Spaces:
Running
on
Zero
Running
on
Zero
CiaraRowles
commited on
Commit
•
934bde2
1
Parent(s):
8984489
Upload 4 files
Browse files- controlnet/attention_autoencoder.py +229 -0
- controlnet/callable_functions.py +125 -0
- controlnet/controlnetxs_appearance.py +1603 -0
- controlnet/pipline_controlnet_xs_v2.py +1227 -0
controlnet/attention_autoencoder.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
4 |
+
import datetime
|
5 |
+
import torch
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
from torch.nn.modules.normalization import GroupNorm
|
10 |
+
import base64
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
class PositionalEncoding(nn.Module):
|
14 |
+
def __init__(self, d_model, max_len=5000):
|
15 |
+
super(PositionalEncoding, self).__init__()
|
16 |
+
pe = torch.zeros(max_len, d_model)
|
17 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
18 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
19 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
20 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
21 |
+
pe = pe.unsqueeze(0)
|
22 |
+
self.register_buffer('pe', pe)
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
return x + self.pe[:, :x.size(1)]
|
26 |
+
|
27 |
+
|
28 |
+
class AttentionAutoencoder(nn.Module):
|
29 |
+
def __init__(self, input_dim=768,output_dim=1280, d_model=512, latent_dim=20, seq_len=196, num_heads=4, num_layers=3, out_intermediate=512):
|
30 |
+
super().__init__()
|
31 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
|
33 |
+
self.input_dim = input_dim # Adjusted to 768
|
34 |
+
self.d_model = d_model
|
35 |
+
self.latent_dim = latent_dim
|
36 |
+
self.seq_len = seq_len # Adjusted to 196
|
37 |
+
self.out_intermediate = out_intermediate
|
38 |
+
self.output_dim = output_dim
|
39 |
+
|
40 |
+
# Positional Encoding
|
41 |
+
self.pos_encoder = PositionalEncoding(d_model)
|
42 |
+
|
43 |
+
# Input Projection (adjusted to project from input_dim=768 to d_model=512)
|
44 |
+
self.input_proj = nn.Linear(input_dim, d_model)
|
45 |
+
|
46 |
+
# Latent Initialization
|
47 |
+
self.latent_init = nn.Parameter(torch.randn(1, d_model))
|
48 |
+
|
49 |
+
# Cross-Attention Encoder
|
50 |
+
self.num_layers = num_layers
|
51 |
+
self.attention_layers = nn.ModuleList([
|
52 |
+
nn.MultiheadAttention(embed_dim=d_model, num_heads=num_heads, batch_first=True)
|
53 |
+
for _ in range(num_layers)
|
54 |
+
])
|
55 |
+
|
56 |
+
# Latent Space Refinement
|
57 |
+
self.latent_proj = nn.Linear(d_model, latent_dim)
|
58 |
+
self.latent_norm = nn.LayerNorm(latent_dim)
|
59 |
+
self.latent_to_d_model = nn.Linear(latent_dim, d_model)
|
60 |
+
|
61 |
+
# Mapping latent to intermediate feature map
|
62 |
+
self.transformer_decoder = nn.TransformerDecoder(
|
63 |
+
nn.TransformerDecoderLayer(d_model=d_model, nhead=num_heads, batch_first=True),
|
64 |
+
num_layers=2
|
65 |
+
)
|
66 |
+
|
67 |
+
# Output projection
|
68 |
+
self.output_proj = nn.Linear(d_model, output_dim)
|
69 |
+
self.tgt_init = nn.Parameter(torch.randn(1, d_model))
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def encode(self, src):
|
74 |
+
# src shape: [batch_size, seq_len (196), input_dim (768)]
|
75 |
+
batch_size, seq_len, input_dim = src.shape
|
76 |
+
|
77 |
+
# Project input_dim (768) to d_model (512)
|
78 |
+
src = self.input_proj(src) # Shape: [batch_size, seq_len (196), d_model (512)]
|
79 |
+
src = self.pos_encoder(src) # Add positional encoding
|
80 |
+
|
81 |
+
# Latent initialization
|
82 |
+
latent = self.latent_init.repeat(batch_size, 1).unsqueeze(1) # Shape: [batch_size, 1, d_model]
|
83 |
+
|
84 |
+
# Cross-attend latent with input sequence
|
85 |
+
for i in range(self.num_layers):
|
86 |
+
latent, _ = self.attention_layers[i](latent, src, src)
|
87 |
+
|
88 |
+
# Project to latent dimension and normalize
|
89 |
+
latent = self.latent_proj(latent.squeeze(1)) # Shape: [batch_size, latent_dim]
|
90 |
+
latent = self.latent_norm(latent)
|
91 |
+
|
92 |
+
return latent
|
93 |
+
|
94 |
+
def decode(self, latent, seq_w, seq_h):
|
95 |
+
batch_size = latent.size(0)
|
96 |
+
|
97 |
+
target_seq_len = seq_w * seq_h
|
98 |
+
|
99 |
+
# Project latent_dim back to d_model
|
100 |
+
memory = self.latent_to_d_model(latent).unsqueeze(1) # Shape: [batch_size, 1, d_model]
|
101 |
+
|
102 |
+
# Target initialization
|
103 |
+
# Repeat the learned target initialization to match the target sequence length
|
104 |
+
tgt = self.tgt_init.repeat(batch_size, target_seq_len, 1) # Shape: [batch_size, target_seq_len, d_model]
|
105 |
+
|
106 |
+
# Apply positional encoding
|
107 |
+
tgt = self.pos_encoder(tgt)
|
108 |
+
|
109 |
+
# Apply transformer decoder
|
110 |
+
output = self.transformer_decoder(tgt, memory) # Shape: [batch_size, target_seq_len, d_model]
|
111 |
+
|
112 |
+
# Project to output_dim
|
113 |
+
output = self.output_proj(output) # Shape: [batch_size, target_seq_len, output_dim]
|
114 |
+
|
115 |
+
# Reshape output to (batch_size, seq_w, seq_h, output_dim)
|
116 |
+
output = output.view(batch_size, seq_w, seq_h, self.output_dim)
|
117 |
+
|
118 |
+
# Permute dimensions to (batch_size, output_dim, seq_w, seq_h)
|
119 |
+
output = output.permute(0, 3, 1, 2) # Shape: [batch_size, output_dim, seq_w, seq_h]
|
120 |
+
|
121 |
+
return output
|
122 |
+
|
123 |
+
def forward(self, src, seq_w, seq_h):
|
124 |
+
latent = self.encode(src)
|
125 |
+
output = self.decode(latent, seq_w, seq_h)
|
126 |
+
return output
|
127 |
+
|
128 |
+
def encode_to_base64(self, latent_vector, bits_per_element):
|
129 |
+
max_int = 2 ** bits_per_element - 1
|
130 |
+
q_latent = ((latent_vector + 1) * (max_int / 2)).clip(0, max_int).astype(np.uint8)
|
131 |
+
byte_array = q_latent.tobytes()
|
132 |
+
encoded_string = base64.b64encode(byte_array).decode('utf-8')
|
133 |
+
# Remove padding characters
|
134 |
+
return encoded_string.rstrip('=')
|
135 |
+
|
136 |
+
def decode_from_base64(self, encoded_string, bits_per_element, latentdim):
|
137 |
+
|
138 |
+
# Add back padding if it's missing
|
139 |
+
missing_padding = len(encoded_string) % 4
|
140 |
+
if missing_padding:
|
141 |
+
encoded_string += '=' * (4 - missing_padding)
|
142 |
+
byte_array = base64.b64decode(encoded_string)
|
143 |
+
q_latent = np.frombuffer(byte_array, dtype=np.uint8)[:latentdim]
|
144 |
+
max_int = 2 ** bits_per_element - 1
|
145 |
+
latent_vector = q_latent.astype(np.float32) * 2 / max_int - 1
|
146 |
+
return latent_vector
|
147 |
+
|
148 |
+
def forward_encoding(self, src, seq_w, seq_h):
|
149 |
+
"""
|
150 |
+
Encodes the input `src` into a latent representation, encodes it to a Base64 string,
|
151 |
+
decodes it back to the latent space, and then decodes it to the output.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
src: The input data to encode.
|
155 |
+
|
156 |
+
Returns:
|
157 |
+
output: The decoded output from the latent representation.
|
158 |
+
"""
|
159 |
+
# Step 1: Encode the input to latent space
|
160 |
+
latent = self.encode(src) # latent is of shape (batch_size, self.latentdim)
|
161 |
+
batch_size, latentdim = latent.shape
|
162 |
+
|
163 |
+
# Ensure bits_per_element is appropriate
|
164 |
+
bits_per_element = int(120 / latentdim) # Example: latentdim = 20, bits_per_element = 6
|
165 |
+
if bits_per_element > 8:
|
166 |
+
raise ValueError("bits_per_element cannot exceed 8 when using uint8 for encoding.")
|
167 |
+
|
168 |
+
encoded_strings = []
|
169 |
+
|
170 |
+
# Step 2: Encode each latent vector to a Base64 string
|
171 |
+
for i in range(batch_size):
|
172 |
+
latent_vector = latent[i].cpu().numpy()
|
173 |
+
encoded_string = self.encode_to_base64(latent_vector, bits_per_element)
|
174 |
+
encoded_strings.append(encoded_string)
|
175 |
+
|
176 |
+
decoded_latents = []
|
177 |
+
|
178 |
+
# Step 3: Decode each Base64 string back to the latent vector
|
179 |
+
for i, encoded_string in enumerate(encoded_strings):
|
180 |
+
print(encoded_string)
|
181 |
+
decoded_latent = self.decode_from_base64(encoded_string, bits_per_element, latentdim)
|
182 |
+
decoded_latents.append(decoded_latent)
|
183 |
+
|
184 |
+
# Step 4: Convert the list of decoded latents back to a tensor
|
185 |
+
decoded_latents = torch.tensor(decoded_latents, dtype=latent.dtype, device=latent.device)
|
186 |
+
|
187 |
+
# Step 5: Decode the latent tensor into the output
|
188 |
+
output = self.decode(decoded_latents,seq_w, seq_h)
|
189 |
+
|
190 |
+
return output, encoded_strings
|
191 |
+
|
192 |
+
def forward_from_stylecode (self, stylecode, seq_w, seq_h,dtyle,device):
|
193 |
+
|
194 |
+
latentdim = 20
|
195 |
+
bits_per_element = 6
|
196 |
+
decoded_latents = []
|
197 |
+
|
198 |
+
|
199 |
+
#for i, encoded_string in enumerate(stylecode):
|
200 |
+
decoded_latent = self.decode_from_base64(stylecode, bits_per_element, latentdim)
|
201 |
+
decoded_latents.append(decoded_latent)
|
202 |
+
|
203 |
+
# Step 4: Convert the list of decoded latents back to a tensor
|
204 |
+
decoded_latents = torch.tensor(decoded_latents, dtype=dtyle, device=device)
|
205 |
+
|
206 |
+
output = self.decode(decoded_latents, seq_w, seq_h)
|
207 |
+
return output
|
208 |
+
|
209 |
+
@torch.no_grad()
|
210 |
+
def make_stylecode (self,src):
|
211 |
+
src = src.to("cuda")
|
212 |
+
self = self.to("cuda")
|
213 |
+
print(src.device,self.device,self.input_proj.weight.device)
|
214 |
+
latent = self.encode(src) # latent is of shape (batch_size, self.latentdim)
|
215 |
+
batch_size, latentdim = latent.shape
|
216 |
+
|
217 |
+
# Ensure bits_per_element is appropriate
|
218 |
+
bits_per_element = int(120 / latentdim) # Example: latentdim = 20, bits_per_element = 6
|
219 |
+
if bits_per_element > 8:
|
220 |
+
raise ValueError("bits_per_element cannot exceed 8 when using uint8 for encoding.")
