yolov7_interface / Interface_ver1.py
Cippppy's picture
initial
1b0c9d7
import gradio as gr # Gradio package for interface
import sys # System package for path dependencies
sys.path.append('Interface_Dependencies')
sys.path.append('Engineering-Clinic-Emerging-AI-Design-Interface/Interface_Dependencies')
sys.path.append('Engineering-Clinic-Emerging-AI-Design-Interface/yolov7-main')
sys.path.append('./') # to run '$ python *.py' files in subdirectories
from run_methods import run_image, run_video, correct_video, run_stream
# Gradio Interface Code
with gr.Blocks(title="YOLO7 Interface",theme=gr.themes.Base()) as demo:
gr.Markdown(
"""
# Image & Video Interface for YOLO7 Model
Upload your own image or video and watch YOLO7 try to guess what it is!
""")
# For for input & output settings
with gr.Row() as file_settings:
# Allows choice for uploading image or video [for all]
file_type = gr.Radio(label="File Type",info="Choose 'Image' if you are uploading an image, Choose 'Video' if you are uploading a video",
choices=['Image','Video'],value='Image',show_label=True,interactive=True)
# Allows choice of source, from computer or webcam [for all]
source_type = gr.Radio(label="Source Type",info="Choose 'Computer' if you are uploading from your computer, Choose 'Webcam' if you would like to use your webcam",
choices=['Computer','Webcam'],value='Computer',show_label=True,interactive=True)
# Allows choice of which convolutional layer to show (1-17) [only for images]
conv_layer = gr.Slider(label="Convolution Layer",info="Choose a whole number from 1 to 17 to see the corresponding convolutional layer",
minimum=1,maximum=17,value=1,interactive=True,step=1,show_label=True)
# Allows choice if video from webcam is streaming or uploaded [only for videos]
video_stream = gr.Checkbox(label="Stream from webcam?",info="Check this box if you would like to stream from your webcam",value=False,show_label=True,interactive=True,visible=False)
# Allows choice of which smooth gradient output to show (1-3) [only for images]
output_map = gr.Slider(label="Map Output Number",info="Choose a whole number from 1 to 3 to see the corresponding attribution map",
minimum=1,maximum=3,value=1,interactive=True,step=1,show_label=True)
# For video inputs & outputs
with gr.Row(visible=False) as vid_tot_row:
# For webcam video inputs
with gr.Row(visible=False) as vid_web_row:
# For webcam video input
vid_web_input = gr.Video(label="Input Video",source="webcam",show_share_button=True,interactive=True)
# For webcam streaming input
vid_streaming = gr.Image(type='pil',source="webcam",label="Input Image",streaming=False,visible=False,interactive=True)
# For computer video inputs
with gr.Row() as vid_com_row:
# For computer video input
vid_com_input = gr.Video(source="upload",label="Input Video",show_share_button=True,interactive=True)
# For video output
vid_output = gr.Video(label="Output Video",show_share_button=True)
with gr.Row() as im_tot_row:
with gr.Row(visible=False) as im_web_row:
im_web_input = gr.Image(type='pil',source="webcam",label="Input Image")
with gr.Row() as im_com_row:
im_com_input = gr.Image(source="upload",type='filepath',label="Input Image",show_download_button=True,show_share_button=True,interactive=True)
with gr.Row() as im_out_row:
im_output = gr.Image(type='filepath',label="Output Image",show_download_button=True,show_share_button=True,interactive=False, visible=True)
im_conv_output = gr.Image(type='filepath',label="Output Convolution",show_download_button=True,show_share_button=True,interactive=False)
im_smooth_output = gr.Image(type='filepath',label="Output Smooth Gradient",show_download_button=True,show_share_button=True,interactive=False)
labels = gr.Textbox(label='Top Predictions:', value = "") #ME
formatted_time = gr.Textbox(label = 'Time to Run in Seconds:', value = "")
with gr.Row(visible=False) as vid_tot_start:
with gr.Row(visible=False) as vid_web_start:
vid_web_but = gr.Button(label="Start")
gr.ClearButton(components=[vid_web_input, vid_output],
interactive=True, visible=True)
with gr.Row(visible=False) as vid_com_start:
vid_com_but = gr.Button(label="Start")
gr.ClearButton(components=[vid_com_input, vid_output],
interactive=True, visible=True)
with gr.Row() as im_tot_start:
with gr.Row(visible=False) as im_web_start:
im_web_but = gr.Button(label="Start")
gr.ClearButton(components=[im_web_input, im_output, im_conv_output, im_smooth_output, labels, formatted_time], #Added info
interactive=True, visible=True)
with gr.Row() as im_com_start:
im_com_but = gr.Button(label="Start")
gr.ClearButton(components=[im_com_input, im_output, im_conv_output, im_smooth_output, labels, formatted_time], #Added info
interactive=True, visible=True)
with gr.Row() as settings:
inf_size = gr.Number(label='Inference Size (pixels)',value=640,precision=0)
obj_conf_thr = gr.Number(label='Object Confidence Threshold',value=0.25)
iou_thr = gr.Number(label='IOU threshold for NMS',value=0.45)
agnostic_nms = gr.Checkbox(label='Agnostic NMS',value=True)
norm = gr.Checkbox(label='Normalize Gradient',value=False)
def change_file_type(file, source, is_stream):
"""
Changes the visible components of the gradio interface
Args:
file (str): Type of the file (image or video)
source (str): If the file is uploaded or from webcam
Returns:
Dictionary: Each component of the interface that needs to be updated.
