Spaces:
Runtime error
Runtime error
ClaireOzzz
commited on
Commit
•
6cc3d67
1
Parent(s):
8e4a774
added app_train.py
Browse files- app_train.py +389 -0
app_train.py
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import requests
|
6 |
+
import subprocess
|
7 |
+
from subprocess import getoutput
|
8 |
+
from huggingface_hub import login, HfFileSystem, snapshot_download, HfApi, create_repo
|
9 |
+
|
10 |
+
is_gpu_associated = torch.cuda.is_available()
|
11 |
+
|
12 |
+
is_shared_ui = False
|
13 |
+
|
14 |
+
hf_token = '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'
|
15 |
+
|
16 |
+
fs = HfFileSystem(token=hf_token)
|
17 |
+
api = HfApi()
|
18 |
+
|
19 |
+
if is_gpu_associated:
|
20 |
+
gpu_info = getoutput('nvidia-smi')
|
21 |
+
if("A10G" in gpu_info):
|
22 |
+
which_gpu = "A10G"
|
23 |
+
elif("T4" in gpu_info):
|
24 |
+
which_gpu = "T4"
|
25 |
+
else:
|
26 |
+
which_gpu = "CPU"
|
27 |
+
|
28 |
+
def check_upload_or_no(value):
|
29 |
+
if value is True:
|
30 |
+
return gr.update(visible=True)
|
31 |
+
else:
|
32 |
+
return gr.update(visible=False)
|
33 |
+
|
34 |
+
def load_images_to_dataset(images, dataset_name):
|
35 |
+
|
36 |
+
if is_shared_ui:
|
37 |
+
raise gr.Error("This Space only works in duplicated instances")
|
38 |
+
|
39 |
+
if dataset_name == "":
|
40 |
+
raise gr.Error("You forgot to name your new dataset. ")
|
41 |
+
|
42 |
+
# Create the directory if it doesn't exist
|
43 |
+
my_working_directory = f"my_working_directory_for_{dataset_name}"
|
44 |
+
if not os.path.exists(my_working_directory):
|
45 |
+
os.makedirs(my_working_directory)
|
46 |
+
|
47 |
+
# Assuming 'images' is a list of image file paths
|
48 |
+
for idx, image in enumerate(images):
|
49 |
+
# Get the base file name (without path) from the original location
|
50 |
+
image_name = os.path.basename(image.name)
|
51 |
+
|
52 |
+
# Construct the destination path in the working directory
|
53 |
+
destination_path = os.path.join(my_working_directory, image_name)
|
54 |
+
|
55 |
+
# Copy the image from the original location to the working directory
|
56 |
+
shutil.copy(image.name, destination_path)
|
57 |
+
|
58 |
+
# Print the image name and its corresponding save path
|
59 |
+
print(f"Image {idx + 1}: {image_name} copied to {destination_path}")
|
60 |
+
|
61 |
+
path_to_folder = my_working_directory
|
62 |
+
your_username = api.whoami(token=hf_token)["name"]
|
63 |
+
repo_id = f"{your_username}/{dataset_name}"
|
64 |
+
create_repo(repo_id=repo_id, repo_type="dataset", token=hf_token)
|
65 |
+
|
66 |
+
api.upload_folder(
|
67 |
+
folder_path=path_to_folder,
|
68 |
+
repo_id=repo_id,
|
69 |
+
repo_type="dataset",
|
70 |
+
token=hf_token
|
71 |
+
)
|
72 |
+
|
73 |
+
return "Done, your dataset is ready and loaded for the training step!", repo_id
|
74 |
+
|
75 |
+
def swap_hardware(hf_token, hardware="cpu-basic"):
|
76 |
+
hardware_url = f"https://huggingface.co/spaces/ClaireOzzz/train-dreambooth-lora-sdxl/hardware"
|
77 |
+
headers = { "authorization" : f"Bearer {hf_token}"}
|
78 |
+
body = {'flavor': hardware}
|
79 |
+
requests.post(hardware_url, json = body, headers=headers)
|
80 |
+
|
81 |