|
221 |
+
|
222 |
+
encoded_strings = []
|
223 |
+
|
224 |
+
# Step 2: Encode each latent vector to a Base64 string
|
225 |
+
for i in range(batch_size):
|
226 |
+
latent_vector = latent[i].cpu().numpy()
|
227 |
+
encoded_string = self.encode_to_base64(latent_vector, bits_per_element)
|
228 |
+
encoded_strings.append(encoded_string)
|
229 |
+
return encoded_strings
|
controlnet/callable_functions.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from diffusers import DDIMScheduler
|
6 |
+
from controlnet.pipline_controlnet_xs_v2 import StableDiffusionPipelineXSv2
|
7 |
+
from controlnet.controlnetxs_appearance import StyleCodesModel
|
8 |
+
from diffusers.models import UNet2DConditionModel
|
9 |
+
from transformers import AutoProcessor, SiglipVisionModel
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
def process_single_image(image_path, image=None):
|
14 |
+
|
15 |
+
# Set up model components
|
16 |
+
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda")
|
17 |
+
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda")
|
18 |
+
stylecodes_model.requires_grad_(False)
|
19 |
+
stylecodes_model= stylecodes_model.to("cuda")
|
20 |
+
|
21 |
+
|
22 |
+
stylecodes_model.load_model("models/controlnet_model_11_80000.bin")
|
23 |
+
# Load and preprocess image
|
24 |
+
if image is None:
|
25 |
+
image = Image.open(image_path).convert("RGB")
|
26 |
+
image = image.resize((512, 512))
|
27 |
+
|
28 |
+
# Set up generator with a fixed seed for reproducibility
|
29 |
+
seed = 238
|
30 |
+
clip_image_processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
31 |
+
image_encoder = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224").to(dtype=torch.float16,device=stylecodes_model.device)
|
32 |
+
clip_image = clip_image_processor(images=image, return_tensors="pt").pixel_values
|
33 |
+
clip_image = clip_image.to(stylecodes_model.device, dtype=torch.float16)
|
34 |
+
clip_image = {"pixel_values": clip_image}
|
35 |
+
clip_image_embeds = image_encoder(**clip_image, output_hidden_states=True).hidden_states[-2]
|
36 |
+
|
37 |
+
# Run the image through the pipeline with the specified prompt
|
38 |
+
code = stylecodes_model.sref_autoencoder.make_stylecode(clip_image_embeds)
|
39 |
+
print("stylecode = ",code)
|
40 |
+
return code
|
41 |
+
|
42 |
+
|
43 |
+
def process_single_image_both_ways(image_path, prompt, num_inference_steps,image=None):
|
44 |
+
# Load and preprocess image
|
45 |
+
# Set up model components
|
46 |
+
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda")
|
47 |
+
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda")
|
48 |
+
|
49 |
+
noise_scheduler = DDIMScheduler(
|
50 |
+
num_train_timesteps=1000,
|
51 |
+
beta_start=0.00085,
|
52 |
+
beta_end=0.012,
|
53 |
+
beta_schedule="scaled_linear",
|
54 |
+
clip_sample=False,
|
55 |
+
set_alpha_to_one=False,
|
56 |
+
steps_offset=1,
|
57 |
+
)
|
58 |
+
|
59 |
+
stylecodes_model.load_model("models/controlnet_model_11_80000.bin")
|
60 |
+
|
61 |
+
pipe = StableDiffusionPipelineXSv2.from_pretrained(
|
62 |
+
"runwayml/stable-diffusion-v1-5",
|
63 |
+
unet=unet,
|
64 |
+
stylecodes_model=stylecodes_model,
|
65 |
+
torch_dtype=torch.float16,
|
66 |
+
device="cuda",
|
67 |
+
scheduler=noise_scheduler,
|
68 |
+
feature_extractor=None,
|
69 |
+
safety_checker=None,
|
70 |
+
)
|
71 |
+
|
72 |
+
pipe.enable_model_cpu_offload()
|
73 |
+
|
74 |
+
if image is None:
|
75 |
+
image = Image.open(image_path).convert("RGB")
|
76 |
+
image = image.resize((512, 512))
|
77 |
+
|
78 |
+
# Set up generator with a fixed seed for reproducibility
|
79 |
+
seed = 238
|
80 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
81 |
+
|
82 |
+
# Run the image through the pipeline with the specified prompt
|
83 |
+
output_images = pipe(
|
84 |
+
prompt=prompt,
|
85 |
+
guidance_scale=3,
|
86 |
+
image=image,
|
87 |
+
num_inference_steps=num_inference_steps,
|
88 |
+
generator=generator,
|
89 |
+
controlnet_conditioning_scale=0.9,
|
90 |
+
width=512,
|
91 |
+
height=512,
|
92 |
+
stylecode=None,
|
93 |
+
).images
|
94 |
+
return output_images
|
95 |
+
# Save the output image
|
96 |
+
|
97 |
+
|
98 |
+
def make_stylecode(image_path, image=None):
|
99 |
+
|
100 |
+
# Set up model components
|
101 |
+
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda")
|
102 |
+
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda")
|
103 |
+
stylecodes_model.requires_grad_(False)
|
104 |
+
stylecodes_model= stylecodes_model.to("cuda")
|
105 |
+
|
106 |
+
|
107 |
+
stylecodes_model.load_model("models/controlnet_model_11_80000.bin")
|
108 |
+
# Load and preprocess image
|
109 |
+
if image is None:
|
110 |
+
image = Image.open(image_path).convert("RGB")
|
111 |
+
image = image.resize((512, 512))
|
112 |
+
|
113 |
+
# Set up generator with a fixed seed for reproducibility
|
114 |
+
seed = 238
|
115 |
+
clip_image_processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
116 |
+
image_encoder = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224").to(dtype=torch.float16,device=stylecodes_model.device)
|
117 |
+
clip_image = clip_image_processor(images=image, return_tensors="pt").pixel_values
|
118 |
+
clip_image = clip_image.to(stylecodes_model.device, dtype=torch.float16)
|
119 |
+
clip_image = {"pixel_values": clip_image}
|
120 |
+
clip_image_embeds = image_encoder(**clip_image, output_hidden_states=True).hidden_states[-2]
|
121 |
+
|
122 |
+
# Run the image through the pipeline with the specified prompt
|
123 |
+
code = stylecodes_model.sref_autoencoder.make_stylecode(clip_image_embeds)
|
124 |
+
print("stylecode = ",code)
|
125 |
+
return code
|
controlnet/controlnetxs_appearance.py
ADDED
@@ -0,0 +1,1603 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import math
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
+
import datetime
|
18 |
+
import torch
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
from torch import nn
|
21 |
+
from torch.nn import functional as F
|
22 |
+
from torch.nn.modules.normalization import GroupNorm
|
23 |
+
import os
|
24 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
25 |
+
from diffusers.models.attention_processor import AttentionProcessor
|
26 |
+
from diffusers.utils import USE_PEFT_BACKEND
|
27 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
28 |
+
from diffusers.models.lora import LoRACompatibleConv
|
29 |
+
from diffusers.models.modeling_utils import ModelMixin
|
30 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
31 |
+
CrossAttnDownBlock2D,
|
32 |
+
CrossAttnUpBlock2D,
|
33 |
+
DownBlock2D,
|
34 |
+
Downsample2D,
|
35 |
+
ResnetBlock2D,
|
36 |
+
Transformer2DModel,
|
37 |
+
UpBlock2D,
|
38 |
+
Upsample2D,
|
39 |
+
)
|
40 |
+
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
41 |
+
from diffusers.utils import BaseOutput, logging
|
42 |
+
import numpy as np
|
43 |
+
from PIL import Image
|
44 |
+
from safetensors import safe_open
|
45 |
+
from .attention_autoencoder import AttentionAutoencoder, PositionalEncoding
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
@dataclass
|
53 |
+
class ControlNetXSOutput(BaseOutput):
|
54 |
+
"""
|
55 |
+
The output of [`ControlNetXSModel`].
|
56 |
+
|
57 |
+
Args:
|
58 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
59 |
+
The output of the `ControlNetXSModel`. Unlike `ControlNetOutput` this is NOT to be added to the base model
|
60 |
+
output, but is already the final output.
|
61 |
+
"""
|
62 |
+
|
63 |
+
sample: torch.FloatTensor = None
|
64 |
+
|
65 |
+
|
66 |
+
# copied from diffusers.models.controlnet.ControlNetConditioningEmbedding
|
67 |
+
class ControlNetConditioningEmbedding(nn.Module):
|
68 |
+
"""
|
69 |
+
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
70 |
+
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
71 |
+
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
72 |
+
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
73 |
+
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
74 |
+
model) to encode image-space conditions ... into feature maps ..."
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
conditioning_embedding_channels: int,
|
80 |
+
conditioning_channels: int = 3,
|
81 |
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
86 |
+
|
87 |
+
self.blocks = nn.ModuleList([])
|
88 |
+
|
89 |
+
for i in range(len(block_out_channels) - 1):
|
90 |
+
channel_in = block_out_channels[i]
|
91 |
+
channel_out = block_out_channels[i + 1]
|
92 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
93 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
|
94 |
+
|
95 |
+
self.conv_out = zero_module(
|
96 |
+
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
97 |
+
)
|
98 |
+
|
99 |
+
def forward(self, conditioning):
|
100 |
+
embedding = self.conv_in(conditioning)
|
101 |
+
embedding = F.silu(embedding)
|
102 |
+
|
103 |
+
for block in self.blocks:
|
104 |
+
embedding = block(embedding)
|
105 |
+
embedding = F.silu(embedding)
|
106 |
+
|
107 |
+
embedding = self.conv_out(embedding)
|
108 |
+
|
109 |
+
return embedding
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
class ControlNetConditioningEmbeddingBig(nn.Module):
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
conditioning_embedding_channels: int,
|
118 |
+
conditioning_channels: int = 4,
|
119 |
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
120 |
+
text_embed_dim: int = 768,
|
121 |
+
):
|
122 |
+
super().__init__()
|
123 |
+
|
124 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
125 |
+
self.cross_attention = CrossAttention(block_out_channels[0], text_embed_dim)
|
126 |
+
|
127 |
+
# Encoder with increasing feature maps and more downsampling
|
128 |
+
self.encoder = nn.ModuleList([
|
129 |
+
nn.Conv2d(block_out_channels[0], 64, kernel_size=3, stride=2, padding=1),
|
130 |
+
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
|
131 |
+
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
|
132 |
+
nn.Conv2d(256, 320, kernel_size=3, stride=2, padding=1),
|
133 |
+
nn.Conv2d(320, 512, kernel_size=3, stride=2, padding=1),
|
134 |
+
nn.Conv2d(512, 640, kernel_size=3, stride=2, padding=1),
|
135 |
+
])
|
136 |
+
|
137 |
+
# Global embedding processing
|
138 |
+
self.global_fc = nn.Linear(640, 640)
|
139 |
+
|
140 |
+
# Bottleneck
|
141 |
+
self.bottleneck_down = nn.Conv2d(640, 6, kernel_size=3, stride=1, padding=1)
|
142 |
+
self.bottleneck_up = nn.Conv2d(6, 320, kernel_size=3, stride=1, padding=1)
|
143 |
+
|
144 |
+
# Smaller decoder to get back to 320x64x64
|
145 |
+
self.decoder = nn.ModuleList([
|
146 |
+
nn.ConvTranspose2d(320, 320, kernel_size=4, stride=2, padding=1), # 4x4 -> 8x8
|
147 |
+
nn.ConvTranspose2d(320, 320, kernel_size=4, stride=2, padding=1), # 8x8 -> 16x16
|
148 |
+
nn.ConvTranspose2d(320, 320, kernel_size=4, stride=2, padding=1), # 16x16 -> 32x32
|
149 |
+
])
|
150 |
+
|
151 |
+
def forward(self, x, text_embeds):
|
152 |
+
x = self.conv_in(x)
|
153 |
+
x = self.cross_attention(x, text_embeds)
|
154 |
+
|
155 |
+
# Encoder
|
156 |
+
for encoder_layer in self.encoder:
|
157 |
+
x = encoder_layer(x)
|
158 |
+
x = F.relu(x)
|
159 |
+
|
160 |
+
# Global embedding processing
|
161 |
+
b, c, h, w = x.shape
|
162 |
+
x_flat = x.view(b, c, -1).mean(dim=2) # Global average pooling
|
163 |
+
x_global = self.global_fc(x_flat).view(b, c, 1, 1)
|
164 |
+
x = x + x_global.expand_as(x) # Add global features to local features
|
165 |
+
|
166 |
+
# Bottleneck
|
167 |
+
x = self.bottleneck_down(x)
|
168 |
+
x = self.bottleneck_up(x)
|
169 |
+
|
170 |
+
# Decoder
|
171 |
+
for decoder_layer in self.decoder:
|
172 |
+
x = decoder_layer(x)
|
173 |
+
x = F.relu(x)
|
174 |
+
#print(x.shape)
|
175 |
+
return x
|
176 |
+
|
177 |
+
class CrossAttention(nn.Module):
|
178 |
+
def __init__(self, dim, context_dim):
|
179 |
+
super().__init__()
|
180 |
+
self.to_q = nn.Conv2d(dim, dim, 1)
|
181 |
+
self.to_k = nn.Linear(context_dim, dim)
|
182 |
+
self.to_v = nn.Linear(context_dim, dim)
|
183 |
+
self.scale = dim ** -0.5
|
184 |
+
|
185 |
+
def forward(self, x, context):
|
186 |
+
b, c, h, w = x.shape
|
187 |
+
q = self.to_q(x).view(b, c, -1).permute(0, 2, 1) # (B, H*W, C)
|
188 |
+
k = self.to_k(context) # (B, T, C)
|
189 |
+
v = self.to_v(context) # (B, T, C)
|
190 |
+
|
191 |
+
attn = torch.matmul(q, k.transpose(-2, -1)) * self.scale # (B, H*W, T)
|
192 |
+
attn = attn.softmax(dim=-1)
|
193 |
+
out = torch.matmul(attn, v) # (B, H*W, C)
|
194 |
+
out = out.permute(0, 2, 1).view(b, c, h, w) # (B, C, H, W)
|
195 |
+
return out + x
|
196 |
+
|
197 |
+
|
198 |
+
def zero_module(module):
|
199 |
+
for p in module.parameters():
|
200 |
+
nn.init.zeros_(p)
|
201 |
+
return module
|
202 |
+
|
203 |
+
|
204 |
+
class StyleCodesModel(ModelMixin, ConfigMixin):
|
205 |
+
r"""
|
206 |
+
Based off ControlNet-XS
|
207 |
+
"""
|
208 |
+
@classmethod
|
209 |
+
def init_original(cls, base_model: UNet2DConditionModel, is_sdxl=True):
|
210 |
+
"""
|
211 |
+
Create a ControlNetXS model with the same parameters as in the original paper (https://github.com/vislearn/ControlNet-XS).
|
212 |
+
|
213 |
+
Parameters:
|
214 |
+
base_model (`UNet2DConditionModel`):
|
215 |
+
Base UNet model. Needs to be either StableDiffusion or StableDiffusion-XL.
|
216 |
+
is_sdxl (`bool`, defaults to `True`):
|
217 |
+
Whether passed `base_model` is a StableDiffusion-XL model.
|
218 |
+
"""
|
219 |
+
|
220 |
+
def get_dim_attn_heads(base_model: UNet2DConditionModel, size_ratio: float, num_attn_heads: int):
|
221 |
+
"""
|
222 |
+
Currently, diffusers can only set the dimension of attention heads (see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why).
|
223 |
+
The original ControlNet-XS model, however, define the number of attention heads.
|
224 |
+
That's why compute the dimensions needed to get the correct number of attention heads.
