add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224')
|
10 |
+
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
|
11 |
+
|
12 |
+
def classify_image(image):
|
13 |
+
|
14 |
+
with torch.no_grad():
|
15 |
+
model.eval()
|
16 |
+
|
17 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
18 |
+
outputs = model(**inputs)
|
19 |
+
|
20 |
+
logits = outputs.logits
|
21 |
+
prob = torch.nn.functional.softmax(logits, dim=1)
|
22 |
+
|
23 |
+
top10_prob, top10_indices = torch.topk(prob, 10)
|
24 |
+
top10_confidences = {}
|
25 |
+
for i in range(10):
|
26 |
+
top10_confidences[model.config.id2label[int(top10_indices[0][i])]] = float(top10_prob[0][i])
|
27 |
+
|
28 |
+
return top10_confidences #confidences
|
29 |
+
|
30 |
+
|
31 |
+
with gr.Blocks(title="ViT ImageNet Classification - ClassCat",
|
32 |
+
css=".gradio-container {background:mintcream;}"
|
33 |
+
) as demo:
|
34 |
+
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">ViT - ImageNet Classification</div>""")
|
35 |
+
|
36 |
+
with gr.Row():
|
37 |
+
input_image = gr.Image(type="pil", image_mode="RGB", shape=(224, 224))
|
38 |
+
output_label=gr.Label(label="Probabilities", num_top_classes=3)
|
39 |
+
|
40 |
+
send_btn = gr.Button("Infer")
|
41 |
+
send_btn.click(fn=classify_image, inputs=input_image, outputs=output_label)
|
42 |
+
|
43 |
+
#demo.queue(concurrency_count=3)
|
44 |
+
demo.launch(debug=True)
|