh1 = wh1[:, None] # [N,1,2]
472
- wh2 = wh2[None] # [1,M,2]
473
- inter = torch.min(wh1, wh2).prod(2) # [N,M]
474
- return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
475
-
476
-
477
- def box_giou(box1, box2):
478
- """
479
- Return generalized intersection-over-union (Jaccard index) between two sets of boxes.
480
- Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
481
- ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
482
- Args:
483
- boxes1 (Tensor[N, 4]): first set of boxes
484
- boxes2 (Tensor[M, 4]): second set of boxes
485
- Returns:
486
- Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values
487
- for every element in boxes1 and boxes2
488
- """
489
-
490
- def box_area(box):
491
- # box = 4xn
492
- return (box[2] - box[0]) * (box[3] - box[1])
493
-
494
- area1 = box_area(box1.T)
495
- area2 = box_area(box2.T)
496
-
497
- inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
498
- union = (area1[:, None] + area2 - inter)
499
-
500
- iou = inter / union
501
-
502
- lti = torch.min(box1[:, None, :2], box2[:, :2])
503
- rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
504
-
505
- whi = (rbi - lti).clamp(min=0) # [N,M,2]
506
- areai = whi[:, :, 0] * whi[:, :, 1]
507
-
508
- return iou - (areai - union) / areai
509
-
510
-
511
- def box_ciou(box1, box2, eps: float = 1e-7):
512
- """
513
- Return complete intersection-over-union (Jaccard index) between two sets of boxes.
514
- Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
515
- ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
516
- Args:
517
- boxes1 (Tensor[N, 4]): first set of boxes
518
- boxes2 (Tensor[M, 4]): second set of boxes
519
- eps (float, optional): small number to prevent division by zero. Default: 1e-7
520
- Returns:
521
- Tensor[N, M]: the NxM matrix containing the pairwise complete IoU values
522
- for every element in boxes1 and boxes2
523
- """
524
-
525
- def box_area(box):
526
- # box = 4xn
527
- return (box[2] - box[0]) * (box[3] - box[1])
528
-
529
- area1 = box_area(box1.T)
530
- area2 = box_area(box2.T)
531
-
532
- inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
533
- union = (area1[:, None] + area2 - inter)
534
-
535
- iou = inter / union
536
-
537
- lti = torch.min(box1[:, None, :2], box2[:, :2])
538
- rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
539
-
540
- whi = (rbi - lti).clamp(min=0) # [N,M,2]
541
- diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
542
-
543
- # centers of boxes
544
- x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
545
- y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
546
- x_g = (box2[:, 0] + box2[:, 2]) / 2
547
- y_g = (box2[:, 1] + box2[:, 3]) / 2
548
- # The distance between boxes' centers squared.
549
- centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
550
-
551
- w_pred = box1[:, None, 2] - box1[:, None, 0]
552
- h_pred = box1[:, None, 3] - box1[:, None, 1]
553
-
554
- w_gt = box2[:, 2] - box2[:, 0]
555
- h_gt = box2[:, 3] - box2[:, 1]
556
-
557
- v = (4 / (torch.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2)
558
- with torch.no_grad():
559
- alpha = v / (1 - iou + v + eps)
560
- return iou - (centers_distance_squared / diagonal_distance_squared) - alpha * v
561
-
562
-
563
- def box_diou(box1, box2, eps: float = 1e-7):
564
- """
565
- Return distance intersection-over-union (Jaccard index) between two sets of boxes.
566
- Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
567
- ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
568
- Args:
569
- boxes1 (Tensor[N, 4]): first set of boxes
570
- boxes2 (Tensor[M, 4]): second set of boxes
571
- eps (float, optional): small number to prevent division by zero. Default: 1e-7
572
- Returns:
573
- Tensor[N, M]: the NxM matrix containing the pairwise distance IoU values
574
- for every element in boxes1 and boxes2
575
- """
576
-
577
- def box_area(box):
578
- # box = 4xn
579
- return (box[2] - box[0]) * (box[3] - box[1])
580
-
581
- area1 = box_area(box1.T)
582
- area2 = box_area(box2.T)
583
-
584
- inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
585
- union = (area1[:, None] + area2 - inter)
586
-
587
- iou = inter / union
588
-
589
- lti = torch.min(box1[:, None, :2], box2[:, :2])
590
- rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
591
-
592
- whi = (rbi - lti).clamp(min=0) # [N,M,2]
593
- diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
594
-
595
- # centers of boxes
596
- x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
597
- y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
598
- x_g = (box2[:, 0] + box2[:, 2]) / 2
599
- y_g = (box2[:, 1] + box2[:, 3]) / 2
600
- # The distance between boxes' centers squared.
601
- centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
602
-
603
- # The distance IoU is the IoU penalized by a normalized
604
- # distance between boxes' centers squared.
605
- return iou - (centers_distance_squared / diagonal_distance_squared)
606
-
607
-
608
- def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
609
- labels=()):
610
- """Runs Non-Maximum Suppression (NMS) on inference results
611
-
612
- Returns:
613
- list of detections, on (n,6) tensor per image [xyxy, conf, cls]
614
- """
615
-
616
- nc = prediction.shape[2] - 5 # number of classes
617
- xc = prediction[..., 4] > conf_thres # candidates
618
-
619
- # Settings
620
- min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
621
- max_det = 300 # maximum number of detections per image
622
- max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
623
- time_limit = 10.0 # seconds to quit after
624
- redundant = True # require redundant detections
625
- multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
626
- merge = False # use merge-NMS
627
-
628
- t = time.time()
629
- output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
630
- for xi, x in enumerate(prediction): # image index, image inference
631
- # Apply constraints
632
- # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
633
- x = x[xc[xi]] # confidence
634
-
635
- # Cat apriori labels if autolabelling
636
- if labels and len(labels[xi]):
637
- l = labels[xi]
638
- v = torch.zeros((len(l), nc + 5), device=x.device)
639
- v[:, :4] = l[:, 1:5] # box
640
- v[:, 4] = 1.0 # conf
641
- v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
642
- x = torch.cat((x, v), 0)
643
-
644
- # If none remain process next image
645
- if not x.shape[0]:
646
- continue
647
-
648
- # Compute conf
649
- if nc == 1:
650
- x[:, 5:] = x[:, 4:5] # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
651
- # so there is no need to multiplicate.
652
- else:
653
- x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
654
-
655
- # Box (center x, center y, width, height) to (x1, y1, x2, y2)
656
- box = xywh2xyxy(x[:, :4])
657
-
658
- # Detections matrix nx6 (xyxy, conf, cls)
659
- if multi_label:
660
- i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
661
- x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
662
- else: # best class only
663
- conf, j = x[:, 5:].max(1, keepdim=True)
664
- x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
665
-
666
- # Filter by class
667
- if classes is not None:
668
- x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
669
-
670
- # Apply finite constraint
671
- # if not torch.isfinite(x).all():
672
- # x = x[torch.isfinite(x).all(1)]
673
-
674
- # Check shape
675
- n = x.shape[0] # number of boxes
676
- if not n: # no boxes
677
- continue
678
- elif n > max_nms: # excess boxes
679
- x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
680
-
681
- # Batched NMS
682
- c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
683
- boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
684
- i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
685
- if i.shape[0] > max_det: # limit detections
686
- i = i[:max_det]
687
- if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
688
- # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
689
- iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
690
- weights = iou * scores[None] # box weights
691
- x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
692
- if redundant:
693
- i = i[iou.sum(1) > 1] # require redundancy
694
-
695
- output[xi] = x[i]
696
- if (time.time() - t) > time_limit:
697
- print(f'WARNING: NMS time limit {time_limit}s exceeded')
698
- break # time limit exceeded
699
-
700
- return output
701
-
702
-
703
- def non_max_suppression_kpt(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
704
- labels=(), kpt_label=False, nc=None, nkpt=None):
705
- """Runs Non-Maximum Suppression (NMS) on inference results
706
-
707
- Returns:
708
- list of detections, on (n,6) tensor per image [xyxy, conf, cls]
709
- """
710
- if nc is None:
711
- nc = prediction.shape[2] - 5 if not kpt_label else prediction.shape[2] - 56 # number of classes
712
- xc = prediction[..., 4] > conf_thres # candidates
713
-
714
- # Settings
715
- min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
716
- max_det = 300 # maximum number of detections per image
717
- max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
718
- time_limit = 10.0 # seconds to quit after
719
- redundant = True # require redundant detections
720
- multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
721
- merge = False # use merge-NMS
722
-
723
- t = time.time()
724
- output = [torch.zeros((0,6), device=prediction.device)] * prediction.shape[0]
725
- for xi, x in enumerate(prediction): # image index, image inference
726
- # Apply constraints
727
- # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
728
- x = x[xc[xi]] # confidence
729
-
730
- # Cat apriori labels if autolabelling
731
- if labels and len(labels[xi]):
732
- l = labels[xi]
733
- v = torch.zeros((len(l), nc + 5), device=x.device)
734
- v[:, :4] = l[:, 1:5] # box
735
- v[:, 4] = 1.0 # conf
736
- v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
737
- x = torch.cat((x, v), 0)
738
-
739
- # If none remain process next image
740
- if not x.shape[0]:
741
- continue
742
-
743
- # Compute conf
744
- x[:, 5:5+nc] *= x[:, 4:5] # conf = obj_conf * cls_conf
745
-
746
- # Box (center x, center y, width, height) to (x1, y1, x2, y2)
747
- box = xywh2xyxy(x[:, :4])
748
-
749
- # Detections matrix nx6 (xyxy, conf, cls)
750
- if multi_label:
751
- i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
752
- x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
753
- else: # best class only
754
- if not kpt_label:
755
- conf, j = x[:, 5:].max(1, keepdim=True)
756
- x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
757
- else:
758
- kpts = x[:, 6:]
759
- conf, j = x[:, 5:6].max(1, keepdim=True)
760
- x = torch.cat((box, conf, j.float(), kpts), 1)[conf.view(-1) > conf_thres]
761
-
762
-
763
- # Filter by class
764
- if classes is not None:
765
- x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
766
-
767
- # Apply finite constraint
768
- # if not torch.isfinite(x).all():
769
- # x = x[torch.isfinite(x).all(1)]
770
-
771
- # Check shape
772
- n = x.shape[0] # number of boxes
773
- if not n: # no boxes
774
- continue
775
- elif n > max_nms: # excess boxes
776
- x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
777
-
778
- # Batched NMS
779
- c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
780
- boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
781
- i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
782
- if i.shape[0] > max_det: # limit detections
783
- i = i[:max_det]
784
- if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
785
- # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
786
- iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
787
- weights = iou * scores[None] # box weights
788
- x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
789
- if redundant:
790
- i = i[iou.sum(1) > 1] # require redundancy
791
-
792
- output[xi] = x[i]
793
- if (time.time() - t) > time_limit:
794
- print(f'WARNING: NMS time limit {time_limit}s exceeded')
795
- break # time limit exceeded
796
-
797
- return output
798
-
799
-
800
- def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
801
- # Strip optimizer from 'f' to finalize training, optionally save as 's'
802
- x = torch.load(f, map_location=torch.device('cpu'))
803
- if x.get('ema'):
804
- x['model'] = x['ema'] # replace model with ema
805
- for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
806
- x[k] = None
807
- x['epoch'] = -1
808
- x['model'].half() # to FP16
809
- for p in x['model'].parameters():
810
- p.requires_grad = False
811
- torch.save(x, s or f)
812
- mb = os.path.getsize(s or f) / 1E6 # filesize
813
- print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
814
-
815
-
816
- def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
817
- # Print mutation results to evolve.txt (for use with train.py --evolve)
818
- a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
819
- b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
820
- c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
821
- print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
822
-
823
- if bucket:
824
- url = 'gs://%s/evolve.txt' % bucket
825
- if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
826
- os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
827
-
828
- with open('evolve.txt', 'a') as f: # append result
829
- f.write(c + b + '\n')
830
- x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
831
- x = x[np.argsort(-fitness(x))] # sort
832
- np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
833
-
834
- # Save yaml
835
- for i, k in enumerate(hyp.keys()):
836
- hyp[k] = float(x[0, i + 7])
837
- with open(yaml_file, 'w') as f:
838
- results = tuple(x[0, :7])
839
- c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
840
- f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
841
- yaml.dump(hyp, f, sort_keys=False)
842
-
843
- if bucket:
844
- os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
845
-
846
-
847
- def apply_classifier(x, model, img, im0):
848
- # applies a second stage classifier to yolo outputs
849
- im0 = [im0] if isinstance(im0, np.ndarray) else im0
850
- for i, d in enumerate(x): # per image
851
- if d is not None and len(d):
852
- d = d.clone()
853
-
854
- # Reshape and pad cutouts
855
- b = xyxy2xywh(d[:, :4]) # boxes
856
- b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
857
- b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
858
- d[:, :4] = xywh2xyxy(b).long()
859
-
860
- # Rescale boxes from img_size to im0 size
861
- scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
862
-
863
- # Classes
864
- pred_cls1 = d[:, 5].long()
865
- ims = []
866
- for j, a in enumerate(d): # per item
867
- cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
868
- im = cv2.resize(cutout, (224, 224)) # BGR
869
- # cv2.imwrite('test%i.jpg' % j, cutout)
870
-
871
- im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
872
- im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
873
- im /= 255.0 # 0 - 255 to 0.0 - 1.0
874
- ims.append(im)
875
-
876
- pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
877
- x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
878
-
879
- return x
880
-
881
-
882
- def increment_path(path, exist_ok=True, sep=''):
883
- # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
884
- path = Path(path) # os-agnostic
885
- if (path.exists() and exist_ok) or (not path.exists()):
886
- return str(path)
887
- else:
888
- dirs = glob.glob(f"{path}{sep}*") # similar paths
889
- matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
890
- i = [int(m.groups()[0]) for m in matches if m] # indices
891
- n = max(i) + 1 if i else 2 # increment number
892
- return f"{path}{sep}{n}" # update path
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
license/utils/google_utils.py DELETED
@@ -1,123 +0,0 @@
1
- # Google utils: https://cloud.google.com/storage/docs/reference/libraries
2
-
3
- import os
4
- import platform
5
- import subprocess
6
- import time
7
- from pathlib import Path
8
-
9
- import requests
10
- import torch
11
-
12
-
13
- def gsutil_getsize(url=''):
14
- # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
15
- s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
16
- return eval(s.split(' ')[0]) if len(s) else 0 # bytes
17
-
18
-
19
- def attempt_download(file, repo='WongKinYiu/yolov7'):
20
- # Attempt file download if does not exist
21
- file = Path(str(file).strip().replace("'", '').lower())
22
-
23
- if not file.exists():
24
- try:
25
- response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
26
- assets = [x['name'] for x in response['assets']] # release assets
27
- tag = response['tag_name'] # i.e. 'v1.0'
28
- except: # fallback plan
29
- assets = ['yolov7.pt', 'yolov7-tiny.pt', 'yolov7x.pt', 'yolov7-d6.pt', 'yolov7-e6.pt',
30
- 'yolov7-e6e.pt', 'yolov7-w6.pt']
31
- tag = subprocess.check_output('git tag', shell=True).decode().split()[-1]
32
-
33
- name = file.name
34
- if name in assets:
35
- msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
36
- redundant = False # second download option
37
- try: # GitHub
38
- url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
39
- print(f'Downloading {url} to {file}...')