|
225 |
+
"""
|
226 |
+
block_out_channels = [int(size_ratio * c) for c in base_model.config.block_out_channels]
|
227 |
+
dim_attn_heads = [math.ceil(c / num_attn_heads) for c in block_out_channels]
|
228 |
+
return dim_attn_heads
|
229 |
+
|
230 |
+
if is_sdxl:
|
231 |
+
return StyleCodesModel.from_unet(
|
232 |
+
base_model,
|
233 |
+
time_embedding_mix=0.95,
|
234 |
+
learn_embedding=True,
|
235 |
+
size_ratio=0.1,
|
236 |
+
conditioning_embedding_out_channels=(16, 32, 96, 256),
|
237 |
+
num_attention_heads=get_dim_attn_heads(base_model, 0.1, 64),
|
238 |
+
)
|
239 |
+
else:
|
240 |
+
return StyleCodesModel.from_unet(
|
241 |
+
base_model,
|
242 |
+
time_embedding_mix=1.0,
|
243 |
+
learn_embedding=True,
|
244 |
+
size_ratio=0.0125,
|
245 |
+
conditioning_embedding_out_channels=(16, 32, 96, 256),
|
246 |
+
num_attention_heads=get_dim_attn_heads(base_model, 0.0125, 8),
|
247 |
+
)
|
248 |
+
|
249 |
+
@classmethod
|
250 |
+
def _gather_subblock_sizes(cls, unet: UNet2DConditionModel, base_or_control: str):
|
251 |
+
"""To create correctly sized connections between base and control model, we need to know
|
252 |
+
the input and output channels of each subblock.
|
253 |
+
|
254 |
+
Parameters:
|
255 |
+
unet (`UNet2DConditionModel`):
|
256 |
+
Unet of which the subblock channels sizes are to be gathered.
|
257 |
+
base_or_control (`str`):
|
258 |
+
Needs to be either "base" or "control". If "base", decoder is also considered.
|
259 |
+
"""
|
260 |
+
if base_or_control not in ["base", "control"]:
|
261 |
+
raise ValueError("`base_or_control` needs to be either `base` or `control`")
|
262 |
+
|
263 |
+
channel_sizes = {"down": [], "mid": [], "up": []}
|
264 |
+
|
265 |
+
# input convolution
|
266 |
+
channel_sizes["down"].append((unet.conv_in.in_channels, unet.conv_in.out_channels))
|
267 |
+
|
268 |
+
# encoder blocks
|
269 |
+
for module in unet.down_blocks:
|
270 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
271 |
+
for r in module.resnets:
|
272 |
+
channel_sizes["down"].append((r.in_channels, r.out_channels))
|
273 |
+
if module.downsamplers:
|
274 |
+
channel_sizes["down"].append(
|
275 |
+
(module.downsamplers[0].channels, module.downsamplers[0].out_channels)
|
276 |
+
)
|
277 |
+
else:
|
278 |
+
raise ValueError(f"Encountered unknown module of type {type(module)} while creating ControlNet-XS.")
|
279 |
+
|
280 |
+
# middle block
|
281 |
+
channel_sizes["mid"].append((unet.mid_block.resnets[0].in_channels, unet.mid_block.resnets[0].out_channels))
|
282 |
+
|
283 |
+
# decoder blocks
|
284 |
+
#if base_or_control == "base":
|
285 |
+
for module in unet.up_blocks:
|
286 |
+
if isinstance(module, (CrossAttnUpBlock2D, UpBlock2D)):
|
287 |
+
for r in module.resnets:
|
288 |
+
channel_sizes["up"].append((r.in_channels, r.out_channels))
|
289 |
+
else:
|
290 |
+
raise ValueError(
|
291 |
+
f"Encountered unknown module of type {type(module)} while creating ControlNet-XS."
|
292 |
+
)
|
293 |
+
|
294 |
+
return channel_sizes
|
295 |
+
def _make_colab_linear_layer(self, in_channels, out_channels):
|
296 |
+
# Create a Linear layer where in_features = in_channels + out_channels
|
297 |
+
#in_features = in_channels + out_channels
|
298 |
+
linear_layer = nn.Linear(in_channels, out_channels)
|
299 |
+
|
300 |
+
# Initialize weights as identity
|
301 |
+
with torch.no_grad():
|
302 |
+
linear_layer.weight.copy_(torch.eye(in_channels))
|
303 |
+
|
304 |
+
return linear_layer
|
305 |
+
@register_to_config
|
306 |
+
def __init__(
|
307 |
+
self,
|
308 |
+
conditioning_channels: int = 3,
|
309 |
+
conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
|
310 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
311 |
+
time_embedding_input_dim: int = 320,
|
312 |
+
time_embedding_dim: int = 1280,
|
313 |
+
time_embedding_mix: float = 1.0,
|
314 |
+
learn_embedding: bool = False,
|
315 |
+
base_model_channel_sizes: Dict[str, List[Tuple[int]]] = {
|
316 |
+
"down": [
|
317 |
+
(4, 320),
|
318 |
+
(320, 320),
|
319 |
+
(320, 320),
|
320 |
+
(320, 320),
|
321 |
+
(320, 640),
|
322 |
+
(640, 640),
|
323 |
+
(640, 640),
|
324 |
+
(640, 1280),
|
325 |
+
(1280, 1280),
|
326 |
+
],
|
327 |
+
"mid": [(1280, 1280)],
|
328 |
+
"up": [
|
329 |
+
(2560, 1280),
|
330 |
+
(2560, 1280),
|
331 |
+
(1920, 1280),
|
332 |
+
(1920, 640),
|
333 |
+
(1280, 640),
|
334 |
+
(960, 640),
|
335 |
+
(960, 320),
|
336 |
+
(640, 320),
|
337 |
+
(640, 320),
|
338 |
+
],
|
339 |
+
},
|
340 |
+
sample_size: Optional[int] = None,
|
341 |
+
down_block_types: Tuple[str] = (
|
342 |
+
"CrossAttnDownBlock2D",
|
343 |
+
"CrossAttnDownBlock2D",
|
344 |
+
"CrossAttnDownBlock2D",
|
345 |
+
"DownBlock2D",
|
346 |
+
),
|
347 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
348 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
349 |
+
norm_num_groups: Optional[int] = 32,
|
350 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
351 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
352 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = 8,
|
353 |
+
upcast_attention: bool = False,
|
354 |
+
):
|
355 |
+
super().__init__()
|
356 |
+
|
357 |
+
# 1 - Create control unet
|
358 |
+
self.control_model = UNet2DConditionModel(
|
359 |
+
sample_size=sample_size,
|
360 |
+
down_block_types=down_block_types,
|
361 |
+
up_block_types=up_block_types,
|
362 |
+
block_out_channels=block_out_channels,
|
363 |
+
norm_num_groups=norm_num_groups,
|
364 |
+
cross_attention_dim=cross_attention_dim,
|
365 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
366 |
+
attention_head_dim=num_attention_heads,
|
367 |
+
use_linear_projection=True,
|
368 |
+
upcast_attention=upcast_attention,
|
369 |
+
time_embedding_dim=time_embedding_dim,
|
370 |
+
)
|
371 |
+
|
372 |
+
# 2 - Do model surgery on control model
|
373 |
+
# 2.1 - Allow to use the same time information as the base model
|
374 |
+
adjust_time_dims(self.control_model, time_embedding_input_dim, time_embedding_dim)
|
375 |
+
|
376 |
+
# 2.2 - Allow for information infusion from base model
|
377 |
+
|
378 |
+
# We concat the output of each base encoder subblocks to the input of the next control encoder subblock
|
379 |
+
# (We ignore the 1st element, as it represents the `conv_in`.)
|
380 |
+
extra_input_channels = [input_channels for input_channels, _ in base_model_channel_sizes["down"][1:]]
|
381 |
+
it_extra_input_channels = iter(extra_input_channels)
|
382 |
+
|
383 |
+
# print(extra_input_channels)
|
384 |
+
# for b, block in enumerate(self.control_model.down_blocks):
|
385 |
+
# for r in range(len(block.resnets)):
|
386 |
+
# increase_block_input_in_encoder_resnet(
|
387 |
+
# self.control_model, block_no=b, resnet_idx=r, by=next(it_extra_input_channels)
|
388 |
+
# )
|
389 |
+
# if block.downsamplers:
|
390 |
+
# increase_block_input_in_encoder_downsampler(
|
391 |
+
# self.control_model, block_no=b, by=next(it_extra_input_channels)
|
392 |
+
# )
|
393 |
+
|
394 |
+
# increase_block_input_in_mid_resnet(self.control_model, by=extra_input_channels[-1])
|
395 |
+
|
396 |
+
def get_flat_subblock_channel_sizes_down(model):
|
397 |
+
subblock_channel_sizes = []
|
398 |
+
|
399 |
+
for block in model.down_blocks:
|
400 |
+
# Iterate through ResnetBlock2D subblocks
|
401 |
+
for resnet in block.resnets:
|
402 |
+
# Only handle the first convolution for ResnetBlock2D
|
403 |
+
if hasattr(resnet, 'conv1'):
|
404 |
+
input_channels = resnet.conv1.in_channels
|
405 |
+
output_channels = resnet.conv1.out_channels
|
406 |
+
subblock_channel_sizes.append((input_channels, output_channels))
|
407 |
+
|
408 |
+
# Check and iterate through Upsample2D subblocks only if they exist
|
409 |
+
if hasattr(block, 'upsamplers') and block.upsamplers:
|
410 |
+
for upsampler in block.upsamplers:
|
411 |
+
if hasattr(upsampler, 'conv'):
|
412 |
+
input_channels = upsampler.conv.in_channels
|
413 |
+
output_channels = upsampler.conv.out_channels
|
414 |
+
subblock_channel_sizes.append((input_channels, output_channels))
|
415 |
+
print("down" ,subblock_channel_sizes)
|
416 |
+
return subblock_channel_sizes
|
417 |
+
def get_flat_subblock_channel_sizes(model):
|
418 |
+
subblock_channel_sizes = []
|
419 |
+
|
420 |
+
for block in model.up_blocks:
|
421 |
+
# Iterate through ResnetBlock2D subblocks
|
422 |
+
for resnet in block.resnets:
|
423 |
+
# Only handle the first convolution for ResnetBlock2D
|
424 |
+
if hasattr(resnet, 'conv1'):
|
425 |
+
input_channels = resnet.conv1.in_channels
|
426 |
+
output_channels = resnet.conv1.out_channels
|
427 |
+
subblock_channel_sizes.append((input_channels, output_channels))
|
428 |
+
|
429 |
+
# Check and iterate through Upsample2D subblocks only if they exist
|
430 |
+
if hasattr(block, 'upsamplers') and block.upsamplers:
|
431 |
+
for upsampler in block.upsamplers:
|
432 |
+
if hasattr(upsampler, 'conv'):
|
433 |
+
input_channels = upsampler.conv.in_channels
|
434 |
+
output_channels = upsampler.conv.out_channels
|
435 |
+
# subblock_channel_sizes.append((input_channels, output_channels))
|
436 |
+
print("up", subblock_channel_sizes)
|
437 |
+
return subblock_channel_sizes
|
438 |
+
|
439 |
+
|
440 |
+
get_flat_subblock_channel_sizes_down(self.control_model)
|
441 |
+
# Now use this function to dynamically get the extra input channels
|
442 |
+
#extra_input_channels_up = [t[1] for t in get_flat_subblock_channel_sizes(self.control_model)]
|
443 |
+
#all_channels_up = get_flat_subblock_channel_sizes(self.control_model)
|
444 |
+
#print(extra_input_channels_up)
|
445 |
+
|
446 |
+
# it_extra_input_channels = iter(extra_input_channels_up)
|
447 |
+
# #print(self.control_model.up_blocks)
|
448 |
+
# for b, block in enumerate(self.control_model.up_blocks):
|
449 |
+
|
450 |
+
# for r in range(len(block.resnets)):
|
451 |
+
# increase_block_input_in_decoder_resnet(
|
452 |
+
# self.control_model, block_no=b, resnet_idx=r, by=next(it_extra_input_channels)
|
453 |
+
# )
|
454 |
+
|
455 |
+
# print(len(block.resnets))
|
456 |
+
|
457 |
+
# # if block.upsamplers:
|
458 |
+
# #increase_block_input_in_decoder_downsampler(
|
459 |
+
# # self.control_model, block_no=b, by=next(it_extra_input_channels)
|
460 |
+
# #)
|
461 |
+
|
462 |
+
|
463 |
+
# 2.3 - Make group norms work with modified channel sizes
|
464 |
+
adjust_group_norms(self.control_model)
|
465 |
+
|
466 |
+
# 3 - Gather Channel Sizes
|
467 |
+
self.ch_inout_ctrl = StyleCodesModel._gather_subblock_sizes(self.control_model, base_or_control="control")
|
468 |
+
self.ch_inout_base = base_model_channel_sizes
|
469 |
+
|
470 |
+
# 4 - Build connections between base and control model
|
471 |
+
self.control_model.down_zero_convs_in = nn.ModuleList([])
|
472 |
+
self.control_model.middle_block_out = nn.ModuleList([])
|
473 |
+
#self.control_model.middle_block_in = nn.ModuleList([])
|
474 |
+
self.control_model.up_zero_convs_out = nn.ModuleList([])
|
475 |
+
#self.control_model.up_zero_convs_in = nn.ModuleList([])
|
476 |
+
|
477 |
+
#for ch_io_base in self.ch_inout_base["down"]:
|
478 |
+
# for i in range(len(self.ch_inout_base["down"])):
|
479 |
+
# if i < len(self.ch_inout_ctrl["down"]) - 1:
|
480 |
+
# ch_io_base = self.ch_inout_base["down"][i]
|
481 |
+
# self.control_model.down_zero_convs_in.append(self._make_zero_conv(in_channels=ch_io_base[1], out_channels=ch_io_base[1]))
|
482 |
+
#self.control_model.down_zero_convs_in.append(self._make_zero_conv(in_channels=ch_io_base[1], out_channels=ch_io_base[1]))
|
483 |
+
|
484 |
+
linear_shape = self.ch_inout_ctrl["mid"][-1][1] + self.ch_inout_ctrl["mid"][-1][1]
|
485 |
+
self.middle_block_out = self._make_colab_linear_layer(in_channels=linear_shape, out_channels=linear_shape)
|
486 |
+
|
487 |
+
|
488 |
+
#self.up_zero_convs_out.append(
|
489 |
+
# self._make_zero_conv(self.ch_inout_ctrl["down"][-1][1], self.ch_inout_base["mid"][-1][1])
|
490 |
+
#)
|
491 |
+
#skip connections i dont care about these
|
492 |
+
#for i in range(1, len(self.ch_inout_ctrl["down"])):
|
493 |
+
# self.up_zero_convs_out.append(
|
494 |
+
# self._make_zero_conv(self.ch_inout_ctrl["down"][-(i + 1)][1], self.ch_inout_base["up"][i - 1][1])
|
495 |
+
# )
|
496 |
+
|
497 |
+
|
498 |
+
|
499 |
+
#up blocks for output
|
500 |
+
#need to check the input sizes
|
501 |
+
#need to implement the increased input size for the up blocks as done already with the down blocks
|
502 |
+
base_last_out_channels = [1280,1280, 1280, 1280, 1280, 1280, 1280, 640, 640, 640, 320, 320,320]
|
503 |
+
base_current_in_channels = [1280, 1280, 1280, 1280, 1280, 1280, 640, 640, 640, 320, 320,320]
|
504 |
+
#JANK WARNING REMEMBER TO FIX LATER BEFORE ACTUALLY PUTTING THIS CODE ANYWHERE
|
505 |
+
print(f"subblock up sizes {self.ch_inout_ctrl}")
|
506 |
+
# for i in range(len(base_current_in_channels)):
|
507 |
+
# self.control_model.up_zero_convs_in.append(
|
508 |
+
# self._make_zero_conv(base_last_out_channels[i], base_current_in_channels[i])
|
509 |
+
# )
|
510 |
+
|
511 |
+
for i in range(len(self.ch_inout_base["up"])):
|
512 |
+
#for ch_io_base in self.ch_inout_base["up"]:
|
513 |
+
ch_io_base = self.ch_inout_base["up"][i]
|
514 |
+
if i < len(self.ch_inout_ctrl["up"]):
|
515 |
+
linear_shape = ch_io_base[1] + ch_io_base[1]
|
516 |
+
self.control_model.up_zero_convs_out.append(
|
517 |
+
self._make_colab_linear_layer(in_channels=linear_shape, out_channels=linear_shape)
|
518 |
+
)
|
519 |
+
# for i in range(len(self.ch_inout_ctrl["up"])):
|
520 |
+
# self.control_model.up_zero_convs_out.append(
|
521 |
+
# self._make_zero_conv(self.ch_inout_ctrl["up"][i][1], self.ch_inout_base["up"][i][1])
|
522 |
+
# )
|
523 |
+
|
524 |
+
|
525 |
+
# 5 - Create conditioning hint embedding
|
526 |
+
# self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
527 |
+
# conditioning_embedding_channels=block_out_channels[0],
|
528 |
+
# block_out_channels=conditioning_embedding_out_channels,
|
529 |
+
# conditioning_channels=conditioning_channels,
|
530 |
+
# )
|
531 |
+
self.sref_autoencoder = AttentionAutoencoder().to(device='cuda')
|
532 |
+
# In the mininal implementation setting, we only need the control model up to the mid block
|
533 |
+
#del self.control_model.up_blocks
|
534 |
+
del self.control_model.down_blocks
|
535 |
+
del self.control_model.conv_norm_out
|
536 |
+
del self.control_model.conv_out
|
537 |
+
del self.control_model.time_embedding
|
538 |
+
del self.control_model.conv_in
|
539 |
+
|
540 |
+
|
541 |
+
def load_model(self, path: str):
|
542 |
+
"""Load the model from the given path.
