Spaces:
Runtime error
Runtime error
ClaireOzzz
commited on
Commit
•
1c2e38e
1
Parent(s):
847b4f9
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import login, HfFileSystem, HfApi, ModelCard
|
3 |
+
import os
|
4 |
+
import spaces
|
5 |
+
import random
|
6 |
+
import torch
|
7 |
+
|
8 |
+
is_shared_ui = False
|
9 |
+
|
10 |
+
hf_token = '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'
|
11 |
+
login(token=hf_token)
|
12 |
+
|
13 |
+
fs = HfFileSystem(token=hf_token)
|
14 |
+
api = HfApi()
|
15 |
+
|
16 |
+
device="cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
|
18 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
19 |
+
from diffusers.utils import load_image
|
20 |
+
from PIL import Image
|
21 |
+
import torch
|
22 |
+
import numpy as np
|
23 |
+
import cv2
|
24 |
+
|
25 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
26 |
+
|
27 |
+
controlnet = ControlNetModel.from_pretrained(
|
28 |
+
"diffusers/controlnet-canny-sdxl-1.0",
|
29 |
+
torch_dtype=torch.float16
|
30 |
+
)
|
31 |
+
|
32 |
+
def check_use_custom_or_no(value):
|
33 |
+
if value is True:
|
34 |
+
return gr.update(visible=True)
|
35 |
+
else:
|
36 |
+
return gr.update(visible=False)
|
37 |
+
|
38 |
+
def get_files(file_paths):
|
39 |
+
last_files = {} # Dictionary to store the last file for each path
|
40 |
+
|
41 |
+
for file_path in file_paths:
|
42 |
+
# Split the file path into directory and file components
|
43 |
+
directory, file_name = file_path.rsplit('/', 1)
|
44 |
+
|
45 |
+
# Update the last file for the current path
|
46 |
+
last_files[directory] = file_name
|
47 |
+
|
48 |
+
# Extract the last files from the dictionary
|
49 |
+
result = list(last_files.values())
|
50 |
+
|
51 |
+
return result
|
52 |
+
|
53 |
+
def load_model(model_name):
|
54 |
+
|
55 |
+
if model_name == "":
|
56 |
+
gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.")
|
57 |
+
raise gr.Error("You forgot to define Model ID.")
|
58 |
+
|
59 |
+
# Get instance_prompt a.k.a trigger word
|
60 |
+
card = ModelCard.load(model_name)
|
61 |
+
repo_data = card.data.to_dict()
|
62 |
+
instance_prompt = repo_data.get("instance_prompt")
|
63 |
+
|
64 |
+
if instance_prompt is not None:
|
65 |
+
print(f"Trigger word: {instance_prompt}")
|
66 |
+
else:
|
67 |
+
instance_prompt = "no trigger word needed"
|
68 |
+
print(f"Trigger word: no trigger word needed")
|
69 |
+
|
70 |
+
# List all ".safetensors" files in repo
|
71 |
+
sfts_available_files = fs.glob(f"{model_name}/*safetensors")
|
72 |
+
sfts_available_files = get_files(sfts_available_files)
|
73 |
+
|
74 |
+
if sfts_available_files == []:
|
75 |
+
sfts_available_files = ["NO SAFETENSORS FILE"]
|
76 |
+
|
77 |
+
print(f"Safetensors available: {sfts_available_files}")
|
78 |
+
|
79 |
+
return model_name, "Model Ready", gr.update(choices=sfts_available_files, value=sfts_available_files[0], visible=True), gr.update(value=instance_prompt, visible=True)
|
80 |
+
|
81 |
+
def custom_model_changed(model_name, previous_model):
|
82 |
+
if model_name == "" and previous_model == "" :
|
83 |
+
status_message = ""
|
84 |
+
elif model_name != previous_model:
|
85 |
+
status_message = "model changed, please reload before any new run"
|
86 |
+
else:
|
87 |
+
status_message = "model ready"
|
88 |
+
return status_message
|
89 |
+
|
90 |
+
def resize_image(input_path, output_path, target_height):
|
91 |
+
# Open the input image
|
92 |
+
img = Image.open(input_path)
|
93 |
+
|
94 |
+
# Calculate the aspect ratio of the original image
|
95 |
+
original_width, original_height = img.size
|
96 |
+
original_aspect_ratio = original_width / original_height
|
97 |
+
|
98 |
+
# Calculate the new width while maintaining the aspect ratio and the target height
|
99 |
+
new_width = int(target_height * original_aspect_ratio)
|
100 |
+
|
101 |
+
# Resize the image while maintaining the aspect ratio and fixing the height
|
102 |
+
img = img.resize((new_width, target_height), Image.LANCZOS)
|
103 |
+
|
104 |
+
# Save the resized image
|
105 |
+
img.save(output_path)
|
106 |
+
|
107 |
+
return output_path
|
108 |
+
|
109 |
+
@spaces.GPU
|
110 |
+
def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)):
|
111 |
+
|
112 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
113 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
114 |
+
controlnet=controlnet,
|
115 |
+
vae=vae,
|
116 |
+
torch_dtype=torch.float16,
|
117 |
+
variant="fp16",
|
118 |
+
use_safetensors=True
|
119 |
+
)
|
120 |
+
|
121 |
+
pipe.to(device)
|
122 |
+
|
123 |
+
prompt = prompt
|
124 |
+
negative_prompt = negative_prompt
|
125 |
+
|
126 |
+
if seed < 0 :
|
127 |
+
seed = random.randint(0, 423538377342)
|
128 |
+
|
129 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
130 |
+
|
131 |
+
if image_in == None:
|
132 |
+
raise gr.Error("You forgot to upload a source image.")