40
- torch.hub.download_url_to_file(url, file)
41
- assert file.exists() and file.stat().st_size > 1E6 # check
42
- except Exception as e: # GCP
43
- print(f'Download error: {e}')
44
- assert redundant, 'No secondary mirror'
45
- url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
46
- print(f'Downloading {url} to {file}...')
47
- os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
48
- finally:
49
- if not file.exists() or file.stat().st_size < 1E6: # check
50
- file.unlink(missing_ok=True) # remove partial downloads
51
- print(f'ERROR: Download failure: {msg}')
52
- print('')
53
- return
54
-
55
-
56
- def gdrive_download(id='', file='tmp.zip'):
57
- # Downloads a file from Google Drive. from yolov7.utils.google_utils import *; gdrive_download()
58
- t = time.time()
59
- file = Path(file)
60
- cookie = Path('cookie') # gdrive cookie
61
- print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
62
- file.unlink(missing_ok=True) # remove existing file
63
- cookie.unlink(missing_ok=True) # remove existing cookie
64
-
65
- # Attempt file download
66
- out = "NUL" if platform.system() == "Windows" else "/dev/null"
67
- os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
68
- if os.path.exists('cookie'): # large file
69
- s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
70
- else: # small file
71
- s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
72
- r = os.system(s) # execute, capture return
73
- cookie.unlink(missing_ok=True) # remove existing cookie
74
-
75
- # Error check
76
- if r != 0:
77
- file.unlink(missing_ok=True) # remove partial
78
- print('Download error ') # raise Exception('Download error')
79
- return r
80
-
81
- # Unzip if archive
82
- if file.suffix == '.zip':
83
- print('unzipping... ', end='')
84
- os.system(f'unzip -q {file}') # unzip
85
- file.unlink() # remove zip to free space
86
-
87
- print(f'Done ({time.time() - t:.1f}s)')
88
- return r
89
-
90
-
91
- def get_token(cookie="./cookie"):
92
- with open(cookie) as f:
93
- for line in f:
94
- if "download" in line:
95
- return line.split()[-1]
96
- return ""
97
-
98
- # def upload_blob(bucket_name, source_file_name, destination_blob_name):
99
- # # Uploads a file to a bucket
100
- # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
101
- #
102
- # storage_client = storage.Client()
103
- # bucket = storage_client.get_bucket(bucket_name)
104
- # blob = bucket.blob(destination_blob_name)
105
- #
106
- # blob.upload_from_filename(source_file_name)
107
- #
108
- # print('File {} uploaded to {}.'.format(
109
- # source_file_name,
110
- # destination_blob_name))
111
- #
112
- #
113
- # def download_blob(bucket_name, source_blob_name, destination_file_name):
114
- # # Uploads a blob from a bucket
115
- # storage_client = storage.Client()
116
- # bucket = storage_client.get_bucket(bucket_name)
117
- # blob = bucket.blob(source_blob_name)
118
- #
119
- # blob.download_to_filename(destination_file_name)
120
- #
121
- # print('Blob {} downloaded to {}.'.format(
122
- # source_blob_name,
123
- # destination_file_name))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
license/utils/loss.py DELETED
@@ -1,1697 +0,0 @@
1
- # Loss functions
2
-
3
- import torch
4
- import torch.nn as nn
5
- import torch.nn.functional as F
6
-
7
- from utils.general import bbox_iou, bbox_alpha_iou, box_iou, box_giou, box_diou, box_ciou, xywh2xyxy
8
- from utils.torch_utils import is_parallel
9
-
10
-
11
- def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
12
- # return positive, negative label smoothing BCE targets
13
- return 1.0 - 0.5 * eps, 0.5 * eps
14
-
15
-
16
- class BCEBlurWithLogitsLoss(nn.Module):
17
- # BCEwithLogitLoss() with reduced missing label effects.
18
- def __init__(self, alpha=0.05):
19
- super(BCEBlurWithLogitsLoss, self).__init__()
20
- self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
21
- self.alpha = alpha
22
-
23
- def forward(self, pred, true):
24
- loss = self.loss_fcn(pred, true)
25
- pred = torch.sigmoid(pred) # prob from logits
26
- dx = pred - true # reduce only missing label effects
27
- # dx = (pred - true).abs() # reduce missing label and false label effects
28
- alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
29
- loss *= alpha_factor
30
- return loss.mean()
31
-
32
-
33
- class SigmoidBin(nn.Module):
34
- stride = None # strides computed during build
35
- export = False # onnx export
36
-
37
- def __init__(self, bin_count=10, min=0.0, max=1.0, reg_scale = 2.0, use_loss_regression=True, use_fw_regression=True, BCE_weight=1.0, smooth_eps=0.0):
38
- super(SigmoidBin, self).__init__()
39
-
40
- self.bin_count = bin_count
41
- self.length = bin_count + 1
42
- self.min = min
43
- self.max = max
44
- self.scale = float(max - min)
45
- self.shift = self.scale / 2.0
46
-
47
- self.use_loss_regression = use_loss_regression
48
- self.use_fw_regression = use_fw_regression
49
- self.reg_scale = reg_scale
50
- self.BCE_weight = BCE_weight
51
-
52
- start = min + (self.scale/2.0) / self.bin_count
53
- end = max - (self.scale/2.0) / self.bin_count
54
- step = self.scale / self.bin_count
55
- self.step = step
56
- #print(f" start = {start}, end = {end}, step = {step} ")
57
-
58
- bins = torch.range(start, end + 0.0001, step).float()
59
- self.register_buffer('bins', bins)
60
-
61
-
62
- self.cp = 1.0 - 0.5 * smooth_eps
63
- self.cn = 0.5 * smooth_eps
64
-
65
- self.BCEbins = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([BCE_weight]))
66
- self.MSELoss = nn.MSELoss()
67
-
68
- def get_length(self):
69
- return self.length
70
-
71
- def forward(self, pred):
72
- assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length)
73
-
74
- pred_reg = (pred[..., 0] * self.reg_scale - self.reg_scale/2.0) * self.step
75
- pred_bin = pred[..., 1:(1+self.bin_count)]
76
-
77
- _, bin_idx = torch.max(pred_bin, dim=-1)
78
- bin_bias = self.bins[bin_idx]
79
-
80
- if self.use_fw_regression:
81
- result = pred_reg + bin_bias
82
- else:
83
- result = bin_bias
84
- result = result.clamp(min=self.min, max=self.max)
85
-
86
- return result
87
-
88
-
89
- def training_loss(self, pred, target):
90
- assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length)
91
- assert pred.shape[0] == target.shape[0], 'pred.shape=%d is not equal to the target.shape=%d' % (pred.shape[0], target.shape[0])
92
- device = pred.device
93
-
94
- pred_reg = (pred[..., 0].sigmoid() * self.reg_scale - self.reg_scale/2.0) * self.step
95
- pred_bin = pred[..., 1:(1+self.bin_count)]
96
-
97
- diff_bin_target = torch.abs(target[..., None] - self.bins)
98
- _, bin_idx = torch.min(diff_bin_target, dim=-1)
99
-
100
- bin_bias = self.bins[bin_idx]
101
- bin_bias.requires_grad = False
102
- result = pred_reg + bin_bias
103
-
104
- target_bins = torch.full_like(pred_bin, self.cn, device=device) # targets
105
- n = pred.shape[0]
106
- target_bins[range(n), bin_idx] = self.cp
107
-
108
- loss_bin = self.BCEbins(pred_bin, target_bins) # BCE
109
-
110
- if self.use_loss_regression:
111
- loss_regression = self.MSELoss(result, target) # MSE
112
- loss = loss_bin + loss_regression
113
- else:
114
- loss = loss_bin
115
-
116
- out_result = result.clamp(min=self.min, max=self.max)
117
-
118
- return loss, out_result
119
-
120
-
121
- class FocalLoss(nn.Module):
122
- # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
123
- def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
124
- super(FocalLoss, self).__init__()
125
- self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
126
- self.gamma = gamma
127
- self.alpha = alpha
128
- self.reduction = loss_fcn.reduction
129
- self.loss_fcn.reduction = 'none' # required to apply FL to each element
130
-
131
- def forward(self, pred, true):
132
- loss = self.loss_fcn(pred, true)
133
- # p_t = torch.exp(-loss)
134
- # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
135
-
136
- # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
137
- pred_prob = torch.sigmoid(pred) # prob from logits
138
- p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
139
- alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
140
- modulating_factor = (1.0 - p_t) ** self.gamma
141
- loss *= alpha_factor * modulating_factor
142
-
143
- if self.reduction == 'mean':
144
- return loss.mean()
145
- elif self.reduction == 'sum':
146
- return loss.sum()
147
- else: # 'none'
148
- return loss
149
-
150
-
151
- class QFocalLoss(nn.Module):
152
- # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
153
- def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
154
- super(QFocalLoss, self).__init__()
155
- self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
156
- self.gamma = gamma
157
- self.alpha = alpha
158
- self.reduction = loss_fcn.reduction
159
- self.loss_fcn.reduction = 'none' # required to apply FL to each element
160
-
161
- def forward(self, pred, true):
162
- loss = self.loss_fcn(pred, true)
163
-
164
- pred_prob = torch.sigmoid(pred) # prob from logits
165
- alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
166
- modulating_factor = torch.abs(true - pred_prob) ** self.gamma
167
- loss *= alpha_factor * modulating_factor
168
-
169
- if self.reduction == 'mean':
170
- return loss.mean()
171
- elif self.reduction == 'sum':
172
- return loss.sum()
173
- else: # 'none'
174
- return loss
175
-
176
- class RankSort(torch.autograd.Function):
177
- @staticmethod
178
- def forward(ctx, logits, targets, delta_RS=0.50, eps=1e-10):
179
-
180
- classification_grads=torch.zeros(logits.shape).cuda()
181
-
182
- #Filter fg logits
183
- fg_labels = (targets > 0.)