|
543 |
+
|
544 |
+
Parameters:
|
545 |
+
path (`str`):
|
546 |
+
Path to the model checkpoint.
|
547 |
+
"""
|
548 |
+
|
549 |
+
if os.path.splitext(path)[-1] == ".safetensors":
|
550 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}, "controlnet": {}}
|
551 |
+
with safe_open(path, framework="pt", device="cpu") as f:
|
552 |
+
for key in f.keys():
|
553 |
+
if key.startswith("image_proj."):
|
554 |
+
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
555 |
+
elif key.startswith("ip_adapter."):
|
556 |
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
557 |
+
elif key.startswith("controlnet."):
|
558 |
+
state_dict["controlnet"][key.replace("controlnet.", "")] = f.get_tensor(key)
|
559 |
+
else:
|
560 |
+
state_dict = torch.load(path, map_location="cpu")
|
561 |
+
|
562 |
+
print("load controlnet", self.load_state_dict(state_dict["controlnet"],strict=False))
|
563 |
+
|
564 |
+
|
565 |
+
|
566 |
+
@classmethod
|
567 |
+
def from_unet(
|
568 |
+
cls,
|
569 |
+
unet: UNet2DConditionModel,
|
570 |
+
conditioning_channels: int = 3,
|
571 |
+
conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
|
572 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
573 |
+
learn_embedding: bool = False,
|
574 |
+
time_embedding_mix: float = 1.0,
|
575 |
+
block_out_channels: Optional[Tuple[int]] = None,
|
576 |
+
size_ratio: Optional[float] = None,
|
577 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = 8,
|
578 |
+
norm_num_groups: Optional[int] = None,
|
579 |
+
):
|
580 |
+
r"""
|
581 |
+
Instantiate a [`ControlNetXSModel`] from [`UNet2DConditionModel`].
|
582 |
+
|
583 |
+
Parameters:
|
584 |
+
unet (`UNet2DConditionModel`):
|
585 |
+
The UNet model we want to control. The dimensions of the ControlNetXSModel will be adapted to it.
|
586 |
+
conditioning_channels (`int`, defaults to 3):
|
587 |
+
Number of channels of conditioning input (e.g. an image)
|
588 |
+
conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`):
|
589 |
+
The tuple of output channel for each block in the `controlnet_cond_embedding` layer.
|
590 |
+
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
591 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
592 |
+
learn_embedding (`bool`, defaults to `False`):
|
593 |
+
Wether to use time embedding of the control model. If yes, the time embedding is a linear interpolation
|
594 |
+
of the time embeddings of the control and base model with interpolation parameter
|
595 |
+
`time_embedding_mix**3`.
|
596 |
+
time_embedding_mix (`float`, defaults to 1.0):
|
597 |
+
Linear interpolation parameter used if `learn_embedding` is `True`.
|
598 |
+
block_out_channels (`Tuple[int]`, *optional*):
|
599 |
+
Down blocks output channels in control model. Either this or `size_ratio` must be given.
|
600 |
+
size_ratio (float, *optional*):
|
601 |
+
When given, block_out_channels is set to a relative fraction of the base model's block_out_channels.
|
602 |
+
Either this or `block_out_channels` must be given.
|
603 |
+
num_attention_heads (`Union[int, Tuple[int]]`, *optional*):
|
604 |
+
The dimension of the attention heads. The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
|
605 |
+
norm_num_groups (int, *optional*, defaults to `None`):
|
606 |
+
The number of groups to use for the normalization of the control unet. If `None`,
|
607 |
+
`int(unet.config.norm_num_groups * size_ratio)` is taken.
|
608 |
+
"""
|
609 |
+
|
610 |
+
# Check input
|
611 |
+
fixed_size = block_out_channels is not None
|
612 |
+
relative_size = size_ratio is not None
|
613 |
+
if not (fixed_size ^ relative_size):
|
614 |
+
raise ValueError(
|
615 |
+
"Pass exactly one of `block_out_channels` (for absolute sizing) or `control_model_ratio` (for relative sizing)."
|
616 |
+
)
|
617 |
+
|
618 |
+
# Create model
|
619 |
+
if block_out_channels is None:
|
620 |
+
block_out_channels = [int(size_ratio * c) for c in unet.config.block_out_channels]
|
621 |
+
|
622 |
+
# Check that attention heads and group norms match channel sizes
|
623 |
+
# - attention heads
|
624 |
+
def attn_heads_match_channel_sizes(attn_heads, channel_sizes):
|
625 |
+
if isinstance(attn_heads, (tuple, list)):
|
626 |
+
return all(c % a == 0 for a, c in zip(attn_heads, channel_sizes))
|
627 |
+
else:
|
628 |
+
return all(c % attn_heads == 0 for c in channel_sizes)
|
629 |
+
|
630 |
+
num_attention_heads = num_attention_heads or unet.config.attention_head_dim
|
631 |
+
if not attn_heads_match_channel_sizes(num_attention_heads, block_out_channels):
|
632 |
+
raise ValueError(
|
633 |
+
f"The dimension of attention heads ({num_attention_heads}) must divide `block_out_channels` ({block_out_channels}). If you didn't set `num_attention_heads` the default settings don't match your model. Set `num_attention_heads` manually."
|
634 |
+
)
|
635 |
+
|
636 |
+
# - group norms
|
637 |
+
def group_norms_match_channel_sizes(num_groups, channel_sizes):
|
638 |
+
return all(c % num_groups == 0 for c in channel_sizes)
|
639 |
+
|
640 |
+
if norm_num_groups is None:
|
641 |
+
if group_norms_match_channel_sizes(unet.config.norm_num_groups, block_out_channels):
|
642 |
+
norm_num_groups = unet.config.norm_num_groups
|
643 |
+
else:
|
644 |
+
norm_num_groups = min(block_out_channels)
|
645 |
+
|
646 |
+
if group_norms_match_channel_sizes(norm_num_groups, block_out_channels):
|
647 |
+
print(
|
648 |
+
f"`norm_num_groups` was set to `min(block_out_channels)` (={norm_num_groups}) so it divides all block_out_channels` ({block_out_channels}). Set it explicitly to remove this information."
|
649 |
+
)
|
650 |
+
else:
|
651 |
+
raise ValueError(
|
652 |
+
f"`block_out_channels` ({block_out_channels}) don't match the base models `norm_num_groups` ({unet.config.norm_num_groups}). Setting `norm_num_groups` to `min(block_out_channels)` ({norm_num_groups}) didn't fix this. Pass `norm_num_groups` explicitly so it divides all block_out_channels."
|
653 |
+
)
|
654 |
+
|
655 |
+
def get_time_emb_input_dim(unet: UNet2DConditionModel):
|
656 |
+
return unet.time_embedding.linear_1.in_features
|
657 |
+
|
658 |
+
def get_time_emb_dim(unet: UNet2DConditionModel):
|
659 |
+
return unet.time_embedding.linear_2.out_features
|
660 |
+
|
661 |
+
# Clone params from base unet if
|
662 |
+
# (i) it's required to build SD or SDXL, and
|
663 |
+
# (ii) it's not used for the time embedding (as time embedding of control model is never used), and
|
664 |
+
# (iii) it's not set further below anyway
|
665 |
+
to_keep = [
|
666 |
+
"cross_attention_dim",
|
667 |
+
"down_block_types",
|
668 |
+
"sample_size",
|
669 |
+
"transformer_layers_per_block",
|
670 |
+
"up_block_types",
|
671 |
+
"upcast_attention",
|
672 |
+
]
|
673 |
+
kwargs = {k: v for k, v in dict(unet.config).items() if k in to_keep}
|
674 |
+
kwargs.update(block_out_channels=block_out_channels)
|
675 |
+
kwargs.update(num_attention_heads=num_attention_heads)
|
676 |
+
kwargs.update(norm_num_groups=norm_num_groups)
|
677 |
+
|
678 |
+
# Add controlnetxs-specific params
|
679 |
+
kwargs.update(
|
680 |
+
conditioning_channels=conditioning_channels,
|
681 |
+
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
682 |
+
time_embedding_input_dim=get_time_emb_input_dim(unet),
|
683 |
+
time_embedding_dim=get_time_emb_dim(unet),
|
684 |
+
time_embedding_mix=time_embedding_mix,
|
685 |
+
learn_embedding=learn_embedding,
|
686 |
+
base_model_channel_sizes=StyleCodesModel._gather_subblock_sizes(unet, base_or_control="base"),
|
687 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
688 |
+
)
|
689 |
+
|
690 |
+
return cls(**kwargs)
|
691 |
+
|
692 |
+
@property
|
693 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
694 |
+
r"""
|
695 |
+
Returns:
|
696 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
697 |
+
indexed by its weight name.
|
698 |
+
"""
|
699 |
+
return self.control_model.attn_processors
|
700 |
+
|
701 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
702 |
+
r"""
|
703 |
+
Sets the attention processor to use to compute attention.
|
704 |
+
|
705 |
+
Parameters:
|
706 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
707 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
708 |
+
for **all** `Attention` layers.
|
709 |
+
|
710 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
711 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
712 |
+
|
713 |
+
"""
|
714 |
+
self.control_model.set_attn_processor(processor)
|
715 |
+
|
716 |
+
def set_default_attn_processor(self):
|
717 |
+
"""
|
718 |
+
Disables custom attention processors and sets the default attention implementation.
|
719 |
+
"""
|
720 |
+
self.control_model.set_default_attn_processor()
|
721 |
+
|
722 |
+
def set_attention_slice(self, slice_size):
|
723 |
+
r"""
|
724 |
+
Enable sliced attention computation.
|
725 |
+
|
726 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
727 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
728 |
+
|
729 |
+
Args:
|
730 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
731 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
732 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
733 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
734 |
+
must be a multiple of `slice_size`.