|
133 |
+
|
134 |
+
image_in = resize_image(image_in, "resized_input.jpg", 1024)
|
135 |
+
|
136 |
+
if preprocessor == "canny":
|
137 |
+
|
138 |
+
image = load_image(image_in)
|
139 |
+
|
140 |
+
image = np.array(image)
|
141 |
+
image = cv2.Canny(image, 100, 200)
|
142 |
+
image = image[:, :, None]
|
143 |
+
image = np.concatenate([image, image, image], axis=2)
|
144 |
+
image = Image.fromarray(image)
|
145 |
+
|
146 |
+
if use_custom_model:
|
147 |
+
|
148 |
+
if model_name == "":
|
149 |
+
raise gr.Error("you forgot to set a custom model name.")
|
150 |
+
|
151 |
+
custom_model = model_name
|
152 |
+
|
153 |
+
# This is where you load your trained weights
|
154 |
+
if weight_name == "NO SAFETENSORS FILE":
|
155 |
+
pipe.load_lora_weights(
|
156 |
+
custom_model,
|
157 |
+
low_cpu_mem_usage = True,
|
158 |
+
use_auth_token = True
|
159 |
+
)
|
160 |
+
|
161 |
+
else:
|
162 |
+
pipe.load_lora_weights(
|
163 |
+
custom_model,
|
164 |
+
weight_name = weight_name,
|
165 |
+
low_cpu_mem_usage = True,
|
166 |
+
use_auth_token = True
|
167 |
+
)
|
168 |
+
|
169 |
+
lora_scale=custom_lora_weight
|
170 |
+
|
171 |
+
images = pipe(
|
172 |
+
prompt,
|
173 |
+
negative_prompt=negative_prompt,
|
174 |
+
image=image,
|
175 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
176 |
+
guidance_scale = float(guidance_scale),
|
177 |
+
num_inference_steps=inf_steps,
|
178 |
+
generator=generator,
|
179 |
+
cross_attention_kwargs={"scale": lora_scale}
|
180 |
+
).images
|
181 |
+
else:
|
182 |
+
images = pipe(
|
183 |
+
prompt,
|
184 |
+
negative_prompt=negative_prompt,
|
185 |
+
image=image,
|
186 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
187 |
+
guidance_scale = float(guidance_scale),
|
188 |
+
num_inference_steps=inf_steps,
|
189 |
+
generator=generator,
|
190 |
+
).images
|
191 |
+
|
192 |
+
images[0].save(f"result.png")
|
193 |
+
|
194 |
+
return f"result.png", seed
|
195 |
+
|
196 |
+
css="""
|
197 |
+
#col-container{
|
198 |
+
margin: 0 auto;
|
199 |
+
max-width: 720px;
|
200 |
+
text-align: left;
|
201 |
+
}
|
202 |
+
div#warning-duplicate {
|
203 |
+
background-color: #ebf5ff;
|
204 |
+
padding: 0 10px 5px;
|
205 |
+
margin: 20px 0;
|
206 |
+
}
|
207 |
+
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
|
208 |
+
color: #0f4592!important;
|
209 |
+
}
|
210 |
+
div#warning-duplicate strong {
|
211 |
+
color: #0f4592;
|
212 |
+
}
|
213 |
+
p.actions {
|
214 |
+
display: flex;
|
215 |
+
align-items: center;
|
216 |
+
margin: 20px 0;
|
217 |
+
}
|
218 |
+
div#warning-duplicate .actions a {
|
219 |
+
display: inline-block;
|
220 |
+
margin-right: 10px;
|
221 |
+
}
|
222 |
+
button#load_model_btn{
|
223 |
+
height: 46px;
|
224 |
+
}
|
225 |
+
#status_info{
|
226 |
+
font-size: 0.9em;
|
227 |
+
}
|
228 |
+
"""
|
229 |
+
|
230 |
+
theme = gr.themes.Soft(
|
231 |
+
primary_hue="teal",
|
232 |
+
secondary_hue="gray",
|
233 |
+
).set(
|
234 |
+
body_text_color_dark='*neutral_800',
|
235 |
+
background_fill_primary_dark='*neutral_50',
|
236 |
+
