|
import gradio as gr |
|
import torch |
|
import torchvision.transforms as transforms |
|
import numpy as np |
|
|
|
from PIL import Image |
|
from model.flol import create_model |
|
|
|
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') |
|
|
|
pil_to_tensor = transforms.ToTensor() |
|
|
|
|
|
image_to_weights = ['./weights/flolv2_UHDLL.pt','./weights/flolv2_all_111439.pt'] |
|
|
|
|
|
model = create_model() |
|
|
|
def load_img(filename): |
|
img = Image.open(filename).convert("RGB") |
|
img_tensor = pil_to_tensor(img) |
|
return img_tensor |
|
|
|
def process_img(image, UHD_LL_model): |
|
|
|
|
|
|
|
|
|
model_path = image_to_weights[0] if UHD_LL_model else image_to_weights[1] |
|
checkpoints = torch.load(model_path, map_location=device) |
|
model.load_state_dict(checkpoints['params']) |
|
model.to(device) |
|
|
|
img = np.array(image) |
|
img = img / 255. |
|
img = img.astype(np.float32) |
|
y = torch.tensor(img).permute(2, 0, 1).unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
x_hat = model(y) |
|
|
|
restored_img = x_hat.squeeze().permute(1, 2, 0).clamp_(0, 1).cpu().detach().numpy() |
|
restored_img = np.clip(restored_img, 0., 1.) |
|
|
|
restored_img = (restored_img * 255.0).round().astype(np.uint8) |
|
return Image.fromarray(restored_img) |
|
|
|
|
|
title = "Fast Baselines for Real-World Low-Light Enhancement 🌠⚡🎆" |
|
description = ''' ## [Github Repository](https://github.com/cidautai/NAFourNet) |
|
[Juan Carlos Benito](https://github.com/juaben) |
|
Fundación Cidaut |
|
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations. |
|
**This demo expects an image with some degradations. If the checkbox is selected, the program will load the model related to UHD-LL dataset, if not it will load LOLv2-Real weight file.** |
|
Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K). |
|
<br> |
|
''' |
|
|
|
examples = [ |
|
['images/low00772.png'], |
|
['images/low00723.png'], |
|
['images/425_UHD_LL.JPG'], |
|
['images/1778_UHD_LL.JPG'], |
|
['images/1791_UHD_LL.JPG'] |
|
] |
|
|
|
css = """ |
|
.image-frame img, .image-container img { |
|
width: auto; |
|
height: auto; |
|
max-width: none; |
|
} |
|
""" |
|
|
|
|
|
|
|
demo = gr.Interface( |
|
fn = process_img, |
|
inputs = [gr.Image(type = 'pil', label = 'input'), 'checkbox'], |
|
outputs = [gr.Image(type='pil', label = 'output')], |
|
title = title, |
|
description = description, |
|
examples = examples, |
|
css = css |
|
) |
|
|
|
if __name__ == '__main__': |
|
demo.launch() |