+
def swap_sleep_time(hf_token,sleep_time):
|
82 |
+
sleep_time_url = f"https://huggingface.co/api/spaces/ClaireOzzz/train-dreambooth-lora-sdxl/sleeptime"
|
83 |
+
headers = { "authorization" : f"Bearer {hf_token}"}
|
84 |
+
body = {'seconds':sleep_time}
|
85 |
+
requests.post(sleep_time_url,json=body,headers=headers)
|
86 |
+
|
87 |
+
def get_sleep_time(hf_token):
|
88 |
+
sleep_time_url = f"https://huggingface.co/api/spaces/ClaireOzzz/train-dreambooth-lora-sdxl"
|
89 |
+
headers = { "authorization" : f"Bearer {hf_token}"}
|
90 |
+
response = requests.get(sleep_time_url,headers=headers)
|
91 |
+
try:
|
92 |
+
gcTimeout = response.json()['runtime']['gcTimeout']
|
93 |
+
except:
|
94 |
+
gcTimeout = None
|
95 |
+
return gcTimeout
|
96 |
+
|
97 |
+
def write_to_community(title, description,hf_token):
|
98 |
+
|
99 |
+
api.create_discussion(repo_id=os.environ['ClaireOzzz/train-dreambooth-lora-sdxl'], title=title, description=description,repo_type="space", token=hf_token)
|
100 |
+
|
101 |
+
|
102 |
+
def set_accelerate_default_config():
|
103 |
+
try:
|
104 |
+
subprocess.run(["accelerate", "config", "default"], check=True)
|
105 |
+
print("Accelerate default config set successfully!")
|
106 |
+
except subprocess.CalledProcessError as e:
|
107 |
+
print(f"An error occurred: {e}")
|
108 |
+
|
109 |
+
def train_dreambooth_lora_sdxl(dataset_id, instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu):
|
110 |
+
|
111 |
+
script_filename = "train_dreambooth_lora_sdxl.py" # Assuming it's in the same folder
|
112 |
+
|
113 |
+
command = [
|
114 |
+
"accelerate",
|
115 |
+
"launch",
|
116 |
+
script_filename, # Use the local script
|
117 |
+
"--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0",
|
118 |
+
"--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix",
|
119 |
+
f"--dataset_id={dataset_id}",
|
120 |
+
f"--instance_data_dir={instance_data_dir}",
|
121 |
+
f"--output_dir={lora_trained_xl_folder}",
|
122 |
+
"--mixed_precision=fp16",
|
123 |
+
f"--instance_prompt={instance_prompt}",
|
124 |
+
"--resolution=1024",
|
125 |
+
"--train_batch_size=2",
|
126 |
+
"--gradient_accumulation_steps=2",
|
127 |
+
"--gradient_checkpointing",
|
128 |
+
"--learning_rate=1e-4",
|
129 |
+
"--lr_scheduler=constant",
|
130 |
+
"--lr_warmup_steps=0",
|
131 |
+
"--enable_xformers_memory_efficient_attention",
|
132 |
+
"--mixed_precision=fp16",
|
133 |
+
"--use_8bit_adam",
|
134 |
+
f"--max_train_steps={max_train_steps}",
|
135 |
+
f"--checkpointing_steps={checkpoint_steps}",
|
136 |
+
"--seed=0",
|
137 |
+
"--push_to_hub",
|
138 |
+
f"--hub_token={hf_token}"
|
139 |
+
]
|
140 |
+
|
141 |
+
try:
|
142 |
+
subprocess.run(command, check=True)
|
143 |
+
print("Training is finished!")
|
144 |
+
if remove_gpu:
|
145 |
+
swap_hardware(hf_token, "cpu-basic")
|
146 |
+
else:
|
147 |
+
swap_sleep_time(hf_token, 300)
|
148 |
+
except subprocess.CalledProcessError as e:
|
149 |
+
print(f"An error occurred: {e}")
|
150 |
+
|
151 |
+
title="There was an error on during your training"
|
152 |
+
description=f'''
|
153 |
+
Unfortunately there was an error during training your {lora_trained_xl_folder} model.