"""
if file == "Image":
if source == "Computer":
return {
im_tot_row: gr.Row.update(visible=True),
vid_tot_row: gr.Row.update(visible=False),
im_tot_start: gr.Row.update(visible=True),
vid_tot_start: gr.Row.update(visible=False),
vid_com_row: gr.Row.update(visible=False),
vid_web_row: gr.Row.update(visible=False),
im_com_row: gr.Row.update(visible=True),
im_web_row: gr.Row.update(visible=False),
vid_web_start: gr.Row.update(visible=False),
vid_com_start: gr.Row.update(visible=False),
im_web_start: gr.Row.update(visible=False),
im_com_start: gr.Row.update(visible=True),
conv_layer: gr.Slider(visible=True),
video_stream: gr.Checkbox(visible=False, value=False),
vid_streaming: gr.Image(visible=False, streaming=False),
vid_web_input: gr.Video(visible=True),
im_out_row: gr.Row.update(visible=True),
im_conv_output: gr.Image(visible=True),
im_smooth_output: gr.Image(visible=True),
vid_output: gr.Video(visible=False),
output_map: gr.Slider(visible=True)
}
else:
return {
im_tot_row: gr.Row.update(visible=True),
vid_tot_row: gr.Row.update(visible=False),
im_tot_start: gr.Row.update(visible=True),
vid_tot_start: gr.Row.update(visible=False),
vid_com_row: gr.Row.update(visible=False),
vid_web_row: gr.Row.update(visible=False),
im_com_row: gr.Row.update(visible=False),
im_web_row: gr.Row.update(visible=True),
vid_web_start: gr.Row.update(visible=False),
vid_com_start: gr.Row.update(visible=False),
im_web_start: gr.Row.update(visible=True),
im_com_start: gr.Row.update(visible=False),
conv_layer: gr.Slider(visible=True),
video_stream: gr.Checkbox(visible=False, value=False),
vid_streaming: gr.Image(visible=False, streaming=False),
vid_web_input: gr.Video(visible=True),
im_out_row: gr.Row.update(visible=True),
im_conv_output: gr.Image(visible=True),
im_smooth_output: gr.Image(visible=True),
vid_output: gr.Video(visible=False),
output_map: gr.Slider(visible=True)
}
else:
if source == "Computer":
return {
im_tot_row: gr.Row.update(visible=False),
vid_tot_row: gr.Row.update(visible=True),
im_tot_start: gr.Row.update(visible=False),
vid_tot_start: gr.Row.update(visible=True),
vid_com_row: gr.Row.update(visible=True),
vid_web_row: gr.Row.update(visible=False),
im_com_row: gr.Row.update(visible=False),
im_web_row: gr.Row.update(visible=False),
vid_web_start: gr.Row.update(visible=False),
vid_com_start: gr.Row.update(visible=True),
im_web_start: gr.Row.update(visible=False),
im_com_start: gr.Row.update(visible=False),
conv_layer: gr.Slider(visible=False),
video_stream: gr.Checkbox(visible=False, value=False),
vid_streaming: gr.Image(visible=False, streaming=False),
vid_web_input: gr.Video(visible=True),
im_out_row: gr.Row.update(visible=False),
im_conv_output: gr.Image(visible=True),
im_smooth_output: gr.Image(visible=True),
vid_output: gr.Video(visible=True),
output_map: gr.Slider(visible=False)
}
else:
if is_stream:
return {
im_tot_row: gr.Row.update(visible=True),
vid_tot_row: gr.Row.update(visible=True),
im_tot_start: gr.Row.update(visible=False),
vid_tot_start: gr.Row.update(visible=True),
vid_com_row: gr.Row.update(visible=False),
vid_web_row: gr.Row.update(visible=True),
im_com_row: gr.Row.update(visible=False),
im_web_row: gr.Row.update(visible=False),
vid_web_start: gr.Row.update(visible=True),
vid_com_start: gr.Row.update(visible=False),
im_web_start: gr.Row.update(visible=False),
im_com_start: gr.Row.update(visible=False),
conv_layer: gr.Slider(visible=False),
video_stream: gr.Checkbox(visible=True),
vid_streaming: gr.Image(source='webcam', visible=True, streaming=True),
vid_web_input: gr.Video(visible=False),
im_out_row: gr.Row.update(visible=True),
im_conv_output: gr.Image(visible=False),
im_smooth_output: gr.Image(visible=False),
vid_output: gr.Video(visible=False),
output_map: gr.Slider(visible=False)
}
else:
return {
im_tot_row: gr.Row.update(visible=False),
vid_tot_row: gr.Row.update(visible=True),
im_tot_start: gr.Row.update(visible=False),
vid_tot_start: gr.Row.update(visible=True),
vid_com_row: gr.Row.update(visible=False),
vid_web_row: gr.Row.update(visible=True),
im_com_row: gr.Row.update(visible=False),