|
735 |
+
"""
|
736 |
+
self.control_model.set_attention_slice(slice_size)
|
737 |
+
|
738 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
739 |
+
if isinstance(module, (UNet2DConditionModel)):
|
740 |
+
if value:
|
741 |
+
module.enable_gradient_checkpointing()
|
742 |
+
else:
|
743 |
+
module.disable_gradient_checkpointing()
|
744 |
+
|
745 |
+
|
746 |
+
def forward(
|
747 |
+
self,
|
748 |
+
base_model: UNet2DConditionModel,
|
749 |
+
sample: torch.FloatTensor,
|
750 |
+
timestep: Union[torch.Tensor, float, int],
|
751 |
+
encoder_hidden_states: torch.Tensor,
|
752 |
+
encoder_hidden_states_controlnet: torch.Tensor,
|
753 |
+
controlnet_cond: torch.Tensor,
|
754 |
+
conditioning_scale: float = 1.0,
|
755 |
+
class_labels: Optional[torch.Tensor] = None,
|
756 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
757 |
+
attention_mask: Optional[torch.Tensor] = None,
|
758 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
759 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
760 |
+
return_dict: bool = True,
|
761 |
+
stylecode=None,
|
762 |
+
) -> Union[ControlNetXSOutput, Tuple]:
|
763 |
+
"""
|
764 |
+
The [`ControlNetModel`] forward method.
|
765 |
+
|
766 |
+
Args:
|
767 |
+
base_model (`UNet2DConditionModel`):
|
768 |
+
The base unet model we want to control.
|
769 |
+
sample (`torch.FloatTensor`):
|
770 |
+
The noisy input tensor.
|
771 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
772 |
+
The number of timesteps to denoise an input.
|
773 |
+
encoder_hidden_states (`torch.Tensor`):
|
774 |
+
The encoder hidden states.
|
775 |
+
controlnet_cond (`torch.FloatTensor`):
|
776 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
777 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
778 |
+
How much the control model affects the base model outputs.
|
779 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
780 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
781 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
782 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
783 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
784 |
+
embeddings.
|
785 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
786 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
787 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
788 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
789 |
+
added_cond_kwargs (`dict`):
|
790 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
791 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
792 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
793 |
+
return_dict (`bool`, defaults to `True`):
|
794 |
+
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
795 |
+
|
796 |
+
Returns:
|
797 |
+
[`~models.controlnetxs.ControlNetXSOutput`] **or** `tuple`:
|
798 |
+
If `return_dict` is `True`, a [`~models.controlnetxs.ControlNetXSOutput`] is returned, otherwise a
|
799 |
+
tuple is returned where the first element is the sample tensor.
|
800 |
+
"""
|
801 |
+
# check channel order
|
802 |
+
channel_order = self.config.controlnet_conditioning_channel_order
|
803 |
+
|
804 |
+
if channel_order == "rgb":
|
805 |
+
# in rgb order by default
|
806 |
+
...
|
807 |
+
elif channel_order == "bgr":
|
808 |
+
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
809 |
+
else:
|
810 |
+
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
811 |
+
|
812 |
+
# scale control strength
|
813 |
+
n_connections = 0 + 1 + len(self.control_model.up_zero_convs_out)
|
814 |
+
scale_list = torch.full((n_connections,), conditioning_scale)
|
815 |
+
|
816 |
+
# prepare attention_mask
|
817 |
+
if attention_mask is not None:
|
818 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
819 |
+
attention_mask = attention_mask.unsqueeze(1)
|
820 |
+
|
821 |
+
# 1. time
|
822 |
+
timesteps = timestep
|
823 |
+
if not torch.is_tensor(timesteps):
|
824 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
825 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
826 |
+
is_mps = sample.device.type == "mps"
|
827 |
+
if isinstance(timestep, float):
|
828 |
+
dtype = torch.float32 if is_mps else torch.float64
|
829 |
+
else:
|
830 |
+
dtype = torch.int32 if is_mps else torch.int64
|
831 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
832 |
+
elif len(timesteps.shape) == 0:
|
833 |
+
timesteps = timesteps[None].to(sample.device)
|
834 |
+
|
835 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
836 |
+
timesteps = timesteps.expand(sample.shape[0])
|
837 |
+
|
838 |
+
t_emb = base_model.time_proj(timesteps)
|
839 |
+
|
840 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
841 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
842 |
+
# there might be better ways to encapsulate this.
|
843 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
844 |
+
|
845 |
+
if self.config.learn_embedding:
|
846 |
+
ctrl_temb = self.control_model.time_embedding(t_emb, timestep_cond)
|
847 |
+
base_temb = base_model.time_embedding(t_emb, timestep_cond)
|
848 |
+
interpolation_param = self.config.time_embedding_mix**0.3
|
849 |
+
|
850 |
+
temb = ctrl_temb * interpolation_param + base_temb * (1 - interpolation_param)
|
851 |
+
else:
|
852 |
+
temb = base_model.time_embedding(t_emb)
|
853 |
+
|
854 |
+
# added time & text embeddings
|
855 |
+
aug_emb = None
|
856 |
+
aug_emb_ctrl = None
|
857 |
+
if base_model.class_embedding is not None:
|
858 |
+
if class_labels is None:
|
859 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
860 |
+
|
861 |
+
if base_model.config.class_embed_type == "timestep":
|
862 |
+
class_labels = base_model.time_proj(class_labels)
|
863 |
+
|
864 |
+
class_emb = base_model.class_embedding(class_labels).to(dtype=self.dtype)
|
865 |
+
temb = temb + class_emb
|
866 |
+
|
867 |
+
if base_model.config.addition_embed_type is not None:
|
868 |
+
if base_model.config.addition_embed_type == "text":
|
869 |
+
aug_emb = base_model.add_embedding(encoder_hidden_states)
|
870 |
+
aug_emb_ctrl = base_model.add_embedding(encoder_hidden_states_controlnet)
|
871 |
+
elif base_model.config.addition_embed_type == "text_image":
|
872 |
+
raise NotImplementedError()
|
873 |
+
elif base_model.config.addition_embed_type == "text_time":
|
874 |
+
# SDXL - style
|
875 |
+
if "text_embeds" not in added_cond_kwargs:
|
876 |
+
raise ValueError(
|
877 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
878 |
+
)
|
879 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
880 |
+
if "time_ids" not in added_cond_kwargs:
|
881 |
+
raise ValueError(
|
882 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
883 |
+
)
|
884 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
885 |
+
time_embeds = base_model.add_time_proj(time_ids.flatten())
|
886 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
887 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
888 |
+
add_embeds = add_embeds.to(temb.dtype)
|
889 |
+
aug_emb = base_model.add_embedding(add_embeds)
|
890 |
+
elif base_model.config.addition_embed_type == "image":
|
891 |
+
raise NotImplementedError()
|
892 |
+
elif base_model.config.addition_embed_type == "image_hint":
|
893 |
+
raise NotImplementedError()
|
894 |
+
|
895 |
+
temb = temb + aug_emb if aug_emb is not None else temb
|
896 |
+
|
897 |
+
#temb_ctrl = torch.zeros_like(temb)
|
898 |
+
temb_ctrl = temb + aug_emb_ctrl if aug_emb_ctrl is not None else temb
|
899 |
+
# text embeddings
|
900 |
+
#note when i have more time actually skip the cross attention layers
|
901 |
+
cemb = encoder_hidden_states
|
902 |
+
#cemb_ctrl = torch.zeros_like(encoder_hidden_states)
|
903 |
+
cemb_ctrl = encoder_hidden_states
|
904 |
+
|
905 |
+
# Preparation
|
906 |
+
#print("1:cond, 2: embeddings",controlnet_cond.shape,encoder_hidden_states_controlnet.shape)
|
907 |
+
|
908 |
+
#save_debug_image(controlnet_cond[0])
|
909 |
+
#guided_hint = self.controlnet_cond_embedding(controlnet_cond)
|
910 |
+
#guided_hint=None
|
911 |
+
h_ctrl = h_base = sample
|
912 |
+
hs_base, hs_ctrl = [], []
|
913 |
+
it_up_convs_out = iter (self.control_model.up_zero_convs_out)
|
914 |
+
scales = iter(scale_list)
|
915 |
+
|
916 |
+
base_down_subblocks = self.to_sub_blocks(base_model.down_blocks)
|
917 |
+
#ctrl_down_subblocks = self.to_sub_blocks(self.control_model.down_blocks)
|
918 |
+
base_mid_subblocks = self.to_sub_blocks([base_model.mid_block])
|
919 |
+
ctrl_mid_subblocks = self.to_sub_blocks([self.control_model.mid_block])
|
920 |
+
base_up_subblocks = self.to_sub_blocks(base_model.up_blocks)
|
921 |
+
ctrl_up_subblocks = self.to_sub_blocks(self.control_model.up_blocks)
|
922 |
+
|
923 |
+
# Cross Control
|
924 |
+
# 0 - conv in
|
925 |
+
h_base = base_model.conv_in(h_base)
|
926 |
+
#h_ctrl = self.control_model.conv_in(h_ctrl)
|
927 |
+
#if guided_hint is not None:
|
928 |
+
h_ctrl = controlnet_cond
|
929 |
+
# h_base = h_base + next(it_down_convs_out)(h_ctrl) * next(scales) # D - add ctrl -> base
|
930 |
+
|
931 |
+
hs_base.append(h_base)
|
932 |
+
#hs_ctrl.append(h_ctrl)
|
933 |
+
|
934 |
+
# 1 - down
|
935 |
+
for m_base in base_down_subblocks:
|
936 |
+
#h_ctrl = torch.cat([h_ctrl, next(it_down_convs_in)(h_base)], dim=1) # A - concat base -> ctrl
|
937 |
+
h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs) # B - apply base subblock
|
938 |
+
#h_ctrl = m_ctrl(h_ctrl, temb_ctrl, cemb_ctrl, attention_mask, cross_attention_kwargs) # C - apply ctrl subblock
|
939 |
+
#h_base = h_base + next(it_down_convs_out)(h_ctrl) * next(scales) # D - add ctrl -> base
|
940 |
+
hs_base.append(h_base)
|
941 |
+
#hs_ctrl.append(h_ctrl)
|
942 |
+
|
943 |
+
print("using stylecode",stylecode)
|
944 |
+
if stylecode is None:
|
945 |
+
h_ctrl,encoded_strings = self.sref_autoencoder.forward_encoding(h_ctrl,h_base.shape[2],h_base.shape[3])
|
946 |
+
else:
|
947 |
+
h_ctrl = self.sref_autoencoder.forward_from_stylecode(stylecode,h_base.shape[2],h_base.shape[3],h_base.dtype, h_base.device)
|
948 |
+
|
949 |
+
# 2 - mid
|
950 |
+
#h_ctrl = torch.cat([h_ctrl, next(it_down_convs_in)(h_base)], dim=1) # A - concat base -> ctrl
|
951 |
+
for m_base, m_ctrl in zip(base_mid_subblocks, ctrl_mid_subblocks):
|
952 |
+
h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs) # B - apply base subblock
|
953 |
+
h_ctrl = m_ctrl(h_ctrl, temb_ctrl, cemb_ctrl, attention_mask, cross_attention_kwargs) # C - apply ctrl subblock
|
954 |
+
|
955 |
+
|
956 |
+
#taken from https://github.com/dvlab-research/ControlNeXt/blob/main/ControlNeXt-SD1.5/models/unet.py
|
957 |
+
#mid_block_additional_residual = self.middle_block_out(h_ctrl)
|
958 |
+
# mid_block_additional_residual = mid_block_out
|
959 |
+
# mid_block_additional_residual=nn.functional.adaptive_avg_pool2d(mid_block_additional_residual, h_base.shape[-2:])
|
960 |
+
# mid_block_additional_residual = mid_block_additional_residual.to(h_base)
|
961 |
+
# mean_latents, std_latents = torch.mean(h_base, dim=(1, 2, 3), keepdim=True), torch.std(h_base, dim=(1, 2, 3), keepdim=True)
|
962 |
+
# mean_control, std_control = torch.mean(mid_block_additional_residual, dim=(1, 2, 3), keepdim=True), torch.std(mid_block_additional_residual, dim=(1, 2, 3), keepdim=True)
|
963 |
+
# mid_block_additional_residual = (mid_block_additional_residual - mean_control) * (std_latents / (std_control + 1e-12)) + mean_latents
|
964 |
+
# h_base = h_base + mid_block_additional_residual * next(scales)
|
965 |
+
|
966 |
+
batch_size, channels, height, width = h_ctrl.shape
|
967 |
+
colab_input = torch.cat([h_ctrl, h_base], dim=1).view(batch_size, channels * 2, height * width).permute(0, 2, 1)
|
968 |
+
colab_output = self.middle_block_out(colab_input)
|
969 |
+
sequence_len = height * width
|
970 |
+
colab_output = colab_output.permute(0, 2, 1).view(batch_size, channels * 2, height, width) # Reshape back
|
971 |
+
h_ctrl, h_base_output = torch.chunk(colab_output, 2, dim=1)
|
972 |
+
|
973 |
+
#mix using cond scale
|
974 |
+
h_base = h_base * (1 - conditioning_scale) + h_base_output * conditioning_scale
|
975 |
+
#h_base = h_base + mid_block_additional_residual * next(scales) # D - add ctrl -> base
|
976 |
+
|
977 |
+
# 3 - up
|
978 |
+
for m_base,m_ctrl in zip(base_up_subblocks,ctrl_up_subblocks):
|
979 |
+
hs_base_new = hs_base.pop()
|
980 |
+
h_base_with_skip = torch.cat([h_base, hs_base_new], dim=1) # concat info from base encoder+ctrl encoder
|
981 |
+
|
982 |
+
empty = torch.zeros_like(hs_base_new)
|
983 |
+
|
984 |
+
h_ctrl = torch.cat([h_ctrl, empty], dim=1) # concat info from ctrl encoder + skip connections
|
985 |
+
h_ctrl = m_ctrl(h_ctrl, temb_ctrl, cemb_ctrl, attention_mask, cross_attention_kwargs) # C - apply ctrl subblock
|
986 |
+
h_base = m_base(h_base_with_skip, temb, cemb, attention_mask, cross_attention_kwargs)
|
987 |
+
|
988 |
+
batch_size, channels, height, width = h_ctrl.shape
|
989 |
+
colab_input = torch.cat([h_ctrl, h_base], dim=1).view(batch_size, channels * 2, height * width).permute(0, 2, 1)
|
990 |
+
colab_output = next(it_up_convs_out)(colab_input)
|
991 |
+
colab_output = colab_output.permute(0, 2, 1).view(batch_size, channels * 2, height, width)
|
992 |
+
h_ctrl, h_base_output = torch.chunk(colab_output, 2, dim=1)
|
993 |
+
h_base = h_base * (1 - conditioning_scale) + h_base_output * conditioning_scale
|
994 |
+
|
995 |
+
|
996 |
+
|
997 |
+
|
998 |
+
|
999 |
+
#hn_ctrl = next(it_up_convs_out)(h_ctrl)
|
1000 |
+
#print(hn_ctrl)
|
1001 |
+
#h_base = h_base + hn_ctrl * next(scales) # D - add ctrl -> base
|
1002 |
+
|
1003 |
+
|
1004 |
+
|
1005 |
+
|
1006 |
+
|
1007 |
+
|
1008 |
+
|
1009 |
+
|
1010 |
+
h_base = base_model.conv_norm_out(h_base)
|
1011 |
+
h_base = base_model.conv_act(h_base)
|
1012 |
+
h_base = base_model.conv_out(h_base)
|
1013 |
+
|
1014 |
+
if not return_dict:
|
1015 |
+
return h_base
|
1016 |
+
|
1017 |
+
return ControlNetXSOutput(sample=h_base)