|
154 |
+
Please check it out below. Feel free to report this issue to [SD-XL Dreambooth LoRa Training](https://huggingface.co/spaces/fffiloni/train-dreambooth-lora-sdxl):
|
155 |
+
```
|
156 |
+
{str(e)}
|
157 |
+
```
|
158 |
+
'''
|
159 |
+
if remove_gpu:
|
160 |
+
swap_hardware(hf_token, "cpu-basic")
|
161 |
+
else:
|
162 |
+
swap_sleep_time(hf_token, 300)
|
163 |
+
#write_to_community(title,description,hf_token)
|
164 |
+
|
165 |
+
def main(dataset_id,
|
166 |
+
lora_trained_xl_folder,
|
167 |
+
instance_prompt,
|
168 |
+
max_train_steps,
|
169 |
+
checkpoint_steps,
|
170 |
+
remove_gpu):
|
171 |
+
|
172 |
+
|
173 |
+
if is_shared_ui:
|
174 |
+
raise gr.Error("This Space only works in duplicated instances")
|
175 |
+
|
176 |
+
if not is_gpu_associated:
|
177 |
+
raise gr.Error("Please associate a T4 or A10G GPU for this Space")
|
178 |
+
|
179 |
+
if dataset_id == "":
|
180 |
+
raise gr.Error("You forgot to specify an image dataset")
|
181 |
+
|
182 |
+
if instance_prompt == "":
|
183 |
+
raise gr.Error("You forgot to specify a concept prompt")
|
184 |
+
|
185 |
+
if lora_trained_xl_folder == "":
|
186 |
+
raise gr.Error("You forgot to name the output folder for your model")
|
187 |
+
|
188 |
+
sleep_time = get_sleep_time(hf_token)
|
189 |
+
if sleep_time:
|
190 |
+
swap_sleep_time(hf_token, -1)
|
191 |
+
|
192 |
+
gr.Warning("If you did not check the `Remove GPU After training`, don't forget to remove the GPU attribution after you are done. ")
|
193 |
+
|
194 |
+
dataset_repo = dataset_id
|
195 |
+
|
196 |
+
# Automatically set local_dir based on the last part of dataset_repo
|
197 |
+
repo_parts = dataset_repo.split("/")
|
198 |
+
local_dir = f"./{repo_parts[-1]}" # Use the last part of the split
|
199 |
+
|
200 |
+
# Check if the directory exists and create it if necessary
|
201 |
+
if not os.path.exists(local_dir):
|
202 |
+
os.makedirs(local_dir)
|
203 |
+
|
204 |
+
gr.Info("Downloading dataset ...")
|
205 |
+
|
206 |
+
snapshot_download(
|
207 |
+
dataset_repo,
|
208 |
+
local_dir=local_dir,
|
209 |
+
repo_type="dataset",
|
210 |
+
ignore_patterns=".gitattributes",
|
211 |
+
token=hf_token
|
212 |
+
)
|
213 |
+
|
214 |
+
set_accelerate_default_config()
|
215 |
+
|
216 |
+
gr.Info("Training begins ...")