184
- fg_logits = logits[fg_labels]
185
- fg_targets = targets[fg_labels]
186
- fg_num = len(fg_logits)
187
-
188
- #Do not use bg with scores less than minimum fg logit
189
- #since changing its score does not have an effect on precision
190
- threshold_logit = torch.min(fg_logits)-delta_RS
191
- relevant_bg_labels=((targets==0) & (logits>=threshold_logit))
192
-
193
- relevant_bg_logits = logits[relevant_bg_labels]
194
- relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
195
- sorting_error=torch.zeros(fg_num).cuda()
196
- ranking_error=torch.zeros(fg_num).cuda()
197
- fg_grad=torch.zeros(fg_num).cuda()
198
-
199
- #sort the fg logits
200
- order=torch.argsort(fg_logits)
201
- #Loops over each positive following the order
202
- for ii in order:
203
- # Difference Transforms (x_ij)
204
- fg_relations=fg_logits-fg_logits[ii]
205
- bg_relations=relevant_bg_logits-fg_logits[ii]
206
-
207
- if delta_RS > 0:
208
- fg_relations=torch.clamp(fg_relations/(2*delta_RS)+0.5,min=0,max=1)
209
- bg_relations=torch.clamp(bg_relations/(2*delta_RS)+0.5,min=0,max=1)
210
- else:
211
- fg_relations = (fg_relations >= 0).float()
212
- bg_relations = (bg_relations >= 0).float()
213
-
214
- # Rank of ii among pos and false positive number (bg with larger scores)
215
- rank_pos=torch.sum(fg_relations)
216
- FP_num=torch.sum(bg_relations)
217
-
218
- # Rank of ii among all examples
219
- rank=rank_pos+FP_num
220
-
221
- # Ranking error of example ii. target_ranking_error is always 0. (Eq. 7)
222
- ranking_error[ii]=FP_num/rank
223
-
224
- # Current sorting error of example ii. (Eq. 7)
225
- current_sorting_error = torch.sum(fg_relations*(1-fg_targets))/rank_pos
226
-
227
- #Find examples in the target sorted order for example ii
228
- iou_relations = (fg_targets >= fg_targets[ii])
229
- target_sorted_order = iou_relations * fg_relations
230
-
231
- #The rank of ii among positives in sorted order
232
- rank_pos_target = torch.sum(target_sorted_order)
233
-
234
- #Compute target sorting error. (Eq. 8)
235
- #Since target ranking error is 0, this is also total target error
236
- target_sorting_error= torch.sum(target_sorted_order*(1-fg_targets))/rank_pos_target
237
-
238
- #Compute sorting error on example ii
239
- sorting_error[ii] = current_sorting_error - target_sorting_error
240
-
241
- #Identity Update for Ranking Error
242
- if FP_num > eps:
243
- #For ii the update is the ranking error
244
- fg_grad[ii] -= ranking_error[ii]
245
- #For negatives, distribute error via ranking pmf (i.e. bg_relations/FP_num)
246
- relevant_bg_grad += (bg_relations*(ranking_error[ii]/FP_num))
247
-
248
- #Find the positives that are misranked (the cause of the error)
249
- #These are the ones with smaller IoU but larger logits
250
- missorted_examples = (~ iou_relations) * fg_relations
251
-
252
- #Denominotor of sorting pmf
253
- sorting_pmf_denom = torch.sum(missorted_examples)
254
-
255
- #Identity Update for Sorting Error
256
- if sorting_pmf_denom > eps:
257
- #For ii the update is the sorting error
258
- fg_grad[ii] -= sorting_error[ii]
259
- #For positives, distribute error via sorting pmf (i.e. missorted_examples/sorting_pmf_denom)
260
- fg_grad += (missorted_examples*(sorting_error[ii]/sorting_pmf_denom))
261
-
262
- #Normalize gradients by number of positives
263
- classification_grads[fg_labels]= (fg_grad/fg_num)
264
- classification_grads[relevant_bg_labels]= (relevant_bg_grad/fg_num)
265
-
266
- ctx.save_for_backward(classification_grads)
267
-
268
- return ranking_error.mean(), sorting_error.mean()
269
-
270
- @staticmethod
271
- def backward(ctx, out_grad1, out_grad2):
272
- g1, =ctx.saved_tensors
273
- return g1*out_grad1, None, None, None
274
-
275
- class aLRPLoss(torch.autograd.Function):
276
- @staticmethod
277
- def forward(ctx, logits, targets, regression_losses, delta=1., eps=1e-5):
278
- classification_grads=torch.zeros(logits.shape).cuda()
279
-
280
- #Filter fg logits
281
- fg_labels = (targets == 1)
282
- fg_logits = logits[fg_labels]
283
- fg_num = len(fg_logits)
284
-
285
- #Do not use bg with scores less than minimum fg logit
286
- #since changing its score does not have an effect on precision
287
- threshold_logit = torch.min(fg_logits)-delta
288
-
289
- #Get valid bg logits
290
- relevant_bg_labels=((targets==0)&(logits>=threshold_logit))
291
- relevant_bg_logits=logits[relevant_bg_labels]
292
- relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
293
- rank=torch.zeros(fg_num).cuda()
294
- prec=torch.zeros(fg_num).cuda()
295
- fg_grad=torch.zeros(fg_num).cuda()
296
-
297
- max_prec=0
298
- #sort the fg logits
299
- order=torch.argsort(fg_logits)
300
- #Loops over each positive following the order
301
- for ii in order:
302
- #x_ij s as score differences with fgs
303
- fg_relations=fg_logits-fg_logits[ii]
304
- #Apply piecewise linear function and determine relations with fgs
305
- fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1)
306
- #Discard i=j in the summation in rank_pos
307
- fg_relations[ii]=0
308
-
309
- #x_ij s as score differences with bgs
310
- bg_relations=relevant_bg_logits-fg_logits[ii]
311
- #Apply piecewise linear function and determine relations with bgs
312
- bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1)
313
-
314
- #Compute the rank of the example within fgs and number of bgs with larger scores
315
- rank_pos=1+torch.sum(fg_relations)
316
- FP_num=torch.sum(bg_relations)
317
- #Store the total since it is normalizer also for aLRP Regression error
318
- rank[ii]=rank_pos+FP_num
319
-
320
- #Compute precision for this example to compute classification loss
321
- prec[ii]=rank_pos/rank[ii]
322
- #For stability, set eps to a infinitesmall value (e.g. 1e-6), then compute grads
323
- if FP_num > eps:
324
- fg_grad[ii] = -(torch.sum(fg_relations*regression_losses)+FP_num)/rank[ii]
325
- relevant_bg_grad += (bg_relations*(-fg_grad[ii]/FP_num))
326
-
327
- #aLRP with grad formulation fg gradient
328
- classification_grads[fg_labels]= fg_grad
329
- #aLRP with grad formulation bg gradient
330
- classification_grads[relevant_bg_labels]= relevant_bg_grad
331
-
332
- classification_grads /= (fg_num)
333
-
334
- cls_loss=1-prec.mean()
335
- ctx.save_for_backward(classification_grads)
336
-
337
- return cls_loss, rank, order
338
-
339
- @staticmethod
340
- def backward(ctx, out_grad1, out_grad2, out_grad3):
341
- g1, =ctx.saved_tensors
342
- return g1*out_grad1, None, None, None, None
343
-
344
-
345
- class APLoss(torch.autograd.Function):
346
- @staticmethod
347
- def forward(ctx, logits, targets, delta=1.):
348
- classification_grads=torch.zeros(logits.shape).cuda()
349
-
350
- #Filter fg logits
351
- fg_labels = (targets == 1)
352
- fg_logits = logits[fg_labels]
353
- fg_num = len(fg_logits)
354
-
355
- #Do not use bg with scores less than minimum fg logit
356
- #since changing its score does not have an effect on precision
357
- threshold_logit = torch.min(fg_logits)-delta
358
-
359
- #Get valid bg logits
360
- relevant_bg_labels=((targets==0)&(logits>=threshold_logit))
361
- relevant_bg_logits=logits[relevant_bg_labels]
362
- relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
363
- rank=torch.zeros(fg_num).cuda()
364
- prec=torch.zeros(fg_num).cuda()
365
- fg_grad=torch.zeros(fg_num).cuda()
366
-
367
- max_prec=0
368
- #sort the fg logits
369
- order=torch.argsort(fg_logits)
370
- #Loops over each positive following the order
371
- for ii in order:
372
- #x_ij s as score differences with fgs
373
- fg_relations=fg_logits-fg_logits[ii]
374
- #Apply piecewise linear function and determine relations with fgs
375
- fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1)
376
- #Discard i=j in the summation in rank_pos
377
- fg_relations[ii]=0
378
-
379
- #x_ij s as score differences with bgs
380
- bg_relations=relevant_bg_logits-fg_logits[ii]
381
- #Apply piecewise linear function and determine relations with bgs
382
- bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1)
383
-
384
- #Compute the rank of the example within fgs and number of bgs with larger scores
385
- rank_pos=1+torch.sum(fg_relations)
386
- FP_num=torch.sum(bg_relations)
387
- #Store the total since it is normalizer also for aLRP Regression error
388
- rank[ii]=rank_pos+FP_num
389
-
390
- #Compute precision for this example
391
- current_prec=rank_pos/rank[ii]
392
-
393
- #Compute interpolated AP and store gradients for relevant bg examples
394
- if (max_prec<=current_prec):
395
- max_prec=current_prec
396
- relevant_bg_grad += (bg_relations/rank[ii])
397
- else:
398
- relevant_bg_grad += (bg_relations/rank[ii])*(((1-max_prec)/(1-current_prec)))
399
-
400
- #Store fg gradients
401
- fg_grad[ii]=-(1-max_prec)
402
- prec[ii]=max_prec
403
-
404
- #aLRP with grad formulation fg gradient
405
- classification_grads[fg_labels]= fg_grad
406
- #aLRP with grad formulation bg gradient
407
- classification_grads[relevant_bg_labels]= relevant_bg_grad
408
-
409
- classification_grads /= fg_num
410
-
411
- cls_loss=1-prec.mean()
412
- ctx.save_for_backward(classification_grads)
413
-
414
- return cls_loss
415
-
416
- @staticmethod
417
- def backward(ctx, out_grad1):
418
- g1, =ctx.saved_tensors
419
- return g1*out_grad1, None, None
420
-
421
-
422
- class ComputeLoss:
423
- # Compute losses
424
- def __init__(self, model, autobalance=False):
425
- super(ComputeLoss, self).__init__()
426
- device = next(model.parameters()).device # get model device
427
- h = model.hyp # hyperparameters
428
-
429
- # Define criteria
430
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
431
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
432
-
433
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
434
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
435
-
436
- # Focal loss
437
- g = h['fl_gamma'] # focal loss gamma
438
- if g > 0:
439
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
440
-
441
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
442
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
443
- #self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.1, .05]) # P3-P7
444
- #self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.5, 0.4, .1]) # P3-P7
445
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
446
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
447
- for k in 'na', 'nc', 'nl', 'anchors':
448
- setattr(self, k, getattr(det, k))
449
-
450
- def __call__(self, p, targets): # predictions, targets, model
451
- device = targets.device
452
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
453
- tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
454
-
455
- # Losses
456
- for i, pi in enumerate(p): # layer index, layer predictions
457
- b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
458
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
459
-
460
- n = b.shape[0] # number of targets
461
- if n:
462
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
463
-
464
- # Regression
465
- pxy = ps[:, :2].sigmoid() * 2. - 0.5
466
- pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
467
- pbox = torch.cat((pxy, pwh), 1) # predicted box
468
- iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
469
- lbox += (1.0 - iou).mean() # iou loss
470
-
471
- # Objectness
472
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
473
-
474
- # Classification
475
- if self.nc > 1: # cls loss (only if multiple classes)
476
- t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
477
- t[range(n), tcls[i]] = self.cp
478
- #t[t==self.cp] = iou.detach().clamp(0).type(t.dtype)
479
- lcls += self.BCEcls(ps[:, 5:], t) # BCE
480
-
481
- # Append targets to text file
482
- # with open('targets.txt', 'a') as file:
483
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
484
-
485
- obji = self.BCEobj(pi[..., 4], tobj)
486
- lobj += obji * self.balance[i] # obj loss
487
- if self.autobalance:
488
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
489
-
490
- if self.autobalance:
491
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
492
- lbox *= self.hyp['box']
493
- lobj *= self.hyp['obj']
494
- lcls *= self.hyp['cls']
495
- bs = tobj.shape[0] # batch size
496
-
497
- loss = lbox + lobj + lcls
498
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
499
-
500
- def build_targets(self, p, targets):
501
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
502
- na, nt = self.na, targets.shape[0] # number of anchors, targets
503
- tcls, tbox, indices, anch = [], [], [], []
504
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
505
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
506
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
507
-
508
- g = 0.5 # bias
509
- off = torch.tensor([[0, 0],
510
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
511
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
512
- ], device=targets.device).float() * g # offsets
513
-
514
- for i in range(self.nl):
515
- anchors = self.anchors[i]
516
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
517
-
518
- # Match targets to anchors
519
- t = targets * gain
520
- if nt:
521
- # Matches
522
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
523
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
524
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
525
- t = t[j] # filter
526
-
527
- # Offsets
528
- gxy = t[:, 2:4] # grid xy
529
- gxi = gain[[2, 3]] - gxy # inverse
530
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
531
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
532
- j = torch.stack((torch.ones_like(j), j, k, l, m))
533
- t = t.repeat((5, 1, 1))[j]
534
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
535
- else:
536
- t = targets[0]
537
- offsets = 0
538
-
539
- # Define
540
- b, c = t[:, :2].long().T # image, class
541
- gxy = t[:, 2:4] # grid xy
542
- gwh = t[:, 4:6] # grid wh
543
- gij = (gxy - offsets).long()
544
- gi, gj = gij.T # grid xy indices
545
-
546
- # Append
547
- a = t[:, 6].long() # anchor indices
548
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
549
- tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
550
- anch.append(anchors[a]) # anchors
551
- tcls.append(c) # class
552
-
553
- return tcls, tbox, indices, anch
554
-
555
-
556
- class ComputeLossOTA:
557
- # Compute losses
558
- def __init__(self, model, autobalance=False):
559
- super(ComputeLossOTA, self).__init__()
560
- device = next(model.parameters()).device # get model device
561
- h = model.hyp # hyperparameters
562
-
563
- # Define criteria
564
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
565
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
566
-
567
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
568
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
569
-
570
- # Focal loss
571
- g = h['fl_gamma'] # focal loss gamma
572
- if g > 0:
573
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
574
-
575
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
576
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
577
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
578
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
579
- for k in 'na', 'nc', 'nl', 'anchors', 'stride':
580
- setattr(self, k, getattr(det, k))
581
-
582
- def __call__(self, p, targets, imgs): # predictions, targets, model
583
- device = targets.device
584
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
585
- bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs)
586
- pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p]
587
-
588
-
589
- # Losses
590
- for i, pi in enumerate(p): # layer index, layer predictions
591
- b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
592
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
593
-
594
- n = b.shape[0] # number of targets
595
- if n:
596
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
597
-
598
- # Regression
599
- grid = torch.stack([gi, gj], dim=1)
600
- pxy = ps[:, :2].sigmoid() * 2. - 0.5
601
- #pxy = ps[:, :2].sigmoid() * 3. - 1.
