|
import torch |
|
import os |
|
from tqdm import tqdm |
|
from PIL import Image, ImageDraw ,ImageFont |
|
from matplotlib import pyplot as plt |
|
import torchvision.transforms as T |
|
import os |
|
import yaml |
|
import numpy as np |
|
|
|
|
|
def load_512(image_path, left=0, right=0, top=0, bottom=0, device=None): |
|
if type(image_path) is str: |
|
image = np.array(Image.open(image_path).convert('RGB'))[:, :, :3] |
|
else: |
|
image = image_path |
|
h, w, c = image.shape |
|
left = min(left, w-1) |
|
right = min(right, w - left - 1) |
|
top = min(top, h - left - 1) |
|
bottom = min(bottom, h - top - 1) |
|
image = image[top:h-bottom, left:w-right] |
|
h, w, c = image.shape |
|
if h < w: |
|
offset = (w - h) // 2 |
|
image = image[:, offset:offset + h] |
|
elif w < h: |
|
offset = (h - w) // 2 |
|
image = image[offset:offset + w] |
|
image = np.array(Image.fromarray(image).resize((512, 512))) |
|
image = torch.from_numpy(image).float() / 127.5 - 1 |
|
image = image.permute(2, 0, 1).unsqueeze(0).to(device, dtype =torch.float16) |
|
|
|
return image |
|
|
|
|
|
|
|
def mu_tilde(model, xt,x0, timestep): |
|
"mu_tilde(x_t, x_0) DDPM paper eq. 7" |
|
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps |
|
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod |
|
alpha_t = model.scheduler.alphas[timestep] |
|
beta_t = 1 - alpha_t |
|
alpha_bar = model.scheduler.alphas_cumprod[timestep] |
|
return ((alpha_prod_t_prev ** 0.5 * beta_t) / (1-alpha_bar)) * x0 + ((alpha_t**0.5 *(1-alpha_prod_t_prev)) / (1- alpha_bar))*xt |
|
|
|
def sample_xts_from_x0(model, x0, num_inference_steps=50): |
|
""" |
|
Samples from P(x_1:T|x_0) |
|
""" |
|
|
|
alpha_bar = model.scheduler.alphas_cumprod |
|
sqrt_one_minus_alpha_bar = (1-alpha_bar) ** 0.5 |
|
alphas = model.scheduler.alphas |
|
betas = 1 - alphas |
|
variance_noise_shape = ( |
|
num_inference_steps, |
|
model.unet.in_channels, |
|
model.unet.sample_size, |
|
model.unet.sample_size) |
|
|
|
timesteps = model.scheduler.timesteps.to(model.device) |
|
t_to_idx = {int(v):k for k,v in enumerate(timesteps)} |
|
xts = torch.zeros(variance_noise_shape).to(x0.device, dtype =torch.float16) |
|
for t in reversed(timesteps): |
|
idx = t_to_idx[int(t)] |
|
xts[idx] = x0 * (alpha_bar[t] ** 0.5) + torch.randn_like(x0, dtype =torch.float16) * sqrt_one_minus_alpha_bar[t] |
|
xts = torch.cat([xts, x0 ],dim = 0) |
|
|
|
return xts |
|
|
|
def encode_text(model, prompts): |
|
text_input = model.tokenizer( |
|
prompts, |
|
padding="max_length", |
|
max_length=model.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
with torch.no_grad(): |
|
text_encoding = model.text_encoder(text_input.input_ids.to(model.device))[0] |
|
return text_encoding |
|
|
|
def forward_step(model, model_output, timestep, sample): |
|
next_timestep = min(model.scheduler.config.num_train_timesteps - 2, |
|
timestep + model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps) |
|
|
|
|
|
alpha_prod_t = model.scheduler.alphas_cumprod[timestep] |
|
|
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
|
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) |
|
|
|
|
|
next_sample = model.scheduler.add_noise(pred_original_sample, |
|
model_output, |
|
torch.LongTensor([next_timestep])) |
|
return next_sample |
|
|
|
|
|
def get_variance(model, timestep): |
|
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps |
|
alpha_prod_t = model.scheduler.alphas_cumprod[timestep] |
|
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) |
|
return variance |
|
|
|
def inversion_forward_process(model, x0, |
|
etas = None, |
|
prog_bar = False, |
|
prompt = "", |
|
cfg_scale = 3.5, |
|
num_inference_steps=50, eps = None): |
|
|
|
if not prompt=="": |
|
text_embeddings = encode_text(model, prompt) |
|
uncond_embedding = encode_text(model, "") |
|
timesteps = model.scheduler.timesteps.to(model.device) |
|
variance_noise_shape = ( |
|
num_inference_steps, |
|
model.unet.in_channels, |
|
model.unet.sample_size, |
|
model.unet.sample_size) |
|
if etas is None or (type(etas) in [int, float] and etas == 0): |
|
eta_is_zero = True |
|
zs = None |
|
else: |
|
eta_is_zero = False |
|
if type(etas) in [int, float]: etas = [etas]*model.scheduler.num_inference_steps |