|
217 |
+
|
218 |
+
instance_data_dir = repo_parts[-1]
|
219 |
+
train_dreambooth_lora_sdxl(dataset_id, instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu)
|
220 |
+
|
221 |
+
your_username = api.whoami(token=hf_token)["name"]
|
222 |
+
return f"Done, your trained model has been stored in your models library: {your_username}/{lora_trained_xl_folder}"
|
223 |
+
|
224 |
+
css="""
|
225 |
+
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;}
|
226 |
+
#upl-dataset-group {background-color: none!important;}
|
227 |
+
|
228 |
+
div#warning-ready {
|
229 |
+
background-color: #ecfdf5;
|
230 |
+
padding: 0 10px 5px;
|
231 |
+
margin: 20px 0;
|
232 |
+
}
|
233 |
+
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p {
|
234 |
+
color: #057857!important;
|
235 |
+
}
|
236 |
+
|
237 |
+
div#warning-duplicate {
|
238 |
+
background-color: #ebf5ff;
|
239 |
+
padding: 0 10px 5px;
|
240 |
+
margin: 20px 0;
|
241 |
+
}
|
242 |
+
|
243 |
+
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
|
244 |
+
color: #0f4592!important;
|
245 |
+
}
|
246 |
+
|
247 |
+
div#warning-duplicate strong {
|
248 |
+
color: #0f4592;
|
249 |
+
}
|
250 |
+
|
251 |
+
p.actions {
|
252 |
+
display: flex;
|
253 |
+
align-items: center;
|
254 |
+
margin: 20px 0;
|
255 |
+
}
|
256 |
+
|
257 |
+
div#warning-duplicate .actions a {
|
258 |
+
display: inline-block;
|
259 |
+
margin-right: 10px;
|
260 |
+
}
|
261 |
+
|
262 |
+
div#warning-setgpu {
|
263 |
+
background-color: #fff4eb;
|
264 |
+
padding: 0 10px 5px;
|
265 |
+
margin: 20px 0;
|
266 |
+
}
|
267 |
+
|
268 |
+
div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p {
|
269 |
+
color: #92220f!important;
|
270 |
+
}
|
271 |
+
|
272 |
+
div#warning-setgpu a, div#warning-setgpu b {
|
273 |
+
color: #91230f;
|
274 |
+
}
|
275 |
+
|
276 |
+
div#warning-setgpu p.actions > a {
|
277 |
+
display: inline-block;
|
278 |
+
background: #1f1f23;
|
279 |
+
border-radius: 40px;
|
280 |
+
padding: 6px 24px;
|
281 |
+
color: antiquewhite;
|
282 |
+
text-decoration: none;
|
283 |
+
font-weight: 600;
|
284 |
+
font-size: 1.2em;
|
285 |
+
}
|
286 |
+
|
287 |
+
button#load-dataset-btn{
|
288 |
+
min-height: 60px;
|
289 |
+
}
|
290 |
+
"""
|
291 |
+
def create_training_demo() -> gr.Blocks:
|
292 |
+
with gr.Blocks(css=css) as demo:
|
293 |
+
with gr.Column(elem_id="col-container"):
|
294 |
+
if is_shared_ui:
|
295 |
+
top_description = gr.HTML(f'''
|
296 |
+
<div class="gr-prose">
|
297 |
+
<h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
|
298 |
+
Attention: this Space need to be duplicated to work</h2>
|
299 |
+
<p class="main-message">
|
300 |
+
To make it work, <strong>duplicate the Space</strong> and run it on your own profile using a <strong>private</strong> GPU (T4-small or A10G-small).<br />
|
301 |
+
A T4 costs <strong>US$0.60/h</strong>, so it should cost < US$1 to train most models.
|
302 |
+
</p>
|
303 |
+
<p class="actions">
|
304 |
+
|
305 |
+
to start training your own image model
|
306 |
+
</p>
|
307 |
+
</div>
|
308 |
+
''', elem_id="warning-duplicate")
|
309 |
+
# else:
|
310 |
+
# if(is_gpu_associated):
|
311 |
+
# top_description = gr.HTML(f'''
|
312 |
+
# <div class="gr-prose">
|
313 |
+
# <h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
|
314 |
+
# You have successfully associated a {which_gpu} GPU to the SD-XL Training Space 🎉</h2>
|
315 |
+
# <p>
|
316 |
+
# You can now train your model! You will be billed by the minute from when you activated the GPU until when it is turned off.
|
317 |
+
# </p>
|
318 |
+
# </div>
|
319 |
+
# ''', elem_id="warning-ready")
|
320 |
+
# else:
|
321 |
+
# top_description = gr.HTML(f'''
|
322 |
+
# <div class="gr-prose">
|
323 |
+
# <h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
|
324 |
+
# You have successfully duplicated the SD-XL Training Space 🎉</h2>
|
325 |
+
# <p>There's only one step left before you can train your model: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4-small or A10G-small GPU</b> to it (via the Settings tab)</a> and run the training below.