602
- pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
603
- pbox = torch.cat((pxy, pwh), 1) # predicted box
604
- selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
605
- selected_tbox[:, :2] -= grid
606
- iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
607
- lbox += (1.0 - iou).mean() # iou loss
608
-
609
- # Objectness
610
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
611
-
612
- # Classification
613
- selected_tcls = targets[i][:, 1].long()
614
- if self.nc > 1: # cls loss (only if multiple classes)
615
- t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
616
- t[range(n), selected_tcls] = self.cp
617
- lcls += self.BCEcls(ps[:, 5:], t) # BCE
618
-
619
- # Append targets to text file
620
- # with open('targets.txt', 'a') as file:
621
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
622
-
623
- obji = self.BCEobj(pi[..., 4], tobj)
624
- lobj += obji * self.balance[i] # obj loss
625
- if self.autobalance:
626
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
627
-
628
- if self.autobalance:
629
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
630
- lbox *= self.hyp['box']
631
- lobj *= self.hyp['obj']
632
- lcls *= self.hyp['cls']
633
- bs = tobj.shape[0] # batch size
634
-
635
- loss = lbox + lobj + lcls
636
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
637
-
638
- def build_targets(self, p, targets, imgs):
639
-
640
- #indices, anch = self.find_positive(p, targets)
641
- indices, anch = self.find_3_positive(p, targets)
642
- #indices, anch = self.find_4_positive(p, targets)
643
- #indices, anch = self.find_5_positive(p, targets)
644
- #indices, anch = self.find_9_positive(p, targets)
645
- device = torch.device(targets.device)
646
- matching_bs = [[] for pp in p]
647
- matching_as = [[] for pp in p]
648
- matching_gjs = [[] for pp in p]
649
- matching_gis = [[] for pp in p]
650
- matching_targets = [[] for pp in p]
651
- matching_anchs = [[] for pp in p]
652
-
653
- nl = len(p)
654
-
655
- for batch_idx in range(p[0].shape[0]):
656
-
657
- b_idx = targets[:, 0]==batch_idx
658
- this_target = targets[b_idx]
659
- if this_target.shape[0] == 0:
660
- continue
661
-
662
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
663
- txyxy = xywh2xyxy(txywh)
664
-
665
- pxyxys = []
666
- p_cls = []
667
- p_obj = []
668
- from_which_layer = []
669
- all_b = []
670
- all_a = []
671
- all_gj = []
672
- all_gi = []
673
- all_anch = []
674
-
675
- for i, pi in enumerate(p):
676
-
677
- b, a, gj, gi = indices[i]
678
- idx = (b == batch_idx)
679
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
680
- all_b.append(b)
681
- all_a.append(a)
682
- all_gj.append(gj)
683
- all_gi.append(gi)
684
- all_anch.append(anch[i][idx])
685
- from_which_layer.append((torch.ones(size=(len(b),)) * i).to(device))
686
-
687
- fg_pred = pi[b, a, gj, gi]
688
- p_obj.append(fg_pred[:, 4:5])
689
- p_cls.append(fg_pred[:, 5:])
690
-
691
- grid = torch.stack([gi, gj], dim=1)
692
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
693
- #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
694
- pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
695
- pxywh = torch.cat([pxy, pwh], dim=-1)
696
- pxyxy = xywh2xyxy(pxywh)
697
- pxyxys.append(pxyxy)
698
-
699
- pxyxys = torch.cat(pxyxys, dim=0)
700
- if pxyxys.shape[0] == 0:
701
- continue
702
- p_obj = torch.cat(p_obj, dim=0)
703
- p_cls = torch.cat(p_cls, dim=0)
704
- from_which_layer = torch.cat(from_which_layer, dim=0)
705
- all_b = torch.cat(all_b, dim=0)
706
- all_a = torch.cat(all_a, dim=0)
707
- all_gj = torch.cat(all_gj, dim=0)
708
- all_gi = torch.cat(all_gi, dim=0)
709
- all_anch = torch.cat(all_anch, dim=0)
710
-
711
- pair_wise_iou = box_iou(txyxy, pxyxys)
712
-
713
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
714
-
715
- top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1)
716
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
717
-
718
- gt_cls_per_image = (
719
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
720
- .float()
721
- .unsqueeze(1)
722
- .repeat(1, pxyxys.shape[0], 1)
723
- )
724
-
725
- num_gt = this_target.shape[0]
726
- cls_preds_ = (
727
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
728
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
729
- )
730
-
731
- y = cls_preds_.sqrt_()
732
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
733
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
734
- ).sum(-1)
735
- del cls_preds_
736
-
737
- cost = (
738
- pair_wise_cls_loss
739
- + 3.0 * pair_wise_iou_loss
740
- )
741
-
742
- matching_matrix = torch.zeros_like(cost, device=device)
743
-
744
- for gt_idx in range(num_gt):
745
- _, pos_idx = torch.topk(
746
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
747
- )
748
- matching_matrix[gt_idx][pos_idx] = 1.0
749
-
750
- del top_k, dynamic_ks
751
- anchor_matching_gt = matching_matrix.sum(0)
752
- if (anchor_matching_gt > 1).sum() > 0:
753
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
754
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
755
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
756
- fg_mask_inboxes = (matching_matrix.sum(0) > 0.0).to(device)
757
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
758
-
759
- from_which_layer = from_which_layer[fg_mask_inboxes]
760
- all_b = all_b[fg_mask_inboxes]
761
- all_a = all_a[fg_mask_inboxes]
762
- all_gj = all_gj[fg_mask_inboxes]
763
- all_gi = all_gi[fg_mask_inboxes]
764
- all_anch = all_anch[fg_mask_inboxes]
765
-
766
- this_target = this_target[matched_gt_inds]
767
-
768
- for i in range(nl):
769
- layer_idx = from_which_layer == i
770
- matching_bs[i].append(all_b[layer_idx])
771
- matching_as[i].append(all_a[layer_idx])
772
- matching_gjs[i].append(all_gj[layer_idx])
773
- matching_gis[i].append(all_gi[layer_idx])
774
- matching_targets[i].append(this_target[layer_idx])
775
- matching_anchs[i].append(all_anch[layer_idx])
776
-
777
- for i in range(nl):
778
- if matching_targets[i] != []:
779
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
780
- matching_as[i] = torch.cat(matching_as[i], dim=0)
781
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
782
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
783
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
784
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
785
- else:
786
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
787
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
788
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
789
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
790
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
791
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
792
-
793
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
794
-
795
- def find_3_positive(self, p, targets):
796
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
797
- na, nt = self.na, targets.shape[0] # number of anchors, targets
798
- indices, anch = [], []
799
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
800
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
801
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
802
-
803
- g = 0.5 # bias
804
- off = torch.tensor([[0, 0],
805
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
806
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
807
- ], device=targets.device).float() * g # offsets
808
-
809
- for i in range(self.nl):
810
- anchors = self.anchors[i]
811
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
812
-
813
- # Match targets to anchors
814
- t = targets * gain
815
- if nt:
816
- # Matches
817
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
818
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
819
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
820
- t = t[j] # filter
821
-
822
- # Offsets
823
- gxy = t[:, 2:4] # grid xy
824
- gxi = gain[[2, 3]] - gxy # inverse
825
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
826
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
827
- j = torch.stack((torch.ones_like(j), j, k, l, m))
828
- t = t.repeat((5, 1, 1))[j]
829
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
830
- else:
831
- t = targets[0]
832
- offsets = 0
833
-
834
- # Define
835
- b, c = t[:, :2].long().T # image, class
836
- gxy = t[:, 2:4] # grid xy
837
- gwh = t[:, 4:6] # grid wh
838
- gij = (gxy - offsets).long()
839
- gi, gj = gij.T # grid xy indices
840
-
841
- # Append
842
- a = t[:, 6].long() # anchor indices
843
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
844
- anch.append(anchors[a]) # anchors
845
-
846
- return indices, anch
847
-
848
-
849
- class ComputeLossBinOTA:
850
- # Compute losses
851
- def __init__(self, model, autobalance=False):
852
- super(ComputeLossBinOTA, self).__init__()
853
- device = next(model.parameters()).device # get model device
854
- h = model.hyp # hyperparameters
855
-
856
- # Define criteria
857
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
858
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
859
- #MSEangle = nn.MSELoss().to(device)
860
-
861
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
862
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
863
-
864
- # Focal loss
865
- g = h['fl_gamma'] # focal loss gamma
866
- if g > 0:
867
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
868
-
869
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
870
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
871
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
872
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
873
- for k in 'na', 'nc', 'nl', 'anchors', 'stride', 'bin_count':
874
- setattr(self, k, getattr(det, k))
875
-
876
- #xy_bin_sigmoid = SigmoidBin(bin_count=11, min=-0.5, max=1.5, use_loss_regression=False).to(device)
877
- wh_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0, use_loss_regression=False).to(device)
878
- #angle_bin_sigmoid = SigmoidBin(bin_count=31, min=-1.1, max=1.1, use_loss_regression=False).to(device)
879
- self.wh_bin_sigmoid = wh_bin_sigmoid
880
-
881
- def __call__(self, p, targets, imgs): # predictions, targets, model
882
- device = targets.device
883
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
884
- bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs)
885
- pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p]
886
-
887
-
888
- # Losses
889
- for i, pi in enumerate(p): # layer index, layer predictions
890
- b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
891
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
892
-
893
- obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2 # x,y, w-bce, h-bce # xy_bin_sigmoid.get_length()*2
894
-
895
- n = b.shape[0] # number of targets
896
- if n:
897
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
898
-
899
- # Regression
900
- grid = torch.stack([gi, gj], dim=1)
901
- selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
902
- selected_tbox[:, :2] -= grid
903
-
904
- #pxy = ps[:, :2].sigmoid() * 2. - 0.5
905
- ##pxy = ps[:, :2].sigmoid() * 3. - 1.
906
- #pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
907
- #pbox = torch.cat((pxy, pwh), 1) # predicted box
908
-
909
- #x_loss, px = xy_bin_sigmoid.training_loss(ps[..., 0:12], tbox[i][..., 0])
910
- #y_loss, py = xy_bin_sigmoid.training_loss(ps[..., 12:24], tbox[i][..., 1])
911
- w_loss, pw = self.wh_bin_sigmoid.training_loss(ps[..., 2:(3+self.bin_count)], selected_tbox[..., 2] / anchors[i][..., 0])
912
- h_loss, ph = self.wh_bin_sigmoid.training_loss(ps[..., (3+self.bin_count):obj_idx], selected_tbox[..., 3] / anchors[i][..., 1])
913
-
914
- pw *= anchors[i][..., 0]
915
- ph *= anchors[i][..., 1]
916
-
917
- px = ps[:, 0].sigmoid() * 2. - 0.5
918
- py = ps[:, 1].sigmoid() * 2. - 0.5
919
-
920
- lbox += w_loss + h_loss # + x_loss + y_loss
921
-
922
- #print(f"\n px = {px.shape}, py = {py.shape}, pw = {pw.shape}, ph = {ph.shape} \n")
923
-
924
- pbox = torch.cat((px.unsqueeze(1), py.unsqueeze(1), pw.unsqueeze(1), ph.unsqueeze(1)), 1).to(device) # predicted box
925
-
926
-
927
-
928
-
929
- iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
930
- lbox += (1.0 - iou).mean() # iou loss
931
-
932
- # Objectness
933
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
934
-
935
- # Classification
936
- selected_tcls = targets[i][:, 1].long()
937
- if self.nc > 1: # cls loss (only if multiple classes)
938
- t = torch.full_like(ps[:, (1+obj_idx):], self.cn, device=device) # targets
939
- t[range(n), selected_tcls] = self.cp
940
- lcls += self.BCEcls(ps[:, (1+obj_idx):], t) # BCE
941
-
942
- # Append targets to text file
943
- # with open('targets.txt', 'a') as file:
944
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
945
-
946
- obji = self.BCEobj(pi[..., obj_idx], tobj)
947
- lobj += obji * self.balance[i] # obj loss
948
- if self.autobalance:
949
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
950
-
951
- if self.autobalance:
952
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
953
- lbox *= self.hyp['box']
954
- lobj *= self.hyp['obj']
955
- lcls *= self.hyp['cls']
956
- bs = tobj.shape[0] # batch size
957
-
958
- loss = lbox + lobj + lcls
959
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
960
-
961
- def build_targets(self, p, targets, imgs):
962
-
963
- #indices, anch = self.find_positive(p, targets)
964
- indices, anch = self.find_3_positive(p, targets)
965
- #indices, anch = self.find_4_positive(p, targets)
966
- #indices, anch = self.find_5_positive(p, targets)
967
- #indices, anch = self.find_9_positive(p, targets)
968
-
969
- matching_bs = [[] for pp in p]
970
- matching_as = [[] for pp in p]
971
- matching_gjs = [[] for pp in p]
972
- matching_gis = [[] for pp in p]
973
- matching_targets = [[] for pp in p]
974
- matching_anchs = [[] for pp in p]
975
-
976
- nl = len(p)
977
-
978
- for batch_idx in range(p[0].shape[0]):
979
-
980
- b_idx = targets[:, 0]==batch_idx
981
- this_target = targets[b_idx]
982
- if this_target.shape[0] == 0:
983
- continue
984
-
985
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
986
- txyxy = xywh2xyxy(txywh)
987
-
988
- pxyxys = []
989
- p_cls = []
990
- p_obj = []
991
- from_which_layer = []
992
- all_b = []
993
- all_a = []
994
- all_gj = []
995
- all_gi = []
996
- all_anch = []
997
-
998
- for i, pi in enumerate(p):
999
-
1000
- obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2
1001
-
1002
- b, a, gj, gi = indices[i]
1003
- idx = (b == batch_idx)
1004
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
1005
- all_b.append(b)
1006
- all_a.append(a)
1007
- all_gj.append(gj)
1008
- all_gi.append(gi)
1009
- all_anch.append(anch[i][idx])
1010
- from_which_layer.append(torch.ones(size=(len(b),)) * i)
1011
-
1012
- fg_pred = pi[b, a, gj, gi]
1013
- p_obj.append(fg_pred[:, obj_idx:(obj_idx+1)])
1014
- p_cls.append(fg_pred[:, (obj_idx+1):])
1015
-
1016
- grid = torch.stack([gi, gj], dim=1)
1017
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
