Spaces:
Runtime error
Runtime error
from transformers import ViTFeatureExtractor, ViTForImageClassification | |
import torch | |
import gradio as gr | |
from PIL import Image | |
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224') | |
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224') | |
import os, glob | |
examples_dir = './samples' | |
example_files = glob.glob(os.path.join(examples_dir, '*.jpg')) | |
def classify_image(image): | |
with torch.no_grad(): | |
model.eval() | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
prob = torch.nn.functional.softmax(logits, dim=1) | |
top10_prob, top10_indices = torch.topk(prob, 10) | |
top10_confidences = {} | |
for i in range(10): | |
top10_confidences[model.config.id2label[int(top10_indices[0][i])]] = float(top10_prob[0][i]) | |
return top10_confidences #confidences | |
with gr.Blocks(title="ViT ImageNet Classification - ClassCat", | |
css=".gradio-container {background:mintcream;}" | |
) as demo: | |
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">ViT - ImageNet Classification</div>""") | |
with gr.Row(): | |
input_image = gr.Image(type="pil", image_mode="RGB", shape=(224, 224)) | |
output_label=gr.Label(label="Probabilities", num_top_classes=3) | |
send_btn = gr.Button("Infer") | |
send_btn.click(fn=classify_image, inputs=input_image, outputs=output_label) | |
with gr.Row(): | |
gr.Examples(['./samples/cat.jpg'], label='Sample images : cat', inputs=input_image) | |
gr.Examples(['./samples/cheetah.jpg'], label='cheetah', inputs=input_image) | |
gr.Examples(['./samples/hotdog.jpg'], label='hotdog', inputs=input_image) | |
gr.Examples(['./samples/lion.jpg'], label='lion', inputs=input_image) | |
#gr.Examples(example_files, inputs=input_image) | |
#demo.queue(concurrency_count=3) | |
demo.launch(debug=True) | |