|
xts = sample_xts_from_x0(model, x0, num_inference_steps=num_inference_steps) |
|
alpha_bar = model.scheduler.alphas_cumprod |
|
zs = torch.zeros(size=variance_noise_shape, device=model.device, dtype =torch.float16) |
|
|
|
t_to_idx = {int(v):k for k,v in enumerate(timesteps)} |
|
xt = x0 |
|
op = tqdm(reversed(timesteps), desc= "Inverting...") if prog_bar else reversed(timesteps) |
|
|
|
for t in op: |
|
idx = t_to_idx[int(t)] |
|
|
|
if not eta_is_zero: |
|
xt = xts[idx][None] |
|
|
|
with torch.no_grad(): |
|
out = model.unet.forward(xt, timestep = t, encoder_hidden_states = uncond_embedding) |
|
if not prompt=="": |
|
cond_out = model.unet.forward(xt, timestep=t, encoder_hidden_states = text_embeddings) |
|
|
|
if not prompt=="": |
|
|
|
noise_pred = out.sample + cfg_scale * (cond_out.sample - out.sample) |
|
else: |
|
noise_pred = out.sample |
|
|
|
if eta_is_zero: |
|
|
|
xt = forward_step(model, noise_pred, t, xt) |
|
|
|
else: |
|
xtm1 = xts[idx+1][None] |
|
|
|
pred_original_sample = (xt - (1-alpha_bar[t]) ** 0.5 * noise_pred ) / alpha_bar[t] ** 0.5 |
|
|
|
|
|
prev_timestep = t - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps |
|
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod |
|
|
|
variance = get_variance(model, t) |
|
pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance ) ** (0.5) * noise_pred |
|
|
|
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction |
|
|
|
z = (xtm1 - mu_xt ) / ( etas[idx] * variance ** 0.5 ) |
|
zs[idx] = z |
|
|
|
|
|
xtm1 = mu_xt + ( etas[idx] * variance ** 0.5 )*z |
|
xts[idx+1] = xtm1 |
|
|
|
if not zs is None: |
|
zs[-1] = torch.zeros_like(zs[-1]) |
|
|
|
return xt, zs, xts |
|
|
|
|
|
def reverse_step(model, model_output, timestep, sample, eta = 0, variance_noise=None): |
|
|
|
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps |
|
|
|
alpha_prod_t = model.scheduler.alphas_cumprod[timestep] |
|
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod |
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) |
|
|
|
|
|
|
|
variance = get_variance(model, timestep) |
|
std_dev_t = eta * variance ** (0.5) |
|
|
|
model_output_direction = model_output |
|
|
|
|
|
pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction |
|
|
|
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction |
|
|
|
if eta > 0: |
|
if variance_noise is None: |
|
variance_noise = torch.randn(model_output.shape, device=model.device, dtype =torch.float16) |
|
sigma_z = eta * variance ** (0.5) * variance_noise |
|
prev_sample = prev_sample + sigma_z |
|
|
|
return prev_sample |
|
|
|
def inversion_reverse_process(model, |
|
xT, |
|
etas = 0, |
|
prompts = "", |
|
cfg_scales = None, |
|
prog_bar = False, |
|
zs = None, |
|
controller=None, |
|
asyrp = False): |
|
|
|
batch_size = len(prompts) |
|
|
|
cfg_scales_tensor = torch.Tensor(cfg_scales).view(-1,1,1,1).to(model.device, dtype=torch.float16) |
|
|
|
text_embeddings = encode_text(model, prompts) |
|
uncond_embedding = encode_text(model, [""] * batch_size) |
|
|
|
if etas is None: etas = 0 |
|
if type(etas) in [int, float]: etas = [etas]*model.scheduler.num_inference_steps |
|
assert len(etas) == model.scheduler.num_inference_steps |
|
timesteps = model.scheduler.timesteps.to(model.device) |
|
|
|
xt = xT.expand(batch_size, -1, -1, -1) |
|
op = tqdm(timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:] |
|
|
|
t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])} |
|
|
|
for t in op: |
|
idx = t_to_idx[int(t)] |
|
|
|
with torch.no_grad(): |
|
uncond_out = model.unet.forward(xt, timestep = t, |
|
encoder_hidden_states = uncond_embedding) |
|
|
|
|
|
if prompts: |
|
with torch.no_grad(): |
|
cond_out = model.unet.forward(xt, timestep = t, |
|
encoder_hidden_states = text_embeddings) |
|
|
|
|
|
z = zs[idx] if not zs is None else None |
|
z = z.expand(batch_size, -1, -1, -1) |
|
if prompts: |
|
|
|
noise_pred = uncond_out.sample + cfg_scales_tensor * (cond_out.sample - uncond_out.sample) |
|
else: |
|
noise_pred = uncond_out.sample |
|
|
|
xt = reverse_step(model, noise_pred, t, xt, eta = etas[idx], variance_noise = z) |
|
if controller is not None: |
|
xt = controller.step_callback(xt) |
|
return xt, zs |
|
|