1018
- #pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
1019
- pw = self.wh_bin_sigmoid.forward(fg_pred[..., 2:(3+self.bin_count)].sigmoid()) * anch[i][idx][:, 0] * self.stride[i]
1020
- ph = self.wh_bin_sigmoid.forward(fg_pred[..., (3+self.bin_count):obj_idx].sigmoid()) * anch[i][idx][:, 1] * self.stride[i]
1021
-
1022
- pxywh = torch.cat([pxy, pw.unsqueeze(1), ph.unsqueeze(1)], dim=-1)
1023
- pxyxy = xywh2xyxy(pxywh)
1024
- pxyxys.append(pxyxy)
1025
-
1026
- pxyxys = torch.cat(pxyxys, dim=0)
1027
- if pxyxys.shape[0] == 0:
1028
- continue
1029
- p_obj = torch.cat(p_obj, dim=0)
1030
- p_cls = torch.cat(p_cls, dim=0)
1031
- from_which_layer = torch.cat(from_which_layer, dim=0)
1032
- all_b = torch.cat(all_b, dim=0)
1033
- all_a = torch.cat(all_a, dim=0)
1034
- all_gj = torch.cat(all_gj, dim=0)
1035
- all_gi = torch.cat(all_gi, dim=0)
1036
- all_anch = torch.cat(all_anch, dim=0)
1037
-
1038
- pair_wise_iou = box_iou(txyxy, pxyxys)
1039
-
1040
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
1041
-
1042
- top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1)
1043
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
1044
-
1045
- gt_cls_per_image = (
1046
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
1047
- .float()
1048
- .unsqueeze(1)
1049
- .repeat(1, pxyxys.shape[0], 1)
1050
- )
1051
-
1052
- num_gt = this_target.shape[0]
1053
- cls_preds_ = (
1054
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1055
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1056
- )
1057
-
1058
- y = cls_preds_.sqrt_()
1059
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
1060
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
1061
- ).sum(-1)
1062
- del cls_preds_
1063
-
1064
- cost = (
1065
- pair_wise_cls_loss
1066
- + 3.0 * pair_wise_iou_loss
1067
- )
1068
-
1069
- matching_matrix = torch.zeros_like(cost)
1070
-
1071
- for gt_idx in range(num_gt):
1072
- _, pos_idx = torch.topk(
1073
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
1074
- )
1075
- matching_matrix[gt_idx][pos_idx] = 1.0
1076
-
1077
- del top_k, dynamic_ks
1078
- anchor_matching_gt = matching_matrix.sum(0)
1079
- if (anchor_matching_gt > 1).sum() > 0:
1080
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
1081
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
1082
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
1083
- fg_mask_inboxes = matching_matrix.sum(0) > 0.0
1084
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
1085
-
1086
- from_which_layer = from_which_layer[fg_mask_inboxes]
1087
- all_b = all_b[fg_mask_inboxes]
1088
- all_a = all_a[fg_mask_inboxes]
1089
- all_gj = all_gj[fg_mask_inboxes]
1090
- all_gi = all_gi[fg_mask_inboxes]
1091
- all_anch = all_anch[fg_mask_inboxes]
1092
-
1093
- this_target = this_target[matched_gt_inds]
1094
-
1095
- for i in range(nl):
1096
- layer_idx = from_which_layer == i
1097
- matching_bs[i].append(all_b[layer_idx])
1098
- matching_as[i].append(all_a[layer_idx])
1099
- matching_gjs[i].append(all_gj[layer_idx])
1100
- matching_gis[i].append(all_gi[layer_idx])
1101
- matching_targets[i].append(this_target[layer_idx])
1102
- matching_anchs[i].append(all_anch[layer_idx])
1103
-
1104
- for i in range(nl):
1105
- if matching_targets[i] != []:
1106
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
1107
- matching_as[i] = torch.cat(matching_as[i], dim=0)
1108
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
1109
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
1110
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
1111
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
1112
- else:
1113
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1114
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1115
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1116
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1117
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1118
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1119
-
1120
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
1121
-
1122
- def find_3_positive(self, p, targets):
1123
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
1124
- na, nt = self.na, targets.shape[0] # number of anchors, targets
1125
- indices, anch = [], []
1126
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
1127
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
1128
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
1129
-
1130
- g = 0.5 # bias
1131
- off = torch.tensor([[0, 0],
1132
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
1133
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
1134
- ], device=targets.device).float() * g # offsets
1135
-
1136
- for i in range(self.nl):
1137
- anchors = self.anchors[i]
1138
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
1139
-
1140
- # Match targets to anchors
1141
- t = targets * gain
1142
- if nt:
1143
- # Matches
1144
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
1145
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
1146
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
1147
- t = t[j] # filter
1148
-
1149
- # Offsets
1150
- gxy = t[:, 2:4] # grid xy
1151
- gxi = gain[[2, 3]] - gxy # inverse
1152
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
1153
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
1154
- j = torch.stack((torch.ones_like(j), j, k, l, m))
1155
- t = t.repeat((5, 1, 1))[j]
1156
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
1157
- else:
1158
- t = targets[0]
1159
- offsets = 0
1160
-
1161
- # Define
1162
- b, c = t[:, :2].long().T # image, class
1163
- gxy = t[:, 2:4] # grid xy
1164
- gwh = t[:, 4:6] # grid wh
1165
- gij = (gxy - offsets).long()
1166
- gi, gj = gij.T # grid xy indices
1167
-
1168
- # Append
1169
- a = t[:, 6].long() # anchor indices
1170
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
1171
- anch.append(anchors[a]) # anchors
1172
-
1173
- return indices, anch
1174
-
1175
-
1176
- class ComputeLossAuxOTA:
1177
- # Compute losses
1178
- def __init__(self, model, autobalance=False):
1179
- super(ComputeLossAuxOTA, self).__init__()
1180
- device = next(model.parameters()).device # get model device
1181
- h = model.hyp # hyperparameters
1182
-
1183
- # Define criteria
1184
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
1185
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
1186
-
1187
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
1188
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
1189
-
1190
- # Focal loss
1191
- g = h['fl_gamma'] # focal loss gamma
1192
- if g > 0:
1193
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
1194
-
1195
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
1196
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
1197
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
1198
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
1199
- for k in 'na', 'nc', 'nl', 'anchors', 'stride':
1200
- setattr(self, k, getattr(det, k))
1201
-
1202
- def __call__(self, p, targets, imgs): # predictions, targets, model
1203
- device = targets.device
1204
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
1205
- bs_aux, as_aux_, gjs_aux, gis_aux, targets_aux, anchors_aux = self.build_targets2(p[:self.nl], targets, imgs)
1206
- bs, as_, gjs, gis, targets, anchors = self.build_targets(p[:self.nl], targets, imgs)
1207
- pre_gen_gains_aux = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]]
1208
- pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]]
1209
-
1210
-
1211
- # Losses
1212
- for i in range(self.nl): # layer index, layer predictions
1213
- pi = p[i]
1214
- pi_aux = p[i+self.nl]
1215
- b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
1216
- b_aux, a_aux, gj_aux, gi_aux = bs_aux[i], as_aux_[i], gjs_aux[i], gis_aux[i] # image, anchor, gridy, gridx
1217
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
1218
- tobj_aux = torch.zeros_like(pi_aux[..., 0], device=device) # target obj
1219
-
1220
- n = b.shape[0] # number of targets
1221
- if n:
1222
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
1223
-
1224
- # Regression
1225
- grid = torch.stack([gi, gj], dim=1)
1226
- pxy = ps[:, :2].sigmoid() * 2. - 0.5
1227
- pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
1228
- pbox = torch.cat((pxy, pwh), 1) # predicted box
1229
- selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
1230
- selected_tbox[:, :2] -= grid
1231
- iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
1232
- lbox += (1.0 - iou).mean() # iou loss
1233
-
1234
- # Objectness
1235
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
1236
-
1237
- # Classification
1238
- selected_tcls = targets[i][:, 1].long()
1239
- if self.nc > 1: # cls loss (only if multiple classes)
1240
- t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
1241
- t[range(n), selected_tcls] = self.cp
1242
- lcls += self.BCEcls(ps[:, 5:], t) # BCE
1243
-
1244
- # Append targets to text file
1245
- # with open('targets.txt', 'a') as file:
1246
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
1247
-
1248
- n_aux = b_aux.shape[0] # number of targets
1249
- if n_aux:
1250
- ps_aux = pi_aux[b_aux, a_aux, gj_aux, gi_aux] # prediction subset corresponding to targets
1251
- grid_aux = torch.stack([gi_aux, gj_aux], dim=1)
1252
- pxy_aux = ps_aux[:, :2].sigmoid() * 2. - 0.5
1253
- #pxy_aux = ps_aux[:, :2].sigmoid() * 3. - 1.
1254
- pwh_aux = (ps_aux[:, 2:4].sigmoid() * 2) ** 2 * anchors_aux[i]
1255
- pbox_aux = torch.cat((pxy_aux, pwh_aux), 1) # predicted box
1256
- selected_tbox_aux = targets_aux[i][:, 2:6] * pre_gen_gains_aux[i]
1257
- selected_tbox_aux[:, :2] -= grid_aux
1258
- iou_aux = bbox_iou(pbox_aux.T, selected_tbox_aux, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
1259
- lbox += 0.25 * (1.0 - iou_aux).mean() # iou loss
1260
-
1261
- # Objectness
1262
- tobj_aux[b_aux, a_aux, gj_aux, gi_aux] = (1.0 - self.gr) + self.gr * iou_aux.detach().clamp(0).type(tobj_aux.dtype) # iou ratio
1263
-
1264
- # Classification
1265
- selected_tcls_aux = targets_aux[i][:, 1].long()
1266
- if self.nc > 1: # cls loss (only if multiple classes)
1267
- t_aux = torch.full_like(ps_aux[:, 5:], self.cn, device=device) # targets
1268
- t_aux[range(n_aux), selected_tcls_aux] = self.cp
1269
- lcls += 0.25 * self.BCEcls(ps_aux[:, 5:], t_aux) # BCE
1270
-
1271
- obji = self.BCEobj(pi[..., 4], tobj)
1272
- obji_aux = self.BCEobj(pi_aux[..., 4], tobj_aux)
1273
- lobj += obji * self.balance[i] + 0.25 * obji_aux * self.balance[i] # obj loss
1274
- if self.autobalance:
1275
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
1276
-
1277
- if self.autobalance:
1278
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
1279
- lbox *= self.hyp['box']
1280
- lobj *= self.hyp['obj']
1281
- lcls *= self.hyp['cls']
1282
- bs = tobj.shape[0] # batch size
1283
-
1284
- loss = lbox + lobj + lcls
1285
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
1286
-
1287
- def build_targets(self, p, targets, imgs):
1288
-
1289
- indices, anch = self.find_3_positive(p, targets)
1290
-
1291
- matching_bs = [[] for pp in p]
1292
- matching_as = [[] for pp in p]
1293
- matching_gjs = [[] for pp in p]
1294
- matching_gis = [[] for pp in p]
1295
- matching_targets = [[] for pp in p]
1296
- matching_anchs = [[] for pp in p]
1297
-
1298
- nl = len(p)
1299
-
1300
- for batch_idx in range(p[0].shape[0]):
1301
-
1302
- b_idx = targets[:, 0]==batch_idx
1303
- this_target = targets[b_idx]
1304
- if this_target.shape[0] == 0:
1305
- continue
1306
-
1307
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
1308
- txyxy = xywh2xyxy(txywh)
1309
-
1310
- pxyxys = []
1311
- p_cls = []
1312
- p_obj = []
1313
- from_which_layer = []
1314
- all_b = []
1315
- all_a = []
1316
- all_gj = []
1317
- all_gi = []
1318
- all_anch = []
1319
-
1320
- for i, pi in enumerate(p):
1321
-
1322
- b, a, gj, gi = indices[i]
1323
- idx = (b == batch_idx)
1324
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
1325
- all_b.append(b)
1326
- all_a.append(a)
1327
- all_gj.append(gj)
1328
- all_gi.append(gi)
1329
- all_anch.append(anch[i][idx])
1330
- from_which_layer.append(torch.ones(size=(len(b),)) * i)
1331
-
1332
- fg_pred = pi[b, a, gj, gi]
1333
- p_obj.append(fg_pred[:, 4:5])
1334
- p_cls.append(fg_pred[:, 5:])
1335
-
1336
- grid = torch.stack([gi, gj], dim=1)
1337
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
1338
- #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
1339
- pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
1340
- pxywh = torch.cat([pxy, pwh], dim=-1)
1341
- pxyxy = xywh2xyxy(pxywh)
1342
- pxyxys.append(pxyxy)
1343
-
1344
- pxyxys = torch.cat(pxyxys, dim=0)
1345
- if pxyxys.shape[0] == 0:
1346
- continue
1347
- p_obj = torch.cat(p_obj, dim=0)
1348
- p_cls = torch.cat(p_cls, dim=0)
1349
- from_which_layer = torch.cat(from_which_layer, dim=0)
1350
- all_b = torch.cat(all_b, dim=0)
1351
- all_a = torch.cat(all_a, dim=0)
1352
- all_gj = torch.cat(all_gj, dim=0)
1353
- all_gi = torch.cat(all_gi, dim=0)
1354
- all_anch = torch.cat(all_anch, dim=0)
1355
-
1356
- pair_wise_iou = box_iou(txyxy, pxyxys)
1357
-
1358
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
1359
-
1360
- top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1)
1361
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
1362
-
1363
- gt_cls_per_image = (
1364
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
1365
- .float()
1366
- .unsqueeze(1)
1367
- .repeat(1, pxyxys.shape[0], 1)
1368
- )
1369
-
1370
- num_gt = this_target.shape[0]
1371
- cls_preds_ = (
1372
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1373
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1374
- )
1375
-
1376
- y = cls_preds_.sqrt_()
1377
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
1378
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
1379
- ).sum(-1)
1380
- del cls_preds_
1381
-
1382
- cost = (
1383
- pair_wise_cls_loss
1384
- + 3.0 * pair_wise_iou_loss
1385
- )
1386
-
1387
- matching_matrix = torch.zeros_like(cost)
1388
-
1389
- for gt_idx in range(num_gt):
1390
- _, pos_idx = torch.topk(
1391
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
1392
- )
1393
- matching_matrix[gt_idx][pos_idx] = 1.0
1394
-
1395
- del top_k, dynamic_ks
1396
- anchor_matching_gt = matching_matrix.sum(0)
1397
- if (anchor_matching_gt > 1).sum() > 0:
1398
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
1399
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
1400
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
1401
- fg_mask_inboxes = matching_matrix.sum(0) > 0.0
1402
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
1403
-
1404
- from_which_layer = from_which_layer[fg_mask_inboxes]
1405
- all_b = all_b[fg_mask_inboxes]
1406
- all_a = all_a[fg_mask_inboxes]
1407
- all_gj = all_gj[fg_mask_inboxes]
1408
- all_gi = all_gi[fg_mask_inboxes]
1409
- all_anch = all_anch[fg_mask_inboxes]
1410
-
1411