|
1018 |
+
|
1019 |
+
#needs new stuff to work correctly
|
1020 |
+
# def pre_process(
|
1021 |
+
# self,
|
1022 |
+
# base_model: UNet2DConditionModel,
|
1023 |
+
# sample: torch.FloatTensor,
|
1024 |
+
# timestep: Union[torch.Tensor, float, int],
|
1025 |
+
# encoder_hidden_states: torch.Tensor,
|
1026 |
+
# controlnet_cond: torch.Tensor,
|
1027 |
+
# conditioning_scale: float = 1.0,
|
1028 |
+
# class_labels: Optional[torch.Tensor] = None,
|
1029 |
+
# timestep_cond: Optional[torch.Tensor] = None,
|
1030 |
+
# attention_mask: Optional[torch.Tensor] = None,
|
1031 |
+
# cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1032 |
+
# added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
1033 |
+
# return_dict: bool = True
|
1034 |
+
# ):
|
1035 |
+
# """
|
1036 |
+
# The [`ControlNetModel`] forward method.
|
1037 |
+
|
1038 |
+
# Args:
|
1039 |
+
# base_model (`UNet2DConditionModel`):
|
1040 |
+
# The base unet model we want to control.
|
1041 |
+
# sample (`torch.FloatTensor`):
|
1042 |
+
# The noisy input tensor.
|
1043 |
+
# timestep (`Union[torch.Tensor, float, int]`):
|
1044 |
+
# The number of timesteps to denoise an input.
|
1045 |
+
# encoder_hidden_states (`torch.Tensor`):
|
1046 |
+
# The encoder hidden states.
|
1047 |
+
# controlnet_cond (`torch.FloatTensor`):
|
1048 |
+
# The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
1049 |
+
# conditioning_scale (`float`, defaults to `1.0`):
|
1050 |
+
# How much the control model affects the base model outputs.
|
1051 |
+
# class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
1052 |
+
# Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
1053 |
+
# timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
1054 |
+
# Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
1055 |
+
# timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
1056 |
+
# embeddings.
|
1057 |
+
# attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
1058 |
+
# An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
1059 |
+
# is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
1060 |
+
# negative values to the attention scores corresponding to "discard" tokens.
|
1061 |
+
# added_cond_kwargs (`dict`):
|
1062 |
+
# Additional conditions for the Stable Diffusion XL UNet.
|
1063 |
+
# cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
1064 |
+
# A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
1065 |
+
# return_dict (`bool`, defaults to `True`):
|
1066 |
+
# Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
1067 |
+
|
1068 |
+
# Returns:
|
1069 |
+
# [`~models.controlnetxs.ControlNetXSOutput`] **or** `tuple`:
|
1070 |
+
# If `return_dict` is `True`, a [`~models.controlnetxs.ControlNetXSOutput`] is returned, otherwise a
|
1071 |
+
# tuple is returned where the first element is the sample tensor.
|
1072 |
+
# """
|
1073 |
+
# # check channel order
|
1074 |
+
# channel_order = self.config.controlnet_conditioning_channel_order
|
1075 |
+
|
1076 |
+
# if channel_order == "rgb":
|
1077 |
+
# # in rgb order by default
|
1078 |
+
# ...
|
1079 |
+
# elif channel_order == "bgr":
|
1080 |
+
# controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
1081 |
+
# else:
|
1082 |
+
# raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
1083 |
+
|
1084 |
+
# # scale control strength
|
1085 |
+
# n_connections = len(self.control_model.down_zero_convs_out) + 1 + len(self.control_model.up_zero_convs_out)
|
1086 |
+
# scale_list = torch.full((n_connections,), conditioning_scale)
|
1087 |
+
|
1088 |
+
# # prepare attention_mask
|
1089 |
+
# if attention_mask is not None:
|
1090 |
+
# attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
1091 |
+
# attention_mask = attention_mask.unsqueeze(1)
|
1092 |
+
|
1093 |
+
# # 1. time
|
1094 |
+
# timesteps = timestep
|
1095 |
+
# if not torch.is_tensor(timesteps):
|
1096 |
+
# # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
1097 |
+
# # This would be a good case for the `match` statement (Python 3.10+)
|
1098 |
+
# is_mps = sample.device.type == "mps"
|
1099 |
+
# if isinstance(timestep, float):
|
1100 |
+
# dtype = torch.float32 if is_mps else torch.float64
|
1101 |
+
# else:
|
1102 |
+
# dtype = torch.int32 if is_mps else torch.int64
|
1103 |
+
# timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
1104 |
+
# elif len(timesteps.shape) == 0:
|
1105 |
+
# timesteps = timesteps[None].to(sample.device)
|
1106 |
+
|
1107 |
+
# # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1108 |
+
# timesteps = timesteps.expand(sample.shape[0])
|
1109 |
+
|
1110 |
+
# t_emb = base_model.time_proj(timesteps)
|
1111 |
+
|
1112 |
+
# # timesteps does not contain any weights and will always return f32 tensors
|
1113 |
+
# # but time_embedding might actually be running in fp16. so we need to cast here.
|
1114 |
+
# # there might be better ways to encapsulate this.
|
1115 |
+
# t_emb = t_emb.to(dtype=sample.dtype)
|
1116 |
+
|
1117 |
+
# if self.config.learn_embedding:
|
1118 |
+
# ctrl_temb = self.control_model.time_embedding(t_emb, timestep_cond)
|
1119 |
+
# base_temb = base_model.time_embedding(t_emb, timestep_cond)
|
1120 |
+
# interpolation_param = self.config.time_embedding_mix**0.3
|
1121 |
+
|
1122 |
+
# temb = ctrl_temb * interpolation_param + base_temb * (1 - interpolation_param)
|
1123 |
+
# else:
|
1124 |
+
# temb = base_model.time_embedding(t_emb)
|
1125 |
+
|
1126 |
+
# # added time & text embeddings
|
1127 |
+
# aug_emb = None
|
1128 |
+
|
1129 |
+
# if base_model.class_embedding is not None:
|
1130 |
+
# if class_labels is None:
|
1131 |
+
# raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
1132 |
+
|
1133 |
+
# if base_model.config.class_embed_type == "timestep":
|
1134 |
+
# class_labels = base_model.time_proj(class_labels)
|
1135 |
+
|
1136 |
+
# class_emb = base_model.class_embedding(class_labels).to(dtype=self.dtype)
|
1137 |
+
# temb = temb + class_emb
|
1138 |
+
|
1139 |
+
# if base_model.config.addition_embed_type is not None:
|
1140 |
+
# if base_model.config.addition_embed_type == "text":
|
1141 |
+
# aug_emb = base_model.add_embedding(encoder_hidden_states)
|
1142 |
+
# elif base_model.config.addition_embed_type == "text_image":
|
1143 |
+
# raise NotImplementedError()
|
1144 |
+
# elif base_model.config.addition_embed_type == "text_time":
|
1145 |
+
# # SDXL - style
|
1146 |
+
# if "text_embeds" not in added_cond_kwargs:
|
1147 |
+
# raise ValueError(
|
1148 |
+
# f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
1149 |
+
# )
|
1150 |
+
# text_embeds = added_cond_kwargs.get("text_embeds")
|
1151 |
+
# if "time_ids" not in added_cond_kwargs:
|
1152 |
+
# raise ValueError(
|
1153 |
+
# f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
1154 |
+
# )
|
1155 |
+
# time_ids = added_cond_kwargs.get("time_ids")
|
1156 |
+
# time_embeds = base_model.add_time_proj(time_ids.flatten())
|
1157 |
+
# time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
1158 |
+
# add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
1159 |
+
# add_embeds = add_embeds.to(temb.dtype)
|
1160 |
+
# aug_emb = base_model.add_embedding(add_embeds)
|
1161 |
+
# elif base_model.config.addition_embed_type == "image":
|
1162 |
+
# raise NotImplementedError()
|
1163 |
+
# elif base_model.config.addition_embed_type == "image_hint":
|
1164 |
+
# raise NotImplementedError()
|
1165 |
+
|
1166 |
+
# temb = temb + aug_emb if aug_emb is not None else temb
|
1167 |
+
|
1168 |
+
# # text embeddings
|
1169 |
+
# cemb = encoder_hidden_states
|
1170 |
+
|
1171 |
+
# # Preparation
|
1172 |
+
# guided_hint = self.controlnet_cond_embedding(controlnet_cond)
|
1173 |
+
# #guided_hint=None
|
1174 |
+
# # h_ctrl = h_base = sample
|
1175 |
+
# # hs_base, hs_ctrl = [], []
|
1176 |
+
# # it_down_convs_in, it_down_convs_out, it_up_convs_in, it_up_convs_out = map(
|
1177 |
+
# # iter, (self.control_model.down_zero_convs_in, self.control_model.down_zero_convs_out, self.control_model.up_zero_convs_in, self.control_model.up_zero_convs_out)
|
1178 |
+
# # )
|
1179 |
+
# scales = iter(scale_list)
|
1180 |
+
|
1181 |
+
# return temb,cemb,scales,guided_hint
|
1182 |
+
|
1183 |
+
def _make_zero_conv(self, in_channels, out_channels=None):
|
1184 |
+
# keep running track of channels sizes
|
1185 |
+
#self.in_channels = in_channels
|
1186 |
+
#self.out_channels = out_channels or in_channels
|
1187 |
+
#
|
1188 |
+
return zero_module(nn.Conv2d(in_channels, out_channels, 1, padding=0))
|
1189 |
+
def _make_identity_conv(self, in_channels, out_channels=None):
|
1190 |
+
#out_channels = out_channels or in_channels
|
1191 |
+
return nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0, bias=False)
|
1192 |
+
|
1193 |
+
@torch.no_grad()
|
1194 |
+
def _check_if_vae_compatible(self, vae: AutoencoderKL):
|
1195 |
+
condition_downscale_factor = 2 ** (len(self.config.conditioning_embedding_out_channels) - 1)
|
1196 |
+
vae_downscale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
|
1197 |
+
compatible = condition_downscale_factor == vae_downscale_factor
|
1198 |
+
return compatible, condition_downscale_factor, vae_downscale_factor
|
1199 |
+
|
1200 |
+
def to_sub_blocks(self,blocks):
|
1201 |
+
if not is_iterable(blocks):
|
1202 |
+
blocks = [blocks]
|
1203 |
+
|
1204 |
+
sub_blocks = []
|
1205 |
+
|
1206 |
+
for b in blocks:
|
1207 |
+
if hasattr(b, "resnets"):
|
1208 |
+
if hasattr(b, "attentions") and b.attentions is not None:
|
1209 |
+
for r, a in zip(b.resnets, b.attentions):
|
1210 |
+
sub_blocks.append([r, a])
|
1211 |
+
|
1212 |
+
num_resnets = len(b.resnets)
|
1213 |
+
num_attns = len(b.attentions)
|
1214 |
+
|
1215 |
+
if num_resnets > num_attns:
|
1216 |
+
# we can have more resnets than attentions, so add each resnet as separate subblock
|
1217 |
+
for i in range(num_attns, num_resnets):
|
1218 |
+
sub_blocks.append([b.resnets[i]])
|
1219 |
+
else:
|
1220 |
+
for r in b.resnets:
|
1221 |
+
sub_blocks.append([r])
|
1222 |
+
|
1223 |
+
# upsamplers are part of the same subblock
|
1224 |
+
if hasattr(b, "upsamplers") and b.upsamplers is not None:
|
1225 |
+
for u in b.upsamplers:
|
1226 |
+
sub_blocks[-1].extend([u])
|
1227 |
+
|
1228 |
+
# downsamplers are own subblock
|
1229 |
+
if hasattr(b, "downsamplers") and b.downsamplers is not None:
|
1230 |
+
for d in b.downsamplers:
|
1231 |
+
sub_blocks.append([d])
|
1232 |
+
|
1233 |
+
return list(map(SubBlock, sub_blocks))
|
1234 |
+
|
1235 |
+
|
1236 |
+
class SubBlock(nn.ModuleList):
|
1237 |
+
"""A SubBlock is the largest piece of either base or control model, that is executed independently of the other model respectively.
|
1238 |
+
Before each subblock, information is concatted from base to control. And after each subblock, information is added from control to base.
|
1239 |
+
"""
|
1240 |
+
|
1241 |
+
def __init__(self, ms, *args, **kwargs):
|
1242 |
+
if not is_iterable(ms):
|
1243 |
+
ms = [ms]
|
1244 |
+
super().__init__(ms, *args, **kwargs)
|
1245 |
+
|
1246 |
+
def forward(
|
1247 |
+
self,
|
1248 |
+
x: torch.Tensor,
|
1249 |
+
temb: torch.Tensor,
|
1250 |
+
cemb: torch.Tensor,
|
1251 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1252 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1253 |
+
):
|
1254 |
+
"""Iterate through children and pass correct information to each."""