|
326 |
+
# You will be billed by the minute from when you activate the GPU until when it is turned off.</p>
|
327 |
+
# <p class="actions">
|
328 |
+
# <a href="https://huggingface.co/spaces/ClaireOzzz/train-dreambooth-lora-sdxl/settings">🔥 Set recommended GPU</a>
|
329 |
+
# </p>
|
330 |
+
# </div>
|
331 |
+
# ''', elem_id="warning-setgpu")
|
332 |
+
|
333 |
+
gr.Markdown("# SD-XL Dreambooth LoRa Training UI 💭")
|
334 |
+
|
335 |
+
upload_my_images = gr.Checkbox(label="Drop your training images ? (optional)", value=False)
|
336 |
+
gr.Markdown("Use this step to upload your training images and create a new dataset. If you already have a dataset stored on your HF profile, you can skip this step, and provide your dataset ID in the training `Datased ID` input below.")
|
337 |
+
|
338 |
+
with gr.Group(visible=False, elem_id="upl-dataset-group") as upload_group:
|
339 |
+
with gr.Row():
|
340 |
+
images = gr.File(file_types=["image"], label="Upload your images", file_count="multiple", interactive=True, visible=True)
|
341 |
+
with gr.Column():
|
342 |
+
new_dataset_name = gr.Textbox(label="Set new dataset name", placeholder="e.g.: my_awesome_dataset")
|
343 |
+
dataset_status = gr.Textbox(label="dataset status")
|
344 |
+
load_btn = gr.Button("Load images to new dataset", elem_id="load-dataset-btn")
|
345 |
+
|
346 |
+
gr.Markdown("## Training ")
|
347 |
+
gr.Markdown("You can use an existing image dataset, find a dataset example here: [https://huggingface.co/datasets/diffusers/dog-example](https://huggingface.co/datasets/diffusers/dog-example) ;)")
|
348 |
+
|
349 |
+
with gr.Row():
|
350 |
+
dataset_id = gr.Textbox(label="Dataset ID", info="use one of your previously uploaded image datasets on your HF profile", placeholder="diffusers/dog-example")
|
351 |
+
instance_prompt = gr.Textbox(label="Concept prompt", info="concept prompt - use a unique, made up word to avoid collisions")
|
352 |
+
|
353 |
+
with gr.Row():
|
354 |
+
model_output_folder = gr.Textbox(label="Output model folder name", placeholder="lora-trained-xl-folder")
|
355 |
+
max_train_steps = gr.Number(label="Max Training Steps", value=500, precision=0, step=10)
|
356 |
+
checkpoint_steps = gr.Number(label="Checkpoints Steps", value=100, precision=0, step=10)
|
357 |
+
|
358 |
+
remove_gpu = gr.Checkbox(label="Remove GPU After Training", value=True, info="If NOT enabled, don't forget to remove the GPU attribution after you are done.")
|
359 |
+
train_button = gr.Button("Train !")
|
360 |
+
|
361 |
+
train_status = gr.Textbox(label="Training status")
|
362 |
+
|
363 |
+
upload_my_images.change(
|
364 |
+
fn = check_upload_or_no,
|
365 |
+
inputs =[upload_my_images],
|
366 |
+
outputs = [upload_group]
|
367 |
+
)
|
368 |
+
|
369 |
+
load_btn.click(
|
370 |
+
fn = load_images_to_dataset,
|
371 |
+
inputs = [images, new_dataset_name],
|
372 |
+
outputs = [dataset_status, dataset_id]
|
373 |
+
)
|
374 |
+
|
375 |
+
train_button.click(
|
376 |
+
fn = main,
|
377 |
+
inputs = [
|
378 |
+
dataset_id,
|
379 |
+
model_output_folder,
|
380 |
+
instance_prompt,
|
381 |
+
max_train_steps,
|
382 |
+
checkpoint_steps,
|
383 |
+
remove_gpu
|
384 |
+
],
|
385 |
+
outputs = [train_status]
|
386 |
+
)
|
387 |
+
return demo
|
388 |
+
|
389 |
+
#demo.launch(debug=True, share=True)
|