- this_target = this_target[matched_gt_inds]
1412
-
1413
- for i in range(nl):
1414
- layer_idx = from_which_layer == i
1415
- matching_bs[i].append(all_b[layer_idx])
1416
- matching_as[i].append(all_a[layer_idx])
1417
- matching_gjs[i].append(all_gj[layer_idx])
1418
- matching_gis[i].append(all_gi[layer_idx])
1419
- matching_targets[i].append(this_target[layer_idx])
1420
- matching_anchs[i].append(all_anch[layer_idx])
1421
-
1422
- for i in range(nl):
1423
- if matching_targets[i] != []:
1424
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
1425
- matching_as[i] = torch.cat(matching_as[i], dim=0)
1426
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
1427
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
1428
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
1429
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
1430
- else:
1431
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1432
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1433
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1434
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1435
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1436
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1437
-
1438
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
1439
-
1440
- def build_targets2(self, p, targets, imgs):
1441
-
1442
- indices, anch = self.find_5_positive(p, targets)
1443
-
1444
- matching_bs = [[] for pp in p]
1445
- matching_as = [[] for pp in p]
1446
- matching_gjs = [[] for pp in p]
1447
- matching_gis = [[] for pp in p]
1448
- matching_targets = [[] for pp in p]
1449
- matching_anchs = [[] for pp in p]
1450
-
1451
- nl = len(p)
1452
-
1453
- for batch_idx in range(p[0].shape[0]):
1454
-
1455
- b_idx = targets[:, 0]==batch_idx
1456
- this_target = targets[b_idx]
1457
- if this_target.shape[0] == 0:
1458
- continue
1459
-
1460
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
1461
- txyxy = xywh2xyxy(txywh)
1462
-
1463
- pxyxys = []
1464
- p_cls = []
1465
- p_obj = []
1466
- from_which_layer = []
1467
- all_b = []
1468
- all_a = []
1469
- all_gj = []
1470
- all_gi = []
1471
- all_anch = []
1472
-
1473
- for i, pi in enumerate(p):
1474
-
1475
- b, a, gj, gi = indices[i]
1476
- idx = (b == batch_idx)
1477
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
1478
- all_b.append(b)
1479
- all_a.append(a)
1480
- all_gj.append(gj)
1481
- all_gi.append(gi)
1482
- all_anch.append(anch[i][idx])
1483
- from_which_layer.append(torch.ones(size=(len(b),)) * i)
1484
-
1485
- fg_pred = pi[b, a, gj, gi]
1486
- p_obj.append(fg_pred[:, 4:5])
1487
- p_cls.append(fg_pred[:, 5:])
1488
-
1489
- grid = torch.stack([gi, gj], dim=1)
1490
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
1491
- #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
1492
- pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
1493
- pxywh = torch.cat([pxy, pwh], dim=-1)
1494
- pxyxy = xywh2xyxy(pxywh)
1495
- pxyxys.append(pxyxy)
1496
-
1497
- pxyxys = torch.cat(pxyxys, dim=0)
1498
- if pxyxys.shape[0] == 0:
1499
- continue
1500
- p_obj = torch.cat(p_obj, dim=0)
1501
- p_cls = torch.cat(p_cls, dim=0)
1502
- from_which_layer = torch.cat(from_which_layer, dim=0)
1503
- all_b = torch.cat(all_b, dim=0)
1504
- all_a = torch.cat(all_a, dim=0)
1505
- all_gj = torch.cat(all_gj, dim=0)
1506
- all_gi = torch.cat(all_gi, dim=0)
1507
- all_anch = torch.cat(all_anch, dim=0)
1508
-
1509
- pair_wise_iou = box_iou(txyxy, pxyxys)
1510
-
1511
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
1512
-
1513
- top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1)
1514
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
1515
-
1516
- gt_cls_per_image = (
1517
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
1518
- .float()
1519
- .unsqueeze(1)
1520
- .repeat(1, pxyxys.shape[0], 1)
1521
- )
1522
-
1523
- num_gt = this_target.shape[0]
1524
- cls_preds_ = (
1525
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1526
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1527
- )
1528
-
1529
- y = cls_preds_.sqrt_()
1530
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
1531
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
1532
- ).sum(-1)
1533
- del cls_preds_
1534
-
1535
- cost = (
1536
- pair_wise_cls_loss
1537
- + 3.0 * pair_wise_iou_loss
1538
- )
1539
-
1540
- matching_matrix = torch.zeros_like(cost)
1541
-
1542
- for gt_idx in range(num_gt):
1543
- _, pos_idx = torch.topk(
1544
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
1545
- )
1546
- matching_matrix[gt_idx][pos_idx] = 1.0
1547
-
1548
- del top_k, dynamic_ks
1549
- anchor_matching_gt = matching_matrix.sum(0)
1550
- if (anchor_matching_gt > 1).sum() > 0:
1551
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
1552
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
1553
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
1554
- fg_mask_inboxes = matching_matrix.sum(0) > 0.0
1555
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
1556
-
1557
- from_which_layer = from_which_layer[fg_mask_inboxes]
1558
- all_b = all_b[fg_mask_inboxes]
1559
- all_a = all_a[fg_mask_inboxes]
1560
- all_gj = all_gj[fg_mask_inboxes]
1561
- all_gi = all_gi[fg_mask_inboxes]
1562
- all_anch = all_anch[fg_mask_inboxes]
1563
-
1564
- this_target = this_target[matched_gt_inds]
1565
-
1566
- for i in range(nl):
1567
- layer_idx = from_which_layer == i
1568
- matching_bs[i].append(all_b[layer_idx])
1569
- matching_as[i].append(all_a[layer_idx])
1570
- matching_gjs[i].append(all_gj[layer_idx])
1571
- matching_gis[i].append(all_gi[layer_idx])
1572
- matching_targets[i].append(this_target[layer_idx])
1573
- matching_anchs[i].append(all_anch[layer_idx])
1574
-
1575
- for i in range(nl):
1576
- if matching_targets[i] != []:
1577
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
1578
- matching_as[i] = torch.cat(matching_as[i], dim=0)
1579
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
1580
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
1581
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
1582
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
1583
- else:
1584
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1585
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1586
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1587
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1588
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1589
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1590
-
1591
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
1592
-
1593
- def find_5_positive(self, p, targets):
1594
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
1595
- na, nt = self.na, targets.shape[0] # number of anchors, targets
1596
- indices, anch = [], []
1597
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
1598
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
1599
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
1600
-
1601
- g = 1.0 # bias
1602
- off = torch.tensor([[0, 0],
1603
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
1604
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
1605
- ], device=targets.device).float() * g # offsets
1606
-
1607
- for i in range(self.nl):
1608
- anchors = self.anchors[i]
1609
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
1610
-
1611
- # Match targets to anchors
1612
- t = targets * gain
1613
- if nt:
1614
- # Matches
1615
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
1616
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
1617
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
1618
- t = t[j] # filter
1619
-
1620
- # Offsets
1621
- gxy = t[:, 2:4] # grid xy
1622
- gxi = gain[[2, 3]] - gxy # inverse
1623
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
1624
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
1625
- j = torch.stack((torch.ones_like(j), j, k, l, m))
1626
- t = t.repeat((5, 1, 1))[j]
1627
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
1628
- else:
1629
- t = targets[0]
1630
- offsets = 0
1631
-
1632
- # Define
1633
- b, c = t[:, :2].long().T # image, class
1634
- gxy = t[:, 2:4] # grid xy
1635
- gwh = t[:, 4:6] # grid wh
1636
- gij = (gxy - offsets).long()
1637
- gi, gj = gij.T # grid xy indices
1638
-
1639
- # Append
1640
- a = t[:, 6].long() # anchor indices
1641
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
1642
- anch.append(anchors[a]) # anchors
1643
-
1644
- return indices, anch
1645
-
1646
- def find_3_positive(self, p, targets):
1647
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
1648
- na, nt = self.na, targets.shape[0] # number of anchors, targets
1649
- indices, anch = [], []
1650
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
1651
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
1652
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
1653
-
1654
- g = 0.5 # bias
1655
- off = torch.tensor([[0, 0],
1656
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
1657
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
1658
- ], device=targets.device).float() * g # offsets
1659
-
1660
- for i in range(self.nl):
1661
- anchors = self.anchors[i]
1662
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
1663
-
1664
- # Match targets to anchors
1665
- t = targets * gain
1666
- if nt:
1667
- # Matches
1668
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
1669
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
1670
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
1671
- t = t[j] # filter
1672
-
1673
- # Offsets
1674
- gxy = t[:, 2:4] # grid xy
1675
- gxi = gain[[2, 3]] - gxy # inverse
1676
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
1677
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
1678
- j = torch.stack((torch.ones_like(j), j, k, l, m))
1679
- t = t.repeat((5, 1, 1))[j]
1680
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
1681
- else:
1682
- t = targets[0]
1683
- offsets = 0
1684
-
1685
- # Define
1686
- b, c = t[:, :2].long().T # image, class
1687
- gxy = t[:, 2:4] # grid xy
1688
- gwh = t[:, 4:6] # grid wh
1689
- gij = (gxy - offsets).long()
1690
- gi, gj = gij.T # grid xy indices
1691
-
1692
- # Append
1693
- a = t[:, 6].long() # anchor indices
1694
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
1695
- anch.append(anchors[a]) # anchors
1696
-
1697
- return indices, anch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
license/utils/metrics.py DELETED
@@ -1,227 +0,0 @@
1
- # Model validation metrics
2
-
3
- from pathlib import Path
4
-
5
- import matplotlib.pyplot as plt
6
- import numpy as np
7
- import torch
8
-
9
- from . import general
10
-
11
-
12
- def fitness(x):
13
- # Model fitness as a weighted combination of metrics
14
- w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
15
- return (x[:, :4] * w).sum(1)
16
-
17
-
18
- def ap_per_class(tp, conf, pred_cls, target_cls, v5_metric=False, plot=False, save_dir='.', names=()):
19
- """ Compute the average precision, given the recall and precision curves.
20
- Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
21
- # Arguments
22
- tp: True positives (nparray, nx1 or nx10).
23
- conf: Objectness value from 0-1 (nparray).
24
- pred_cls: Predicted object classes (nparray).
25
- target_cls: True object classes (nparray).
26
- plot: Plot precision-recall curve at mAP@0.5
27
- save_dir: Plot save directory
28
- # Returns
29
- The average precision as computed in py-faster-rcnn.
30
- """
31
-
32
- # Sort by objectness
33
- i = np.argsort(-conf)
34
- tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
35
-
36
- # Find unique classes
37
- unique_classes = np.unique(target_cls)
38
- nc = unique_classes.shape[0] # number of classes, number of detections
39
-
40
- # Create Precision-Recall curve and compute AP for each class
41
- px, py = np.linspace(0, 1, 1000), [] # for plotting
42
- ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
43
- for ci, c in enumerate(unique_classes):
44
- i = pred_cls == c
45
- n_l = (target_cls == c).sum() # number of labels
46
- n_p = i.sum() # number of predictions
47
-
48
- if n_p == 0 or n_l == 0:
49
- continue
50
- else:
51
- # Accumulate FPs and TPs
52
- fpc = (1 - tp[i]).cumsum(0)
53
- tpc = tp[i].cumsum(0)
54
-
55
- # Recall
56
- recall = tpc / (n_l + 1e-16) # recall curve
57
- r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
58
-
59
- # Precision
60
- precision = tpc / (tpc + fpc) # precision curve
61
- p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
62
-
63
- # AP from recall-precision curve
64
- for j in range(tp.shape[1]):
65
- ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j], v5_metric=v5_metric)
66
- if plot and j == 0:
67
- py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
68
-
69
- # Compute F1 (harmonic mean of precision and recall)
70
- f1 = 2 * p * r / (p + r + 1e-16)
71
- if plot:
72
- plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
73
- plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
74
- plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
75
- plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
76
-
77
- i = f1.mean(0).argmax() # max F1 index
78
- return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
79
-
80
-
81
- def compute_ap(recall, precision, v5_metric=False):
82
- """ Compute the average precision, given the recall and precision curves
83
- # Arguments
84
- recall: The recall curve (list)
85
- precision: The precision curve (list)
86
- v5_metric: Assume maximum recall to be 1.0, as in YOLOv5, MMDetetion etc.
87
- # Returns
88
- Average precision, precision curve, recall curve
89
- """
90
-
91
- # Append sentinel values to beginning and end
92
- if v5_metric: # New YOLOv5 metric, same as MMDetection and Detectron2 repositories
93
- mrec = np.concatenate(([0.], recall, [1.0]))
94
- else: # Old YOLOv5 metric, i.e. default YOLOv7 metric
95
- mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
96
- mpre = np.concatenate(([1.], precision, [0.]))
97
-
98
- # Compute the precision envelope
99
- mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
100
-
101
- # Integrate area under curve
102
- method = 'interp' # methods: 'continuous', 'interp'
103
- if method == 'interp':
104
- x = np.linspace(0, 1, 101) # 101-point interp (COCO)
105
- ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
106
- else: # 'continuous'
107
- i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
108
- ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
109
-
110
- return ap, mpre, mrec
111
-
112
-
113
- class ConfusionMatrix:
114
- # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
115
- def __init__(self, nc, conf=0.25, iou_thres=0.45):
116
- self.matrix = np.zeros((nc + 1, nc + 1))
117
- self.nc = nc # number of classes
118
- self.conf = conf
119
- self.iou_thres = iou_thres
120
-
121
- def process_batch(self, detections, labels):
122
- """
123
- Return intersection-over-union (Jaccard index) of boxes.