im_web_row: gr.Row.update(visible=False),
vid_web_start: gr.Row.update(visible=True),
vid_com_start: gr.Row.update(visible=False),
im_web_start: gr.Row.update(visible=False),
im_com_start: gr.Row.update(visible=False),
conv_layer: gr.Slider(visible=False),
video_stream: gr.Checkbox(visible=True),
vid_streaming: gr.Image(visible=False, streaming=False),
vid_web_input: gr.Video(visible=True),
im_out_row: gr.Row.update(visible=False),
im_conv_output: gr.Image(visible=True),
im_smooth_output: gr.Image(visible=True),
vid_output: gr.Video(visible=True),
output_map: gr.Slider(visible=False)
}
def change_conv_layer(layer):
"""
Changes the shown convolutional output layer based on gradio slider
Args:
layer (int): The layer to show
Returns:
str: The file path of the output image
"""
return "outputs\\runs\\detect\\exp\\layers\\layer" + str(int(int(layer) - 1)) + '.jpg'
def change_output_num(number):
return "outputs\\runs\\detect\\exp\\smoothGrad" + str(int(int(number) -1)) + '.jpg'
file_type.input(change_file_type, show_progress=True, inputs=[file_type, source_type, video_stream], outputs=[im_tot_row, vid_tot_row, im_tot_start, vid_tot_start, vid_com_row, vid_web_row, im_com_row, im_web_row, vid_web_start, vid_com_start, im_web_start, im_com_start, conv_layer, video_stream, vid_streaming, vid_web_input, im_out_row, im_conv_output, im_smooth_output, vid_output, output_map])
source_type.input(change_file_type, show_progress=True, inputs=[file_type, source_type, video_stream], outputs=[im_tot_row, vid_tot_row, im_tot_start, vid_tot_start, vid_com_row, vid_web_row, im_com_row, im_web_row, vid_web_start, vid_com_start, im_web_start, im_com_start, conv_layer, video_stream, vid_streaming, vid_web_input, im_out_row, im_conv_output, im_smooth_output, vid_output, output_map])
video_stream.input(change_file_type, show_progress=True, inputs=[file_type, source_type, video_stream], outputs=[im_tot_row, vid_tot_row, im_tot_start, vid_tot_start, vid_com_row, vid_web_row, im_com_row, im_web_row, vid_web_start, vid_com_start, im_web_start, im_com_start, conv_layer, video_stream, vid_streaming, vid_web_input, im_out_row, im_conv_output, im_smooth_output, vid_output, output_map])
im_com_but.click(run_image, inputs=[im_com_input, source_type, inf_size, obj_conf_thr, iou_thr, conv_layer, agnostic_nms, output_map, video_stream], outputs=[im_output, im_conv_output, im_smooth_output, labels, formatted_time])
vid_com_but.click(run_video, inputs=[vid_com_input, source_type, inf_size, obj_conf_thr, iou_thr, agnostic_nms, video_stream], outputs=[vid_output])
im_web_but.click(run_image, inputs=[im_web_input, source_type, inf_size, obj_conf_thr, iou_thr, conv_layer, agnostic_nms, output_map, video_stream], outputs=[im_output, im_conv_output, im_smooth_output, labels, formatted_time])
vid_web_but.click(run_video, inputs=[vid_web_input, source_type, inf_size, obj_conf_thr, iou_thr, agnostic_nms, video_stream], outputs=[vid_output])
vid_com_input.upload(correct_video, inputs=[vid_com_input], outputs=[vid_com_input])
vid_web_input.upload(correct_video, inputs=[vid_web_input], outputs=[vid_web_input])
conv_layer.input(change_conv_layer, conv_layer, im_conv_output)
vid_streaming.stream(run_stream, inputs=[vid_streaming, source_type, inf_size, obj_conf_thr, iou_thr, conv_layer, agnostic_nms, output_map, video_stream, norm], outputs=[im_output])
output_map.input(change_output_num, output_map, im_smooth_output)
demo.load(change_file_type, show_progress=True, inputs=[file_type, source_type, video_stream], outputs=[im_tot_row, vid_tot_row, im_tot_start, vid_tot_start, vid_com_row, vid_web_row, im_com_row, im_web_row, vid_web_start, vid_com_start, im_web_start, im_com_start, conv_layer, video_stream, vid_streaming, vid_web_input, im_out_row, im_conv_output, im_smooth_output, vid_output, output_map] )
if __name__== "__main__" :
# If True, it launches Gradio interface
# If False, it runs without the interface
if True:
demo.queue().launch(share=True)
else:
# run_image("inference\\images\\bus.jpg","Computer",640,0.45,0.25,1,True)
run_video("0", "Webcam", 640, 0.25, 0.45, True, True)