background_fill_secondary_dark='*neutral_50',
|
237 |
+
border_color_accent_dark='*primary_300',
|
238 |
+
border_color_primary_dark='*neutral_200',
|
239 |
+
color_accent_soft_dark='*neutral_50',
|
240 |
+
link_text_color_dark='*secondary_600',
|
241 |
+
link_text_color_active_dark='*secondary_600',
|
242 |
+
link_text_color_hover_dark='*secondary_700',
|
243 |
+
link_text_color_visited_dark='*secondary_500',
|
244 |
+
code_background_fill_dark='*neutral_100',
|
245 |
+
shadow_spread_dark='6px',
|
246 |
+
block_background_fill_dark='white',
|
247 |
+
block_label_background_fill_dark='*primary_100',
|
248 |
+
block_label_text_color_dark='*primary_500',
|
249 |
+
block_title_text_color_dark='*primary_500',
|
250 |
+
checkbox_background_color_dark='*background_fill_primary',
|
251 |
+
checkbox_background_color_selected_dark='*primary_600',
|
252 |
+
checkbox_border_color_dark='*neutral_100',
|
253 |
+
checkbox_border_color_focus_dark='*primary_500',
|
254 |
+
checkbox_border_color_hover_dark='*neutral_300',
|
255 |
+
checkbox_border_color_selected_dark='*primary_600',
|
256 |
+
checkbox_label_background_fill_selected_dark='*primary_500',
|
257 |
+
checkbox_label_text_color_selected_dark='white',
|
258 |
+
error_background_fill_dark='#fef2f2',
|
259 |
+
error_border_color_dark='#b91c1c',
|
260 |
+
error_text_color_dark='#b91c1c',
|
261 |
+
error_icon_color_dark='#b91c1c',
|
262 |
+
input_background_fill_dark='white',
|
263 |
+
input_background_fill_focus_dark='*secondary_500',
|
264 |
+
input_border_color_dark='*neutral_50',
|
265 |
+
input_border_color_focus_dark='*secondary_300',
|
266 |
+
input_placeholder_color_dark='*neutral_400',
|
267 |
+
slider_color_dark='*primary_500',
|
268 |
+
stat_background_fill_dark='*primary_300',
|
269 |
+
table_border_color_dark='*neutral_300',
|
270 |
+
table_even_background_fill_dark='white',
|
271 |
+
table_odd_background_fill_dark='*neutral_50',
|
272 |
+
button_primary_background_fill_dark='*primary_500',
|
273 |
+
button_primary_background_fill_hover_dark='*primary_400',
|
274 |
+
button_primary_border_color_dark='*primary_00',
|
275 |
+
button_secondary_background_fill_dark='whiite',
|
276 |
+
button_secondary_background_fill_hover_dark='*neutral_100',
|
277 |
+
button_secondary_border_color_dark='*neutral_200',
|
278 |
+
button_secondary_text_color_dark='*neutral_800'
|
279 |
+
)
|
280 |
+
|
281 |
+
with gr.Blocks(theme=theme, css=css) as demo:
|
282 |
+
with gr.Column(elem_id="col-container"):
|
283 |
+
|
284 |
+
gr.HTML("""
|
285 |
+
<h2 style="text-align: center;">SD-XL Control LoRas</h2>
|
286 |
+
<p style="text-align: center;">Use StableDiffusion XL with <a href="https://huggingface.co/collections/diffusers/sdxl-controlnets-64f9c35846f3f06f5abe351f">Diffusers' SDXL ControlNets</a></p>
|
287 |
+
""")
|
288 |
+
|
289 |
+
use_custom_model = gr.Checkbox(label="Use a custom pre-trained LoRa model ? (optional)", visible = False, value=False, info="To use a private model, you'll need to duplicate the space with your own access token.")