124
- Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
125
- Arguments:
126
- detections (Array[N, 6]), x1, y1, x2, y2, conf, class
127
- labels (Array[M, 5]), class, x1, y1, x2, y2
128
- Returns:
129
- None, updates confusion matrix accordingly
130
- """
131
- detections = detections[detections[:, 4] > self.conf]
132
- gt_classes = labels[:, 0].int()
133
- detection_classes = detections[:, 5].int()
134
- iou = general.box_iou(labels[:, 1:], detections[:, :4])
135
-
136
- x = torch.where(iou > self.iou_thres)
137
- if x[0].shape[0]:
138
- matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
139
- if x[0].shape[0] > 1:
140
- matches = matches[matches[:, 2].argsort()[::-1]]
141
- matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
142
- matches = matches[matches[:, 2].argsort()[::-1]]
143
- matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
144
- else:
145
- matches = np.zeros((0, 3))
146
-
147
- n = matches.shape[0] > 0
148
- m0, m1, _ = matches.transpose().astype(np.int16)
149
- for i, gc in enumerate(gt_classes):
150
- j = m0 == i
151
- if n and sum(j) == 1:
152
- self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
153
- else:
154
- self.matrix[self.nc, gc] += 1 # background FP
155
-
156
- if n:
157
- for i, dc in enumerate(detection_classes):
158
- if not any(m1 == i):
159
- self.matrix[dc, self.nc] += 1 # background FN
160
-
161
- def matrix(self):
162
- return self.matrix
163
-
164
- def plot(self, save_dir='', names=()):
165
- try:
166
- import seaborn as sn
167
-
168
- array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
169
- array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
170
-
171
- fig = plt.figure(figsize=(12, 9), tight_layout=True)
172
- sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
173
- labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
174
- sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
175
- xticklabels=names + ['background FP'] if labels else "auto",
176
- yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
177
- fig.axes[0].set_xlabel('True')
178
- fig.axes[0].set_ylabel('Predicted')
179
- fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
180
- except Exception as e:
181
- pass
182
-
183
- def print(self):
184
- for i in range(self.nc + 1):
185
- print(' '.join(map(str, self.matrix[i])))
186
-
187
-
188
- # Plots ----------------------------------------------------------------------------------------------------------------
189
-
190
- def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
191
- # Precision-recall curve
192
- fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
193
- py = np.stack(py, axis=1)
194
-
195
- if 0 < len(names) < 21: # display per-class legend if < 21 classes
196
- for i, y in enumerate(py.T):
197
- ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
198
- else:
199
- ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
200
-
201
- ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
202
- ax.set_xlabel('Recall')
203
- ax.set_ylabel('Precision')
204
- ax.set_xlim(0, 1)
205
- ax.set_ylim(0, 1)
206
- plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
207
- fig.savefig(Path(save_dir), dpi=250)
208
-
209
-
210
- def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
211
- # Metric-confidence curve
212
- fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
213
-
214
- if 0 < len(names) < 21: # display per-class legend if < 21 classes
215
- for i, y in enumerate(py):
216
- ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
217
- else:
218
- ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
219
-
220
- y = py.mean(0)
221
- ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
222
- ax.set_xlabel(xlabel)
223
- ax.set_ylabel(ylabel)
224
- ax.set_xlim(0, 1)
225
- ax.set_ylim(0, 1)
226
- plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
227
- fig.savefig(Path(save_dir), dpi=250)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
license/utils/plots.py DELETED
@@ -1,489 +0,0 @@
1
- # Plotting utils
2
-
3
- import glob
4
- import math
5
- import os
6
- import random
7
- from copy import copy
8
- from pathlib import Path
9
-
10
- import cv2
11
- import matplotlib
12
- import matplotlib.pyplot as plt
13
- import numpy as np
14
- import pandas as pd
15
- import seaborn as sns
16
- import torch
17
- import yaml
18
- from PIL import Image, ImageDraw, ImageFont
19
- from scipy.signal import butter, filtfilt
20
-
21
- from utils.general import xywh2xyxy, xyxy2xywh
22
- from utils.metrics import fitness
23
-
24
- # Settings
25
- matplotlib.rc('font', **{'size': 11})
26
- matplotlib.use('Agg') # for writing to files only
27
-
28
-
29
- def color_list():
30
- # Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
31
- def hex2rgb(h):
32
- return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
33
-
34
- return [hex2rgb(h) for h in matplotlib.colors.TABLEAU_COLORS.values()] # or BASE_ (8), CSS4_ (148), XKCD_ (949)
35
-
36
-
37
- def hist2d(x, y, n=100):
38
- # 2d histogram used in labels.png and evolve.png
39
- xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
40
- hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
41
- xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
42
- yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
43
- return np.log(hist[xidx, yidx])
44
-
45
-
46
- def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
47
- # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
48
- def butter_lowpass(cutoff, fs, order):
49
- nyq = 0.5 * fs
50
- normal_cutoff = cutoff / nyq
51
- return butter(order, normal_cutoff, btype='low', analog=False)
52
-
53
- b, a = butter_lowpass(cutoff, fs, order=order)
54
- return filtfilt(b, a, data) # forward-backward filter
55
-
56
-
57
- def plot_one_box(x, img, color=None, label=None, line_thickness=3):
58
- # Plots one bounding box on image img
59
- tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
60
- color = color or [random.randint(0, 255) for _ in range(3)]
61
- c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
62
- cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
63
- if label:
64
- tf = max(tl - 1, 1) # font thickness
65
- t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
66
- c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
67
- cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
68
- cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
69
-
70
-
71
- def plot_one_box_PIL(box, img, color=None, label=None, line_thickness=None):
72
- img = Image.fromarray(img)
73
- draw = ImageDraw.Draw(img)
74
- line_thickness = line_thickness or max(int(min(img.size) / 200), 2)
75
- draw.rectangle(box, width=line_thickness, outline=tuple(color)) # plot
76
- if label:
77
- fontsize = max(round(max(img.size) / 40), 12)
78
- font = ImageFont.truetype("Arial.ttf", fontsize)
79
- txt_width, txt_height = font.getsize(label)
80
- draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=tuple(color))
81
- draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
82
- return np.asarray(img)
83
-
84
-
85
- def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
86
- # Compares the two methods for width-height anchor multiplication
87
- # https://github.com/ultralytics/yolov3/issues/168
88
- x = np.arange(-4.0, 4.0, .1)
89
- ya = np.exp(x)
90
- yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
91
-
92
- fig = plt.figure(figsize=(6, 3), tight_layout=True)
93
- plt.plot(x, ya, '.-', label='YOLOv3')
94
- plt.plot(x, yb ** 2, '.-', label='YOLOR ^2')
95
- plt.plot(x, yb ** 1.6, '.-', label='YOLOR ^1.6')
96
- plt.xlim(left=-4, right=4)
97
- plt.ylim(bottom=0, top=6)
98
- plt.xlabel('input')
99
- plt.ylabel('output')
100
- plt.grid()
101
- plt.legend()
102
- fig.savefig('comparison.png', dpi=200)
103
-
104
-
105
- def output_to_target(output):
106
- # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
107
- targets = []
108
- for i, o in enumerate(output):
109
- for *box, conf, cls in o.cpu().numpy():
110
- targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
111
- return np.array(targets)
112
-
113
-
114
- def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
115
- # Plot image grid with labels
116
-
117
- if isinstance(images, torch.Tensor):
118
- images = images.cpu().float().numpy()
119
- if isinstance(targets, torch.Tensor):
120
- targets = targets.cpu().numpy()
121
-
122
- # un-normalise
123
- if np.max(images[0]) <= 1:
124
- images *= 255
125
-
126
- tl = 3 # line thickness
127
- tf = max(tl - 1, 1) # font thickness
128
- bs, _, h, w = images.shape # batch size, _, height, width
129
- bs = min(bs, max_subplots) # limit plot images
130
- ns = np.ceil(bs ** 0.5) # number of subplots (square)
131
-
132
- # Check if we should resize
133
- scale_factor = max_size / max(h, w)
134
- if scale_factor < 1:
135
- h = math.ceil(scale_factor * h)
136
- w = math.ceil(scale_factor * w)
137
-
138
- colors = color_list() # list of colors
139
- mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
140
- for i, img in enumerate(images):
141
- if i == max_subplots: # if last batch has fewer images than we expect
142
- break
143
-
144
- block_x = int(w * (i // ns))
145
- block_y = int(h * (i % ns))
146
-
147
- img = img.transpose(1, 2, 0)
148
- if scale_factor < 1:
149
- img = cv2.resize(img, (w, h))
150
-
151
- mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
152
- if len(targets) > 0:
153
- image_targets = targets[targets[:, 0] == i]
154
- boxes = xywh2xyxy(image_targets[:, 2:6]).T
155
- classes = image_targets[:, 1].astype('int')
156
- labels = image_targets.shape[1] == 6 # labels if no conf column
157
- conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
158
-
159
- if boxes.shape[1]:
160
- if boxes.max() <= 1.01: # if normalized with tolerance 0.01
161
- boxes[[0, 2]] *= w # scale to pixels
162
- boxes[[1, 3]] *= h
163
- elif scale_factor < 1: # absolute coords need scale if image scales
164
- boxes *= scale_factor
165
- boxes[[0, 2]] += block_x
166
- boxes[[1, 3]] += block_y
167
- for j, box in enumerate(boxes.T):
168
- cls = int(classes[j])
169
- color = colors[cls % len(colors)]
170
- cls = names[cls] if names else cls
171
- if labels or conf[j] > 0.25: # 0.25 conf thresh
172
- label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
173
- plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
174
-
175
- # Draw image filename labels
176
- if paths:
177
- label = Path(paths[i]).name[:40] # trim to 40 char
178
- t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
179
- cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
180
- lineType=cv2.LINE_AA)
181
-
182
- # Image border
183
- cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
184
-
185
- if fname:
186
- r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
187
- mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
188
- # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
189
- Image.fromarray(mosaic).save(fname) # PIL save
190
- return mosaic
191
-
192
-
193
- def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
194
- # Plot LR simulating training for full epochs
195
- optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
196
- y = []
197
- for _ in range(epochs):
198
- scheduler.step()
199
- y.append(optimizer.param_groups[0]['lr'])
200
- plt.plot(y, '.-', label='LR')
201
- plt.xlabel('epoch')
202
- plt.ylabel('LR')
203
- plt.grid()
204
- plt.xlim(0, epochs)
205
- plt.ylim(0)
206
- plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
207
- plt.close()
208
-
209
-
210
- def plot_test_txt(): # from utils.plots import *; plot_test()
211
- # Plot test.txt histograms
212
- x = np.loadtxt('test.txt', dtype=np.float32)
213
- box = xyxy2xywh(x[:, :4])
214
- cx, cy = box[:, 0], box[:, 1]
215
-
216
- fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
217
- ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
218
- ax.set_aspect('equal')
219
- plt.savefig('hist2d.png', dpi=300)
220
-
221
- fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
222
- ax[0].hist(cx, bins=600)
223
- ax[1].hist(cy, bins=600)
224
- plt.savefig('hist1d.png', dpi=200)
225
-
226
-
227
- def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
228
- # Plot targets.txt histograms
229
- x = np.loadtxt('targets.txt', dtype=np.float32).T
230
- s = ['x targets', 'y targets', 'width targets', 'height targets']
231
- fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
232
- ax = ax.ravel()
233
- for i in range(4):
234
- ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
235
- ax[i].legend()
236
- ax[i].set_title(s[i])
237
- plt.savefig('targets.jpg', dpi=200)
238
-
239
-
240
- def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
241
- # Plot study.txt generated by test.py
242
- fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
243
- # ax = ax.ravel()
244
-
245
- fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
246
- # for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolor-p6', 'yolor-w6', 'yolor-e6', 'yolor-d6']]:
247
- for f in sorted(Path(path).glob('study*.txt')):
248
- y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
249
- x = np.arange(y.shape[1]) if x is None else np.array(x)
250
- s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
251
- # for i in range(7):
252
- # ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
253
- # ax[i].set_title(s[i])
254
-
255
- j = y[3].argmax() + 1
256
- ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
257
- label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
258
-
259
- ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
260
- 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
261
-
262
- ax2.grid(alpha=0.2)
263
- ax2.set_yticks(np.arange(20, 60, 5))
264
- ax2.set_xlim(0, 57)
265
- ax2.set_ylim(30, 55)
266
- ax2.set_xlabel('GPU Speed (ms/img)')
267
- ax2.set_ylabel('COCO AP val')
268
- ax2.legend(loc='lower right')
269
- plt.savefig(str(Path(path).name) + '.png', dpi=300)
270
-
271
-
272
- def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
273
- # plot dataset labels
274
- print('Plotting labels... ')
275
- c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
276
- nc = int(c.max() + 1) # number of classes
277
- colors = color_list()
278
- x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
279
-
280
- # seaborn correlogram
281
- sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
282
- plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
283
- plt.close()
284
-
285
- # matplotlib labels
286
- matplotlib.use('svg') # faster
287
- ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
288
- ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
289
- ax[0].set_ylabel('instances')
290
- if 0 < len(names) < 30:
291
- ax[0].set_xticks(range(len(names)))
292
- ax[0].set_xticklabels(names, rotation=90, fontsize=10)
293
- else:
294
- ax[0].set_xlabel('classes')
295
- sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
296
- sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
297
-
298
- # rectangles
299
- labels[:, 1:3] = 0.5 # center
300
- labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
301
- img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
302
- for cls, *box in labels[:1000]:
303
- ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot
304
- ax[1].imshow(img)
305
- ax[1].axis('off')
306
-
307
- for a in [0, 1, 2, 3]:
308
- for s in ['top', 'right', 'left', 'bottom']:
309
- ax[a].spines[s].set_visible(False)
310
-
311
- plt.savefig(save_dir / 'labels.jpg', dpi=200)
312
- matplotlib.use('Agg')
313
- plt.close()
314
-
315
- # loggers
316
- for k, v in loggers.items() or {}:
317
- if k == 'wandb' and v:
318
- v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False)
319
-
320
-
321
- def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
322
- # Plot hyperparameter evolution results in evolve.txt
323
- with open(yaml_file) as f:
324
- hyp = yaml.load(f, Loader=yaml.SafeLoader)
325
- x = np.loadtxt('evolve.txt', ndmin=2)
326
- f = fitness(x)
327
- # weights = (f - f.min()) ** 2 # for weighted results
328
- plt.figure(figsize=(10, 12), tight_layout=True)
329
- matplotlib.rc('font', **{'size': 8})
330
- for i, (k, v) in enumerate(hyp.items()):
331
- y = x[:, i + 7]
332
- # mu = (y * weights).sum() / weights.sum() # best weighted result
333
- mu = y[f.argmax()] # best single result
334
- plt.subplot(6, 5, i + 1)
335
- plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
336
- plt.plot(mu, f.max(), 'k+', markersize=15)
337
- plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
338
- if i % 5 != 0:
339
- plt.yticks([])
340
- print('%15s: %.3g' % (k, mu))
341
- plt.savefig('evolve.png', dpi=200)
342
- print('\nPlot saved as evolve.png')
343
-
344
-
345
- def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
346
- # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
347
- ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
348
- s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
349
- files = list(Path(save_dir).glob('frames*.txt'))
350
- for fi, f in enumerate(files):
351
- try:
352
- results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
353
- n = results.shape[1] # number of rows
354
- x = np.arange(start, min(stop, n) if stop else n)
355
- results = results[:, x]
356
- t = (results[0] - results[0].min()) # set t0=0s
357
- results[0] = x
358
- for i, a in enumerate(ax):
359
- if i < len(results):
360
- label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
361
- a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
362
- a.set_title(s[i])
363
- a.set_xlabel('time (s)')
364
- # if fi == len(files) - 1:
365
- # a.set_ylim(bottom=0)
366
- for side in ['top', 'right']:
367
- a.spines[side].set_visible(False)
368
- else:
369
- a.remove()
370
- except Exception as e:
371
- print('Warning: Plotting error for %s; %s' % (f, e))
372
-
373
- ax[1].legend()
374
- plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
375
-
376
-
377
- def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
378
- # Plot training 'results*.txt', overlaying train and val losses
379
- s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
380
- t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
381
- for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
382
- results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
383
- n = results.shape[1] # number of rows
384
- x = range(start, min(stop, n) if stop else n)
385
- fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
386
- ax = ax.ravel()
387
- for i in range(5):
388
- for j in [i, i + 5]:
389
- y = results[j, x]
390
- ax[i].plot(x, y, marker='.', label=s[j])
391
- # y_smooth = butter_lowpass_filtfilt(y)
392
- # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
393
-
394
- ax[i].set_title(t[i])
395
- ax[i].legend()
396
- ax[i].set_ylabel(f) if i == 0 else None # add filename
397
- fig.savefig(f.replace('.txt', '.png'), dpi=200)
398
-
399
-
400
- def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
401
- # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
402
- fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
403
- ax = ax.ravel()
404
- s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
405
- 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
406
- if bucket:
407
- # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
408
- files = ['results%g.txt' % x for x in id]
409
- c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
410
- os.system(c)
411
- else:
412
- files = list(Path(save_dir).glob('results*.txt'))
413
- assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
414
- for fi, f in enumerate(files):
415
- try:
416
- results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
417
- n = results.shape[1] # number of rows
418
- x = range(start, min(stop, n) if stop else n)
419
- for i in range(10):
420
- y = results[i, x]
421
- if i in [0, 1, 2, 5, 6, 7]:
422
- y[y == 0] = np.nan # don't show zero loss values
423
- # y /= y[0] # normalize
424
- label = labels[fi] if len(labels) else f.stem
425
- ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
426
- ax[i].set_title(s[i])
427
- # if i in [5, 6, 7]: # share train and val loss y axes
428
- # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
429
- except Exception as e:
430
- print('Warning: Plotting error for %s; %s' % (f, e))
431
-
432
- ax[1].legend()
433
- fig.savefig(Path(save_dir) / 'results.png', dpi=200)
434
-
435
-
436
- def output_to_keypoint(output):
437
- # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
438
- targets = []
439
- for i, o in enumerate(output):
440
- kpts = o[:,6:]
441
- o = o[:,:6]
442
- for index, (*box, conf, cls) in enumerate(o.detach().cpu().numpy()):
443
- targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf, *list(kpts.detach().cpu().numpy()[index])])
444
- return np.array(targets)
445
-
446
-
447
- def plot_skeleton_kpts(im, kpts, steps, orig_shape=None):
448
- #Plot the skeleton and keypointsfor coco datatset
449
- palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102],
450
- [230, 230, 0], [255, 153, 255], [153, 204, 255],
451
- [255, 102, 255], [255, 51, 255], [102, 178, 255],
452
- [51, 153, 255], [255, 153, 153], [255, 102, 102],
453
- [255, 51, 51], [153, 255, 153], [102, 255, 102],
454
- [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0],
455
- [255, 255, 255]])
456
-
457
- skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12],
458
- [7, 13], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3],
459
- [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]
460
-
461
- pose_limb_color = palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
462
- pose_kpt_color = palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
463
- radius = 5
464
- num_kpts = len(kpts) // steps
465
-
466
- for kid in range(num_kpts):
467
- r, g, b = pose_kpt_color[kid]
468
- x_coord, y_coord = kpts[steps * kid], kpts[steps * kid + 1]
469
- if not (x_coord % 640 == 0 or y_coord % 640 == 0):
470
- if steps == 3:
471
- conf = kpts[steps * kid + 2]
472
- if conf < 0.5:
473
- continue
474
- cv2.circle(im, (int(x_coord), int(y_coord)), radius, (int(r), int(g), int(b)), -1)
475
-
476
- for sk_id, sk in enumerate(skeleton):
477
- r, g, b = pose_limb_color[sk_id]
478
- pos1 = (int(kpts[(sk[0]-1)*steps]), int(kpts[(sk[0]-1)*steps+1]))
479
- pos2 = (int(kpts[(sk[1]-1)*steps]), int(kpts[(sk[1]-1)*steps+1]))
480
- if steps == 3:
481
- conf1 = kpts[(sk[0]-1)*steps+2]
482
- conf2 = kpts[(sk[1]-1)*steps+2]
483
- if conf1<0.5 or conf2<0.5:
484
- continue
485
- if pos1[0]%640 == 0 or pos1[1]%640==0 or pos1[0]<0 or pos1[1]<0:
486
- continue
487
- if pos2[0] % 640 == 0 or pos2[1] % 640 == 0 or pos2[0]<0 or pos2[1]<0:
488
- continue
489
- cv2.line(im, pos1, pos2, (int(r), int(g), int(b)), thickness=2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
license/utils/torch_utils.py DELETED
@@ -1,374 +0,0 @@
1
- # YOLOR PyTorch utils
2
-
3
- import datetime
4
- import logging
5
- import math
6
- import os
7
- import platform
8
- import subprocess
9
- import time
10
- from contextlib import contextmanager
11
- from copy import deepcopy
12
- from pathlib import Path
13
-
14
- import torch
15
- import torch.backends.cudnn as cudnn
16
- import torch.nn as nn
17
- import torch.nn.functional as F
18
- import torchvision
19
-
20
- try:
21
- import thop # for FLOPS computation
22
- except ImportError:
23
- thop = None
24
- logger = logging.getLogger(__name__)
25
-
26
-
27
- @contextmanager
28
- def torch_distributed_zero_first(local_rank: int):
29
- """
30
- Decorator to make all processes in distributed training wait for each local_master to do something.