|
1255 |
+
for m in self:
|
1256 |
+
if isinstance(m, ResnetBlock2D):
|
1257 |
+
x = m(x, temb)
|
1258 |
+
elif isinstance(m, Transformer2DModel):
|
1259 |
+
x = m(x, cemb, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs).sample
|
1260 |
+
elif isinstance(m, Downsample2D):
|
1261 |
+
x = m(x)
|
1262 |
+
elif isinstance(m, Upsample2D):
|
1263 |
+
x = m(x)
|
1264 |
+
else:
|
1265 |
+
raise ValueError(
|
1266 |
+
f"Type of m is {type(m)} but should be `ResnetBlock2D`, `Transformer2DModel`, `Downsample2D` or `Upsample2D`"
|
1267 |
+
)
|
1268 |
+
|
1269 |
+
return x
|
1270 |
+
|
1271 |
+
|
1272 |
+
def adjust_time_dims(unet: UNet2DConditionModel, in_dim: int, out_dim: int):
|
1273 |
+
unet.time_embedding.linear_1 = nn.Linear(in_dim, out_dim)
|
1274 |
+
|
1275 |
+
|
1276 |
+
def increase_block_input_in_encoder_resnet(unet: UNet2DConditionModel, block_no, resnet_idx, by):
|
1277 |
+
"""Increase channels sizes to allow for additional concatted information from base model"""
|
1278 |
+
r = unet.down_blocks[block_no].resnets[resnet_idx]
|
1279 |
+
old_norm1, old_conv1 = r.norm1, r.conv1
|
1280 |
+
# norm
|
1281 |
+
norm_args = "num_groups num_channels eps affine".split(" ")
|
1282 |
+
for a in norm_args:
|
1283 |
+
assert hasattr(old_norm1, a)
|
1284 |
+
norm_kwargs = {a: getattr(old_norm1, a) for a in norm_args}
|
1285 |
+
norm_kwargs["num_channels"] += by # surgery done here
|
1286 |
+
# conv1
|
1287 |
+
conv1_args = [
|
1288 |
+
"in_channels",
|
1289 |
+
"out_channels",
|
1290 |
+
"kernel_size",
|
1291 |
+
"stride",
|
1292 |
+
"padding",
|
1293 |
+
"dilation",
|
1294 |
+
"groups",
|
1295 |
+
"bias",
|
1296 |
+
"padding_mode",
|
1297 |
+
]
|
1298 |
+
#if not USE_PEFT_BACKEND:
|
1299 |
+
# conv1_args.append("lora_layer")
|
1300 |
+
|
1301 |
+
for a in conv1_args:
|
1302 |
+
assert hasattr(old_conv1, a)
|
1303 |
+
|
1304 |
+
conv1_kwargs = {a: getattr(old_conv1, a) for a in conv1_args}
|
1305 |
+
conv1_kwargs["bias"] = "bias" in conv1_kwargs # as param, bias is a boolean, but as attr, it's a tensor.
|
1306 |
+
conv1_kwargs["in_channels"] += by # surgery done here
|
1307 |
+
# conv_shortcut
|
1308 |
+
# as we changed the input size of the block, the input and output sizes are likely different,
|
1309 |
+
# therefore we need a conv_shortcut (simply adding won't work)
|
1310 |
+
conv_shortcut_args_kwargs = {
|
1311 |
+
"in_channels": conv1_kwargs["in_channels"],
|
1312 |
+
"out_channels": conv1_kwargs["out_channels"],
|
1313 |
+
# default arguments from resnet.__init__
|
1314 |
+
"kernel_size": 1,
|
1315 |
+
"stride": 1,
|
1316 |
+
"padding": 0,
|
1317 |
+
"bias": True,
|
1318 |
+
}
|
1319 |
+
# swap old with new modules
|
1320 |
+
unet.down_blocks[block_no].resnets[resnet_idx].norm1 = GroupNorm(**norm_kwargs)
|
1321 |
+
unet.down_blocks[block_no].resnets[resnet_idx].conv1 = (
|
1322 |
+
nn.Conv2d(**conv1_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv1_kwargs)
|
1323 |
+
)
|
1324 |
+
unet.down_blocks[block_no].resnets[resnet_idx].conv_shortcut = (
|
1325 |
+
nn.Conv2d(**conv_shortcut_args_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv_shortcut_args_kwargs)
|
1326 |
+
)
|
1327 |
+
print(f"increasing down {unet.down_blocks[block_no].resnets[resnet_idx].in_channels} by {by}")
|
1328 |
+
unet.down_blocks[block_no].resnets[resnet_idx].in_channels += by # surgery done here
|
1329 |
+
|
1330 |
+
def increase_block_input_in_decoder_resnet(unet: UNet2DConditionModel, block_no, resnet_idx, by):
|
1331 |
+
"""Increase channels sizes to allow for additional concatted information from base model"""
|
1332 |
+
r = unet.up_blocks[block_no].resnets[resnet_idx]
|
1333 |
+
old_norm1, old_conv1 = r.norm1, r.conv1
|
1334 |
+
# norm
|
1335 |
+
norm_args = "num_groups num_channels eps affine".split(" ")
|
1336 |
+
for a in norm_args:
|
1337 |
+
assert hasattr(old_norm1, a)
|
1338 |
+
norm_kwargs = {a: getattr(old_norm1, a) for a in norm_args}
|
1339 |
+
norm_kwargs["num_channels"] += by # surgery done here
|
1340 |
+
# conv1
|
1341 |
+
conv1_args = [
|
1342 |
+
"in_channels",
|
1343 |
+
"out_channels",
|
1344 |
+
"kernel_size",
|
1345 |
+
"stride",
|
1346 |
+
"padding",
|
1347 |
+
"dilation",
|
1348 |
+
"groups",
|
1349 |
+
"bias",
|
1350 |
+
"padding_mode",
|
1351 |
+
]
|
1352 |
+
#if not USE_PEFT_BACKEND:
|
1353 |
+
# conv1_args.append("lora_layer")
|
1354 |
+
|
1355 |
+
for a in conv1_args:
|
1356 |
+
assert hasattr(old_conv1, a)
|
1357 |
+
|
1358 |
+
conv1_kwargs = {a: getattr(old_conv1, a) for a in conv1_args}
|
1359 |
+
conv1_kwargs["bias"] = "bias" in conv1_kwargs # as param, bias is a boolean, but as attr, it's a tensor.
|
1360 |
+
conv1_kwargs["in_channels"] += by # surgery done here
|
1361 |
+
# conv_shortcut
|
1362 |
+
# as we changed the input size of the block, the input and output sizes are likely different,
|
1363 |
+
# therefore we need a conv_shortcut (simply adding won't work)
|
1364 |
+
conv_shortcut_args_kwargs = {
|
1365 |
+
"in_channels": conv1_kwargs["in_channels"],
|
1366 |
+
"out_channels": conv1_kwargs["out_channels"],
|
1367 |
+
# default arguments from resnet.__init__
|
1368 |
+
"kernel_size": 1,
|
1369 |
+
"stride": 1,
|
1370 |
+
"padding": 0,
|
1371 |
+
"bias": True,
|
1372 |
+
}
|
1373 |
+
# swap old with new modules
|
1374 |
+
unet.up_blocks[block_no].resnets[resnet_idx].norm1 = GroupNorm(**norm_kwargs)
|
1375 |
+
unet.up_blocks[block_no].resnets[resnet_idx].conv1 = (
|
1376 |
+
nn.Conv2d(**conv1_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv1_kwargs)
|
1377 |
+
)
|
1378 |
+
unet.up_blocks[block_no].resnets[resnet_idx].conv_shortcut = (
|
1379 |
+
nn.Conv2d(**conv_shortcut_args_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv_shortcut_args_kwargs)
|
1380 |
+
)
|
1381 |
+
|
1382 |
+
|
1383 |
+
#by =unet.up_blocks[block_no].resnets[resnet_idx].out_channels
|
1384 |
+
print(f"increasing up {unet.up_blocks[block_no].resnets[resnet_idx].in_channels} by {by}")
|
1385 |
+
unet.up_blocks[block_no].resnets[resnet_idx].in_channels += by # surgery done here
|
1386 |
+
|
1387 |
+
|
1388 |
+
def increase_block_input_in_encoder_downsampler(unet: UNet2DConditionModel, block_no, by):
|
1389 |
+
"""Increase channels sizes to allow for additional concatted information from base model"""
|
1390 |
+
old_down = unet.down_blocks[block_no].downsamplers[0].conv
|
1391 |
+
|
1392 |
+
args = [
|
1393 |
+
"in_channels",
|
1394 |
+
"out_channels",
|
1395 |
+
"kernel_size",
|
1396 |
+
"stride",
|
1397 |
+
"padding",
|
1398 |
+
"dilation",
|
1399 |
+
"groups",
|
1400 |
+
"bias",
|
1401 |
+
"padding_mode",
|
1402 |
+
]
|
1403 |
+
#if not USE_PEFT_BACKEND:
|
1404 |
+
# args.append("lora_layer")
|
1405 |
+
|
1406 |
+
for a in args:
|
1407 |
+
assert hasattr(old_down, a)
|
1408 |
+
kwargs = {a: getattr(old_down, a) for a in args}
|
1409 |
+
kwargs["bias"] = "bias" in kwargs # as param, bias is a boolean, but as attr, it's a tensor.
|
1410 |
+
kwargs["in_channels"] += by # surgery done here
|
1411 |
+
# swap old with new modules
|
1412 |
+
unet.down_blocks[block_no].downsamplers[0].conv = (
|
1413 |
+
nn.Conv2d(**kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**kwargs)
|
1414 |
+
)
|
1415 |
+
unet.down_blocks[block_no].downsamplers[0].channels += by # surgery done here
|
1416 |
+
|
1417 |
+
|
1418 |
+
def increase_block_input_in_decoder_downsampler(unet: UNet2DConditionModel, block_no, by):
|
1419 |
+
"""Increase channels sizes to allow for additional concatted information from base model"""
|
1420 |
+
old_down = unet.up_blocks[block_no].upsamplers[0].conv
|
1421 |
+
|
1422 |
+
args = [
|
1423 |
+
"in_channels",
|
1424 |
+
"out_channels",
|
1425 |
+
"kernel_size",
|
1426 |
+
"stride",
|
1427 |
+
"padding",
|
1428 |
+
"dilation",
|
1429 |
+
"groups",
|
1430 |
+
"bias",
|
1431 |
+
"padding_mode",
|
1432 |
+
]
|
1433 |
+
if not USE_PEFT_BACKEND:
|
1434 |
+
args.append("lora_layer")
|
1435 |
+
|
1436 |
+
for a in args:
|
1437 |
+
assert hasattr(old_down, a)
|
1438 |
+
kwargs = {a: getattr(old_down, a) for a in args}
|
1439 |
+
kwargs["bias"] = "bias" in kwargs # as param, bias is a boolean, but as attr, it's a tensor.
|
1440 |
+
kwargs["in_channels"] += by # surgery done here
|
1441 |
+
# swap old with new modules
|
1442 |
+
unet.up_blocks[block_no].upsamplers[0].conv = (
|
1443 |
+
nn.Conv2d(**kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**kwargs)
|
1444 |
+
)
|
1445 |
+
unet.up_blocks[block_no].upsamplers[0].channels += by # surgery done here
|
1446 |
+
|
1447 |
+
def increase_block_input_in_mid_resnet(unet: UNet2DConditionModel, by):
|
1448 |
+
"""Increase channels sizes to allow for additional concatted information from base model"""
|
1449 |
+
m = unet.mid_block.resnets[0]
|
1450 |
+
old_norm1, old_conv1 = m.norm1, m.conv1
|
1451 |
+
# norm
|
1452 |
+
norm_args = "num_groups num_channels eps affine".split(" ")
|
1453 |
+
for a in norm_args:
|
1454 |
+
assert hasattr(old_norm1, a)
|
1455 |
+
norm_kwargs = {a: getattr(old_norm1, a) for a in norm_args}
|
1456 |
+
norm_kwargs["num_channels"] += by # surgery done here
|
1457 |
+
conv1_args = [
|
1458 |
+
"in_channels",
|
1459 |
+
"out_channels",
|
1460 |
+
"kernel_size",
|
1461 |
+
"stride",
|
1462 |
+
"padding",
|
1463 |
+
"dilation",
|
1464 |
+
"groups",
|
1465 |
+
"bias",
|
1466 |
+
"padding_mode",
|
1467 |
+
]
|
1468 |
+
#if not USE_PEFT_BACKEND:
|
1469 |
+
# conv1_args.append("lora_layer")
|
1470 |
+
|
1471 |
+
conv1_kwargs = {a: getattr(old_conv1, a) for a in conv1_args}
|
1472 |
+
conv1_kwargs["bias"] = "bias" in conv1_kwargs # as param, bias is a boolean, but as attr, it's a tensor.
