Clementapa
commited on
Commit
•
1316948
1
Parent(s):
82f7f8f
Add video detection
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
|
|
1 |
from typing import List
|
2 |
|
3 |
import gradio as gr
|
|
|
4 |
import supervision as sv
|
5 |
import torch
|
6 |
from PIL import Image
|
@@ -60,7 +62,7 @@ def annotate(
|
|
60 |
return Image.fromarray(annotated_bgr_image[:, :, ::-1])
|
61 |
|
62 |
|
63 |
-
def
|
64 |
output = YOLO_MODEL(image_rgb_pil, imgsz=640, verbose=False)[0]
|
65 |
detections = sv.Detections.from_ultralytics(output)
|
66 |
|
@@ -79,30 +81,86 @@ def inference(image_rgb_pil: Image.Image, confidence: float) -> List[Image.Image
|
|
79 |
)
|
80 |
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
button_secondary_background_fill_hover="*neutral_200",
|
85 |
-
)
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
with gr.Blocks(theme=custom_theme, css="style.css") as demo:
|
88 |
gr.Markdown(MARKDOWN)
|
89 |
|
90 |
-
with gr.
|
91 |
-
with gr.
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
outputs=output_image,
|
103 |
queue=True,
|
104 |
)
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
if __name__ == "__main__":
|
108 |
demo.queue(max_size=20, api_open=False).launch()
|
|
|
1 |
+
import os.path as osp
|
2 |
from typing import List
|
3 |
|
4 |
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
import supervision as sv
|
7 |
import torch
|
8 |
from PIL import Image
|
|
|
62 |
return Image.fromarray(annotated_bgr_image[:, :, ::-1])
|
63 |
|
64 |
|
65 |
+
def inference_image(image_rgb_pil: Image.Image, confidence: float) -> List[Image.Image]:
|
66 |
output = YOLO_MODEL(image_rgb_pil, imgsz=640, verbose=False)[0]
|
67 |
detections = sv.Detections.from_ultralytics(output)
|
68 |
|
|
|
81 |
)
|
82 |
|
83 |
|
84 |
+
def process_frame(frame: np.ndarray, _) -> np.ndarray:
|
85 |
+
output = YOLO_MODEL(frame, imgsz=640, verbose=False)[0]
|
|
|
|
|
86 |
|
87 |
+
detections = sv.Detections.from_ultralytics(output)
|
88 |
+
|
89 |
+
labels = [
|
90 |
+
f"{output.names[class_id]} {confidence:0.2f}"
|
91 |
+
for _, _, confidence, class_id, _ in detections
|
92 |
+
]
|
93 |
+
|
94 |
+
thickness = 2
|
95 |
+
text_thickness = 1
|
96 |
+
text_scale = 1.0
|
97 |
+
|
98 |
+
height, width, _ = output.orig_img.shape
|
99 |
+
|
100 |
+
thickness_ratio = ((width + height) / 2) / 400
|
101 |
+
text_scale_ratio = ((width + height) / 2) / 600
|
102 |
+
text_thickness_ratio = ((width + height) / 2) / 400
|
103 |
+
|
104 |
+
BOX_ANNOTATOR.thickness = int(thickness * thickness_ratio)
|
105 |
+
BOX_ANNOTATOR.text_scale = float(text_scale * text_scale_ratio)
|
106 |
+
BOX_ANNOTATOR.text_thickness = int(text_thickness * text_thickness_ratio)
|
107 |
+
|
108 |
+
annotated_frame = BOX_ANNOTATOR.annotate(
|
109 |
+
scene=output.orig_img.copy(), detections=detections, labels=labels
|
110 |
+
)
|
111 |
+
return annotated_frame
|
112 |
+
|
113 |
+
|
114 |
+
def inference_video(path_video):
|
115 |
+
path_output_video = "temp.mp4"
|
116 |
+
sv.process_video(
|
117 |
+
source_path=path_video,
|
118 |
+
target_path=path_output_video,
|
119 |
+
callback=process_frame,
|
120 |
+
)
|
121 |
+
return path_output_video
|
122 |
+
|
123 |
+
|
124 |
+
custom_theme = gr.themes.Soft(primary_hue="green")
|
125 |
with gr.Blocks(theme=custom_theme, css="style.css") as demo:
|
126 |
gr.Markdown(MARKDOWN)
|
127 |
|
128 |
+
with gr.Tab("Detect on an image 🖼️"):
|
129 |
+
with gr.Row():
|
130 |
+
with gr.Column():
|
131 |
+
input_image = gr.Image(
|
132 |
+
image_mode="RGB",
|
133 |
+
sources=["upload", "clipboard"],
|
134 |
+
type="pil",
|
135 |
+
)
|
136 |
+
confidence_image_slider = gr.Slider(
|
137 |
+
label="Confidence", minimum=0.1, maximum=1.0, step=0.05, value=0.6
|
138 |
+
)
|
139 |
+
submit_button_image = gr.Button("Let's find orang outans 🦧 !")
|
140 |
+
output_image = gr.Image(label="Results", type="pil")
|
141 |
+
with gr.Tab("Detect on a video 📹"):
|
142 |
+
with gr.Row():
|
143 |
+
with gr.Column():
|
144 |
+
input_video = gr.Video(sources=["upload"])
|
145 |
+
# confidence_video_slider = gr.Slider(
|
146 |
+
# label="Confidence", minimum=0.1, maximum=1.0, step=0.05, value=0.6
|
147 |
+
# )
|
148 |
+
submit_button_video = gr.Button("Let's find orang outans 🦧 !")
|
149 |
+
output_video = gr.Video(label="Results")
|
150 |
+
|
151 |
+
submit_button_image.click(
|
152 |
+
inference_image,
|
153 |
+
inputs=[input_image, confidence_image_slider],
|
154 |
outputs=output_image,
|
155 |
queue=True,
|
156 |
)
|
157 |
|
158 |
+
submit_button_video.click(
|
159 |
+
inference_video,
|
160 |
+
inputs=[input_video],
|
161 |
+
outputs=output_video,
|
162 |
+
queue=True,
|
163 |
+
)
|
164 |
|
165 |
if __name__ == "__main__":
|
166 |
demo.queue(max_size=20, api_open=False).launch()
|