31
- """
32
- if local_rank not in [-1, 0]:
33
- torch.distributed.barrier()
34
- yield
35
- if local_rank == 0:
36
- torch.distributed.barrier()
37
-
38
-
39
- def init_torch_seeds(seed=0):
40
- # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
41
- torch.manual_seed(seed)
42
- if seed == 0: # slower, more reproducible
43
- cudnn.benchmark, cudnn.deterministic = False, True
44
- else: # faster, less reproducible
45
- cudnn.benchmark, cudnn.deterministic = True, False
46
-
47
-
48
- def date_modified(path=__file__):
49
- # return human-readable file modification date, i.e. '2021-3-26'
50
- t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
51
- return f'{t.year}-{t.month}-{t.day}'
52
-
53
-
54
- def git_describe(path=Path(__file__).parent): # path must be a directory
55
- # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
56
- s = f'git -C {path} describe --tags --long --always'
57
- try:
58
- return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
59
- except subprocess.CalledProcessError as e:
60
- return '' # not a git repository
61
-
62
-
63
- def select_device(device='', batch_size=None):
64
- # device = 'cpu' or '0' or '0,1,2,3'
65
- s = f'YOLOR 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
66
- cpu = device.lower() == 'cpu'
67
- if cpu:
68
- os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
69
- elif device: # non-cpu device requested
70
- os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
71
- assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
72
-
73
- cuda = not cpu and torch.cuda.is_available()
74
- if cuda:
75
- n = torch.cuda.device_count()
76
- if n > 1 and batch_size: # check that batch_size is compatible with device_count
77
- assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
78
- space = ' ' * len(s)
79
- for i, d in enumerate(device.split(',') if device else range(n)):
80
- p = torch.cuda.get_device_properties(i)
81
- s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
82
- else:
83
- s += 'CPU\n'
84
-
85
- logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
86
- return torch.device('cuda:0' if cuda else 'cpu')
87
-
88
-
89
- def time_synchronized():
90
- # pytorch-accurate time
91
- if torch.cuda.is_available():
92
- torch.cuda.synchronize()
93
- return time.time()
94
-
95
-
96
- def profile(x, ops, n=100, device=None):
97
- # profile a pytorch module or list of modules. Example usage:
98
- # x = torch.randn(16, 3, 640, 640) # input
99
- # m1 = lambda x: x * torch.sigmoid(x)
100
- # m2 = nn.SiLU()
101
- # profile(x, [m1, m2], n=100) # profile speed over 100 iterations
102
-
103
- device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
104
- x = x.to(device)
105
- x.requires_grad = True
106
- print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
107
- print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
108
- for m in ops if isinstance(ops, list) else [ops]:
109
- m = m.to(device) if hasattr(m, 'to') else m # device
110
- m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
111
- dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
112
- try:
113
- flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
114
- except:
115
- flops = 0
116
-
117
- for _ in range(n):
118
- t[0] = time_synchronized()
119
- y = m(x)
120
- t[1] = time_synchronized()
121
- try:
122
- _ = y.sum().backward()
123
- t[2] = time_synchronized()
124
- except: # no backward method
125
- t[2] = float('nan')
126
- dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
127
- dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
128
-
129
- s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
130
- s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
131
- p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
132
- print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
133
-
134
-
135
- def is_parallel(model):
136
- return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
137
-
138
-
139
- def intersect_dicts(da, db, exclude=()):
140
- # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
141
- return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
142
-
143
-
144
- def initialize_weights(model):
145
- for m in model.modules():
146
- t = type(m)
147
- if t is nn.Conv2d:
148
- pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
149
- elif t is nn.BatchNorm2d:
150
- m.eps = 1e-3
151
- m.momentum = 0.03
152
- elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
153
- m.inplace = True
154
-
155
-
156
- def find_modules(model, mclass=nn.Conv2d):
157
- # Finds layer indices matching module class 'mclass'
158
- return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
159
-
160
-
161
- def sparsity(model):
162
- # Return global model sparsity
163
- a, b = 0., 0.
164
- for p in model.parameters():
165
- a += p.numel()
166
- b += (p == 0).sum()
167
- return b / a
168
-
169
-
170
- def prune(model, amount=0.3):
171
- # Prune model to requested global sparsity
172
- import torch.nn.utils.prune as prune
173
- print('Pruning model... ', end='')
174
- for name, m in model.named_modules():
175
- if isinstance(m, nn.Conv2d):
176
- prune.l1_unstructured(m, name='weight', amount=amount) # prune
177
- prune.remove(m, 'weight') # make permanent
178
- print(' %.3g global sparsity' % sparsity(model))
179
-
180
-
181
- def fuse_conv_and_bn(conv, bn):
182
- # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
183
- fusedconv = nn.Conv2d(conv.in_channels,
184
- conv.out_channels,
185
- kernel_size=conv.kernel_size,
186
- stride=conv.stride,
187
- padding=conv.padding,
188
- groups=conv.groups,
189
- bias=True).requires_grad_(False).to(conv.weight.device)
190
-
191
- # prepare filters
192
- w_conv = conv.weight.clone().view(conv.out_channels, -1)
193
- w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
194
- fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
195
-
196
- # prepare spatial bias
197
- b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
198
- b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
199
- fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
200
-
201
- return fusedconv
202
-
203
-
204
- def model_info(model, verbose=False, img_size=640):
205
- # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
206
- n_p = sum(x.numel() for x in model.parameters()) # number parameters
207
- n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
208
- if verbose:
209
- print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
210
- for i, (name, p) in enumerate(model.named_parameters()):
211
- name = name.replace('module_list.', '')
212
- print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
213
- (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
214
-
215
- try: # FLOPS
216
- from thop import profile
217
- stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
218
- img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
219
- flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
220
- img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
221
- fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
222
- except (ImportError, Exception):
223
- fs = ''
224
-
225
- logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
226
-
227
-
228
- def load_classifier(name='resnet101', n=2):
229
- # Loads a pretrained model reshaped to n-class output
230
- model = torchvision.models.__dict__[name](pretrained=True)
231
-
232
- # ResNet model properties
233
- # input_size = [3, 224, 224]
234
- # input_space = 'RGB'
235
- # input_range = [0, 1]
236
- # mean = [0.485, 0.456, 0.406]
237
- # std = [0.229, 0.224, 0.225]
238
-
239
- # Reshape output to n classes
240
- filters = model.fc.weight.shape[1]
241
- model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
242
- model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
243
- model.fc.out_features = n
244
- return model
245
-
246
-
247
- def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
248
- # scales img(bs,3,y,x) by ratio constrained to gs-multiple
249
- if ratio == 1.0:
250
- return img
251
- else:
252
- h, w = img.shape[2:]
253
- s = (int(h * ratio), int(w * ratio)) # new size
254
- img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
255
- if not same_shape: # pad/crop img
256
- h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
257
- return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
258
-
259
-
260
- def copy_attr(a, b, include=(), exclude=()):
261
- # Copy attributes from b to a, options to only include [...] and to exclude [...]
262
- for k, v in b.__dict__.items():
263
- if (len(include) and k not in include) or k.startswith('_') or k in exclude:
264
- continue
265
- else:
266
- setattr(a, k, v)
267
-
268
-
269
- class ModelEMA:
270
- """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
271
- Keep a moving average of everything in the model state_dict (parameters and buffers).
272
- This is intended to allow functionality like
273
- https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
274
- A smoothed version of the weights is necessary for some training schemes to perform well.
275
- This class is sensitive where it is initialized in the sequence of model init,
276
- GPU assignment and distributed training wrappers.
277
- """
278
-
279
- def __init__(self, model, decay=0.9999, updates=0):
280
- # Create EMA
281
- self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
282
- # if next(model.parameters()).device.type != 'cpu':
283
- # self.ema.half() # FP16 EMA
284
- self.updates = updates # number of EMA updates
285
- self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
286
- for p in self.ema.parameters():
287
- p.requires_grad_(False)
288
-
289
- def update(self, model):
290
- # Update EMA parameters
291
- with torch.no_grad():
292
- self.updates += 1
293
- d = self.decay(self.updates)
294
-
295
- msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
296
- for k, v in self.ema.state_dict().items():
297
- if v.dtype.is_floating_point:
298
- v *= d
299
- v += (1. - d) * msd[k].detach()
300
-
301
- def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
302
- # Update EMA attributes
303
- copy_attr(self.ema, model, include, exclude)
304
-
305
-
306
- class BatchNormXd(torch.nn.modules.batchnorm._BatchNorm):
307
- def _check_input_dim(self, input):
308
- # The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
309
- # is this method that is overwritten by the sub-class
310
- # This original goal of this method was for tensor sanity checks
311
- # If you're ok bypassing those sanity checks (eg. if you trust your inference
312
- # to provide the right dimensional inputs), then you can just use this method
313
- # for easy conversion from SyncBatchNorm
314
- # (unfortunately, SyncBatchNorm does not store the original class - if it did
315
- # we could return the one that was originally created)
316
- return
317
-
318
- def revert_sync_batchnorm(module):
319
- # this is very similar to the function that it is trying to revert:
320
- # https://github.com/pytorch/pytorch/blob/c8b3686a3e4ba63dc59e5dcfe5db3430df256833/torch/nn/modules/batchnorm.py#L679
321
- module_output = module
322
- if isinstance(module, torch.nn.modules.batchnorm.SyncBatchNorm):
323
- new_cls = BatchNormXd
324
- module_output = BatchNormXd(module.num_features,
325
- module.eps, module.momentum,
326
- module.affine,
327
- module.track_running_stats)
328
- if module.affine:
329
- with torch.no_grad():
330
- module_output.weight = module.weight
331
- module_output.bias = module.bias
332
- module_output.running_mean = module.running_mean
333
- module_output.running_var = module.running_var
334
- module_output.num_batches_tracked = module.num_batches_tracked
335
- if hasattr(module, "qconfig"):
336
- module_output.qconfig = module.qconfig
337
- for name, child in module.named_children():
338
- module_output.add_module(name, revert_sync_batchnorm(child))
339
- del module
340
- return module_output
341
-
342
-
343
- class TracedModel(nn.Module):
344
-
345
- def __init__(self, model=None, device=None, img_size=(640,640)):
346
- super(TracedModel, self).__init__()
347
-
348
- print(" Convert model to Traced-model... ")
349
- self.stride = model.stride
350
- self.names = model.names
351
- self.model = model
352
-
353
- self.model = revert_sync_batchnorm(self.model)
354
- self.model.to('cpu')
355
- self.model.eval()
356
-
357
- self.detect_layer = self.model.model[-1]
358
- self.model.traced = True
359
-
360
- rand_example = torch.rand(1, 3, img_size, img_size)
361
-
362
- traced_script_module = torch.jit.trace(self.model, rand_example, strict=False)
363
- #traced_script_module = torch.jit.script(self.model)
364
- traced_script_module.save("traced_model.pt")
365
- print(" traced_script_module saved! ")
366
- self.model = traced_script_module
367
- self.model.to(device)
368
- self.detect_layer.to(device)
369
- print(" model is traced! \n")
370
-
371
- def forward(self, x, augment=False, profile=False):
372
- out = self.model(x)
373
- out = self.detect_layer(out)
374
- return out