Cidewalk commited on
Commit
e96eb35
β€’
1 Parent(s): 4a36662

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +146 -0
app.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import spaces
4
+ from transformers import GemmaTokenizer, AutoModelForCausalLM
5
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
6
+ from threading import Thread
7
+
8
+ # Set an environment variable
9
+ HF_TOKEN = os.environ.get("HF_TOKEN", None)
10
+
11
+
12
+ DESCRIPTION = '''
13
+ <div>
14
+ <h1 style="text-align: center;">Meta Llama3 8B</h1>
15
+ <p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
16
+ <p>πŸ”Ž For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co/blog/llama3">at our blog post</a>.</p>
17
+ <p>πŸ¦• Looking for an even more powerful model? Check out the <a href="https://huggingface.co/chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
18
+ </div>
19
+ '''
20
+
21
+ LICENSE = """
22
+ <p/>
23
+
24
+ ---
25
+ Built with Meta Llama 3
26
+ """
27
+
28
+ PLACEHOLDER = """
29
+ <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
30
+ <img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
31
+ <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
32
+ <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
33
+ </div>
34
+ """
35
+
36
+
37
+ css = """
38
+ h1 {
39
+ text-align: center;
40
+ display: block;
41
+ }
42
+
43
+ #duplicate-button {
44
+ margin: auto;
45
+ color: white;
46
+ background: #1565c0;
47
+ border-radius: 100vh;
48
+ }
49
+ """
50
+
51
+ # Load the tokenizer and model
52
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
53
+ model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto") # to("cuda:0")
54
+ terminators = [
55
+ tokenizer.eos_token_id,
56
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
57
+ ]
58
+
59
+ @spaces.GPU(duration=120)
60
+ def chat_llama3_8b(message: str,
61
+ history: list,
62
+ temperature: float,
63
+ max_new_tokens: int
64
+ ) -> str:
65
+ """
66
+ Generate a streaming response using the llama3-8b model.
67
+ Args:
68
+ message (str): The input message.
69
+ history (list): The conversation history used by ChatInterface.
70
+ temperature (float): The temperature for generating the response.
71
+ max_new_tokens (int): The maximum number of new tokens to generate.
72
+ Returns:
73
+ str: The generated response.
74
+ """
75
+ conversation = []
76
+ for user, assistant in history:
77
+ conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
78
+ conversation.append({"role": "user", "content": message})
79
+
80
+ input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
81
+
82
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
83
+
84
+ generate_kwargs = dict(
85
+ input_ids= input_ids,
86
+ streamer=streamer,
87
+ max_new_tokens=max_new_tokens,
88
+ do_sample=True,
89
+ temperature=temperature,
90
+ eos_token_id=terminators,
91
+ )
92
+ # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
93
+ if temperature == 0:
94
+ generate_kwargs['do_sample'] = False
95
+
96
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
97
+ t.start()
98
+
99
+ outputs = []
100
+ for text in streamer:
101
+ outputs.append(text)
102
+ #print(outputs)
103
+ yield "".join(outputs)
104
+
105
+
106
+ # Gradio block
107
+ chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
108
+
109
+ with gr.Blocks(fill_height=True, css=css) as demo:
110
+
111
+ gr.Markdown(DESCRIPTION)
112
+ gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
113
+ gr.ChatInterface(
114
+ fn=chat_llama3_8b,
115
+ chatbot=chatbot,
116
+ fill_height=True,
117
+ additional_inputs_accordion=gr.Accordion(label="βš™οΈ Parameters", open=False, render=False),
118
+ additional_inputs=[
119
+ gr.Slider(minimum=0,
120
+ maximum=1,
121
+ step=0.1,
122
+ value=0.95,
123
+ label="Temperature",
124
+ render=False),
125
+ gr.Slider(minimum=128,
126
+ maximum=4096,
127
+ step=1,
128
+ value=512,
129
+ label="Max new tokens",
130
+ render=False ),
131
+ ],
132
+ examples=[
133
+ ['How to setup a human base on Mars? Give short answer.'],
134
+ ['Explain theory of relativity to me like I’m 8 years old.'],
135
+ ['What is 9,000 * 9,000?'],
136
+ ['Write a pun-filled happy birthday message to my friend Alex.'],
137
+ ['Justify why a penguin might make a good king of the jungle.']
138
+ ],
139
+ cache_examples=False,
140
+ )
141
+
142
+ gr.Markdown(LICENSE)
143
+
144
+ if __name__ == "__main__":
145
+ demo.launch()
146
+