|
290 |
+
|
291 |
+
with gr.Blocks(visible=False) as custom_model_box:
|
292 |
+
with gr.Row():
|
293 |
+
with gr.Column():
|
294 |
+
if not is_shared_ui:
|
295 |
+
your_username = api.whoami()["name"]
|
296 |
+
my_models = api.list_models(author=your_username, filter=["diffusers", "stable-diffusion-xl", 'lora'])
|
297 |
+
model_names = [item.modelId for item in my_models]
|
298 |
+
|
299 |
+
if not is_shared_ui:
|
300 |
+
custom_model = gr.Dropdown(
|
301 |
+
label = "Your custom model ID",
|
302 |
+
info="You can pick one of your private models",
|
303 |
+
choices = model_names,
|
304 |
+
allow_custom_value = True
|
305 |
+
#placeholder = "username/model_id"
|
306 |
+
)
|
307 |
+
else:
|
308 |
+
custom_model = gr.Textbox(
|
309 |
+
label="Your custom model ID",
|
310 |
+
placeholder="your_username/your_trained_model_name",
|
311 |
+
info="Make sure your model is set to PUBLIC"
|
312 |
+
)
|
313 |
+
|
314 |
+
weight_name = gr.Dropdown(
|
315 |
+
label="Safetensors file",
|
316 |
+
#value="pytorch_lora_weights.safetensors",
|
317 |
+
info="specify which one if model has several .safetensors files",
|
318 |
+
allow_custom_value=True,
|
319 |
+
visible = False
|
320 |
+
)
|
321 |
+
with gr.Column():
|
322 |
+
with gr.Group():
|
323 |
+
# load_model_btn = gr.Button("Load my model", elem_id="load_model_btn")
|
324 |
+
previous_model = gr.Textbox(
|
325 |
+
visible = False
|
326 |
+
)
|
327 |
+
model_status = gr.Textbox(
|
328 |
+
label = "model status",
|
329 |
+
show_label = False,
|
330 |
+
elem_id = "status_info"
|
331 |
+
)
|
332 |
+
trigger_word = gr.Textbox(label="Trigger word", interactive=False, visible=False)
|
333 |
+
|
334 |
+
image_in = gr.Image(sources="upload", type="filepath")
|
335 |
+
|
336 |
+
with gr.Row():
|
337 |
+
|
338 |
+
with gr.Column():
|
339 |
+
with gr.Group():
|
340 |
+
prompt = gr.Textbox(label="Prompt")
|
341 |
+
negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured")
|
342 |
+
with gr.Group():
|
343 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5)
|
344 |
+
inf_steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25)
|
345 |
+
custom_lora_weight = gr.Slider(label="Custom model weights", minimum=0.1, maximum=0.9, step=0.1, value=0.9)
|
346 |
+
|
347 |
+
with gr.Column():
|
348 |
+
with gr.Group():
|
349 |
+
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available")
|
350 |
+
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5)
|
351 |
+
with gr.Group():
|
352 |
+
seed = gr.Slider(
|
353 |
+
label="Seed",
|
354 |
+
info = "-1 denotes a random seed",
|
355 |
+
minimum=-1,
|
356 |
+
maximum=423538377342,
|
357 |
+
step=1,
|
358 |
+
value=-1
|
359 |
+
)
|
360 |
+
last_used_seed = gr.Number(
|
361 |
+
label = "Last used seed",
|
362 |
+
info = "the seed used in the last generation",
|
363 |
+
)
|
364 |
+
|
365 |
+
load_model_btn = gr.Button("Load my model", elem_id="load_model_btn")
|
366 |
+
submit_btn = gr.Button("Submit")
|
367 |
+
|
368 |
+
result = gr.Image(label="Result")
|
369 |
+
|
370 |
+
use_custom_model.change(
|
371 |
+
fn = check_use_custom_or_no,
|
372 |
+
inputs =[use_custom_model],
|
373 |
+
outputs = [custom_model_box],
|
374 |
+
queue = False
|
375 |
+
)
|
376 |
+
custom_model.blur(
|
377 |
+
fn=custom_model_changed,
|
378 |
+
inputs = [custom_model, previous_model],
|
379 |
+
outputs = [model_status],
|
380 |
+
queue = False
|
381 |
+
)
|
382 |
+
load_model_btn.click(
|
383 |
+
fn = load_model,
|
384 |
+
inputs=[custom_model],
|
385 |
+
outputs = [previous_model, model_status, weight_name, trigger_word],
|
386 |
+
queue = False
|
387 |
+
)
|
388 |
+
submit_btn.click(
|
389 |
+
fn = infer,
|
390 |
+
inputs = [use_custom_model,custom_model, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed],
|
391 |
+
outputs = [result, last_used_seed]
|
392 |
+
)
|
393 |
+
|
394 |
+
# return demo
|
395 |
+
|
396 |
+
|
397 |
+
demo.queue(max_size=12).launch(share=True)
|