|
1473 |
+
conv1_kwargs["in_channels"] += by # surgery done here
|
1474 |
+
# conv_shortcut
|
1475 |
+
# as we changed the input size of the block, the input and output sizes are likely different,
|
1476 |
+
# therefore we need a conv_shortcut (simply adding won't work)
|
1477 |
+
conv_shortcut_args_kwargs = {
|
1478 |
+
"in_channels": conv1_kwargs["in_channels"],
|
1479 |
+
"out_channels": conv1_kwargs["out_channels"],
|
1480 |
+
# default arguments from resnet.__init__
|
1481 |
+
"kernel_size": 1,
|
1482 |
+
"stride": 1,
|
1483 |
+
"padding": 0,
|
1484 |
+
"bias": True,
|
1485 |
+
}
|
1486 |
+
# swap old with new modules
|
1487 |
+
unet.mid_block.resnets[0].norm1 = GroupNorm(**norm_kwargs)
|
1488 |
+
unet.mid_block.resnets[0].conv1 = (
|
1489 |
+
nn.Conv2d(**conv1_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv1_kwargs)
|
1490 |
+
)
|
1491 |
+
unet.mid_block.resnets[0].conv_shortcut = (
|
1492 |
+
nn.Conv2d(**conv_shortcut_args_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv_shortcut_args_kwargs)
|
1493 |
+
)
|
1494 |
+
unet.mid_block.resnets[0].in_channels += by # surgery done here
|
1495 |
+
|
1496 |
+
|
1497 |
+
def adjust_group_norms(unet: UNet2DConditionModel, max_num_group: int = 32):
|
1498 |
+
def find_denominator(number, start):
|
1499 |
+
if start >= number:
|
1500 |
+
return number
|
1501 |
+
while start != 0:
|
1502 |
+
residual = number % start
|
1503 |
+
if residual == 0:
|
1504 |
+
return start
|
1505 |
+
start -= 1
|
1506 |
+
|
1507 |
+
for block in [*unet.down_blocks, unet.mid_block]:
|
1508 |
+
# resnets
|
1509 |
+
for r in block.resnets:
|
1510 |
+
if r.norm1.num_groups < max_num_group:
|
1511 |
+
r.norm1.num_groups = find_denominator(r.norm1.num_channels, start=max_num_group)
|
1512 |
+
|
1513 |
+
if r.norm2.num_groups < max_num_group:
|
1514 |
+
r.norm2.num_groups = find_denominator(r.norm2.num_channels, start=max_num_group)
|
1515 |
+
|
1516 |
+
# transformers
|
1517 |
+
if hasattr(block, "attentions"):
|
1518 |
+
for a in block.attentions:
|
1519 |
+
if a.norm.num_groups < max_num_group:
|
1520 |
+
a.norm.num_groups = find_denominator(a.norm.num_channels, start=max_num_group)
|
1521 |
+
|
1522 |
+
|
1523 |
+
def is_iterable(o):
|
1524 |
+
if isinstance(o, str):
|
1525 |
+
return False
|
1526 |
+
try:
|
1527 |
+
iter(o)
|
1528 |
+
return True
|
1529 |
+
except TypeError:
|
1530 |
+
return False
|
1531 |
+
|
1532 |
+
|
1533 |
+
|
1534 |
+
def save_debug_image(image, folder='debug_images', noise_threshold=0.1):
|
1535 |
+
os.makedirs(folder, exist_ok=True)
|
1536 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
1537 |
+
filename = f"debug_image_{timestamp}.png"
|
1538 |
+
filepath = os.path.join(folder, filename)
|
1539 |
+
|
1540 |
+
print("Debugging image information:")
|
1541 |
+
print(f"Type of image: {type(image)}")
|
1542 |
+
|
1543 |
+
if isinstance(image, torch.Tensor):
|
1544 |
+
print(f"Image tensor shape: {image.shape}")
|
1545 |
+
print(f"Image tensor dtype: {image.dtype}")
|
1546 |
+
print(f"Image tensor device: {image.device}")
|
1547 |
+
print(f"Image tensor min: {image.min()}, max: {image.max()}")
|
1548 |
+
image_np = image.cpu().detach().numpy()
|
1549 |
+
elif isinstance(image, np.ndarray):
|
1550 |
+
image_np = image
|
1551 |
+
else:
|
1552 |
+
print(f"Unexpected image type: {type(image)}")
|
1553 |
+
return
|
1554 |
+
|
1555 |
+
print(f"Numpy array shape: {image_np.shape}")
|
1556 |
+
print(f"Numpy array dtype: {image_np.dtype}")
|
1557 |
+
print(f"Numpy array min: {image_np.min()}, max: {image_np.max()}")
|
1558 |
+
|
1559 |
+
# Handle different array shapes
|
1560 |
+
if image_np.ndim == 4:
|
1561 |
+
image_np = np.squeeze(image_np, axis=0)
|
1562 |
+
image_np = np.transpose(image_np, (1, 2, 0))
|
1563 |
+
elif image_np.ndim == 3:
|
1564 |
+
if image_np.shape[0] in [1, 3, 4]:
|
1565 |
+
image_np = np.transpose(image_np, (1, 2, 0))
|
1566 |
+
elif image_np.ndim == 2:
|
1567 |
+
image_np = np.expand_dims(image_np, axis=-1)
|
1568 |
+
|
1569 |
+
print(f"Processed numpy array shape: {image_np.shape}")
|
1570 |
+
|
1571 |
+
# Normalize the image, accounting for noise
|
1572 |
+
if image_np.dtype != np.uint8:
|
1573 |
+
if image_np.max() <= 1 + noise_threshold:
|
1574 |
+
# Assume the image is in [0, 1] range with some noise
|
1575 |
+
image_np = np.clip(image_np, 0, 1)
|
1576 |
+
image_np = (image_np * 255).astype(np.uint8)
|
1577 |
+
else:
|
1578 |
+
# Assume the image is in a wider range, possibly due to noise
|
1579 |
+
lower_percentile = np.percentile(image_np, 1)
|
1580 |
+
upper_percentile = np.percentile(image_np, 99)
|
1581 |
+
image_np = np.clip(image_np, lower_percentile, upper_percentile)
|
1582 |
+
image_np = ((image_np - lower_percentile) / (upper_percentile - lower_percentile) * 255).astype(np.uint8)
|
1583 |
+
|
1584 |
+
print(f"Normalized array min: {image_np.min()}, max: {image_np.max()}")
|
1585 |
+
|
1586 |
+
try:
|
1587 |
+
image_pil = Image.fromarray(image_np.squeeze() if image_np.shape[-1] == 1 else image_np)
|
1588 |
+
image_pil.save(filepath)
|
1589 |
+
print(f"Debug image saved as '{filepath}'")
|
1590 |
+
except Exception as e:
|
1591 |
+
print(f"Error saving image: {str(e)}")
|
1592 |
+
print("Attempting to save as numpy array...")
|
1593 |
+
np_filepath = filepath.replace('.png', '.npy')
|
1594 |
+
np.save(np_filepath, image_np)
|
1595 |
+
print(f"Numpy array saved as '{np_filepath}'")
|
1596 |
+
|
1597 |
+
|
1598 |
+
|
1599 |
+
|
1600 |
+
def zero_module(module):
|
1601 |
+
for p in module.parameters():
|
1602 |
+
nn.init.zeros_(p)
|
1603 |
+
return module
|
controlnet/pipline_controlnet_xs_v2.py
ADDED
@@ -0,0 +1,1227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import inspect
|
15 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from packaging import version
|
20 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection,SiglipVisionModel,AutoProcessor
|
21 |
+
from controlnet.controlnetxs_appearance import StyleCodesModel
|
22 |
+
from PIL import Image
|
23 |
+
|
24 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
25 |
+
from diffusers.configuration_utils import FrozenDict
|
26 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
27 |
+
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
28 |
+
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
29 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
30 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
31 |
+
from diffusers.utils import (
|
32 |
+
USE_PEFT_BACKEND,
|
33 |
+
deprecate,
|
34 |
+
logging,
|
35 |
+
replace_example_docstring,
|
36 |
+
scale_lora_layers,
|
37 |
+
unscale_lora_layers,
|
38 |
+
)
|
39 |
+
from diffusers.utils.torch_utils import randn_tensor
|
40 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
41 |
+
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
42 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
43 |
+
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
46 |
+
|
47 |
+
EXAMPLE_DOC_STRING = """
|
48 |
+
Examples:
|
49 |
+
```py
|
50 |
+
>>> import torch
|
51 |
+
>>> from diffusers import StableDiffusionPipeline
|
52 |
+
|
53 |
+
>>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
54 |
+
>>> pipe = pipe.to("cuda")
|
55 |
+
|
56 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
57 |
+
>>> image = pipe(prompt).images[0]
|
58 |
+
```
|
59 |
+
"""
|
60 |
+
|
61 |
+
|
62 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
63 |
+
"""
|
64 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
65 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
66 |
+
"""
|
67 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
68 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
69 |
+
# rescale the results from guidance (fixes overexposure)
|
70 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
71 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
72 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
73 |
+
return noise_cfg
|
74 |
+
|
75 |
+
|
76 |
+
def retrieve_timesteps(
|
77 |
+
scheduler,
|
78 |
+
num_inference_steps: Optional[int] = None,
|
79 |
+
device: Optional[Union[str, torch.device]] = None,
|
80 |
+
timesteps: Optional[List[int]] = None,
|
81 |
+
sigmas: Optional[List[float]] = None,
|
82 |
+
**kwargs,
|
83 |
+
):
|
84 |
+
"""
|
85 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
86 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
scheduler (`SchedulerMixin`):
|
90 |
+
The scheduler to get timesteps from.
|
91 |
+
num_inference_steps (`int`):
|
92 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
93 |
+
must be `None`.
|
94 |
+
device (`str` or `torch.device`, *optional*):
|
95 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
96 |
+
timesteps (`List[int]`, *optional*):
|
97 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
98 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
99 |
+
sigmas (`List[float]`, *optional*):
|
100 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
101 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
105 |
+
second element is the number of inference steps.
|
106 |
+
"""
|
107 |
+
if timesteps is not None and sigmas is not None:
|
108 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
109 |
+
if timesteps is not None:
|
110 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
111 |
+
if not accepts_timesteps:
|
112 |
+
raise ValueError(
|
113 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
114 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
115 |
+
)
|
116 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
117 |
+
timesteps = scheduler.timesteps
|
118 |
+
num_inference_steps = len(timesteps)
|
119 |
+
elif sigmas is not None:
|
120 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
121 |
+
if not accept_sigmas:
|
122 |
+
raise ValueError(
|
123 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
124 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
125 |
+
)
|
126 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
127 |
+
timesteps = scheduler.timesteps
|
128 |
+
num_inference_steps = len(timesteps)
|
129 |
+
else:
|
130 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
131 |
+
timesteps = scheduler.timesteps
|
132 |
+
return timesteps, num_inference_steps
|
133 |
+
|
134 |
+
|
135 |
+
class StableDiffusionPipelineXSv2(
|
136 |
+
DiffusionPipeline,
|
137 |
+
StableDiffusionMixin,
|
138 |
+
TextualInversionLoaderMixin,
|
139 |
+
LoraLoaderMixin,
|
140 |
+
IPAdapterMixin,
|
141 |
+
FromSingleFileMixin,
|
142 |
+
):
|
143 |
+
r"""
|
144 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
145 |
+
|
146 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
147 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
148 |
+
|
149 |
+
The pipeline also inherits the following loading methods:
|
150 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
151 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
152 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
153 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
154 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
155 |
+
|
156 |
+
Args:
|
157 |
+
vae ([`AutoencoderKL`]):
|
158 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
159 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
160 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
161 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
162 |
+
A `CLIPTokenizer` to tokenize text.
|
163 |
+
unet ([`UNet2DConditionModel`]):
|
164 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
165 |
+
scheduler ([`SchedulerMixin`]):
|
166 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
167 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
168 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
169 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
170 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
171 |
+
about a model's potential harms.
|
172 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
173 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
174 |
+
"""
|
175 |
+
|
176 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
177 |
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
178 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
179 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
180 |
+
|
181 |
+
def __init__(
|
182 |
+
self,
|
183 |
+
vae: AutoencoderKL,
|
184 |
+
text_encoder: CLIPTextModel,
|
185 |
+
tokenizer: CLIPTokenizer,
|
186 |
+
unet: UNet2DConditionModel,
|
187 |
+
stylecodes_model: StyleCodesModel,
|
188 |
+
|
189 |
+
scheduler: KarrasDiffusionSchedulers,
|
190 |
+
safety_checker: StableDiffusionSafetyChecker,
|
191 |
+
feature_extractor: CLIPImageProcessor,
|
192 |
+
image_encoder: SiglipVisionModel = None,
|
193 |
+
requires_safety_checker: bool = True,
|
194 |
+
):
|
195 |
+
super().__init__()
|
196 |
+
|
197 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
198 |
+
deprecation_message = (
|
199 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
200 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
201 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
202 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
203 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
204 |
+
" file"
|
205 |
+
)
|
206 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
207 |
+
new_config = dict(scheduler.config)
|
208 |
+
new_config["steps_offset"] = 1
|
209 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
210 |
+
|
211 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
212 |
+
deprecation_message = (
|
213 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
214 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
215 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
216 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
217 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
218 |
+
)
|
219 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
220 |
+
new_config = dict(scheduler.config)
|
221 |
+
new_config["clip_sample"] = False
|
222 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
223 |
+
|
224 |
+
if safety_checker is None and requires_safety_checker:
|
225 |
+
logger.warning(
|
226 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
227 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
228 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
229 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
230 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
231 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
232 |
+
)
|
233 |
+
|
234 |
+
if safety_checker is not None and feature_extractor is None:
|
235 |
+
raise ValueError(
|
236 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
237 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
238 |
+
)
|
239 |
+
|
240 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
241 |
+
version.parse(unet.config._diffusers_version).base_version
|
242 |
+
) < version.parse("0.9.0.dev0")
|
243 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
244 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
245 |
+
deprecation_message = (
|
246 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
247 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
248 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
249 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
250 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
251 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
252 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
253 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
254 |
+
" the `unet/config.json` file"
|
255 |
+
)
|
256 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
257 |
+
new_config = dict(unet.config)
|
258 |
+
new_config["sample_size"] = 64
|
259 |
+
unet._internal_dict = FrozenDict(new_config)
|
260 |
+
|
261 |
+
|
262 |
+
self.register_modules(
|
263 |
+
vae=vae,
|
264 |
+
text_encoder=text_encoder,
|
265 |
+
tokenizer=tokenizer,
|
266 |
+
unet=unet,
|
267 |
+
stylecodes_model=stylecodes_model,
|
268 |
+
|
269 |
+
scheduler=scheduler,
|
270 |
+
safety_checker=safety_checker,
|
271 |
+
feature_extractor=feature_extractor,
|
272 |
+
image_encoder=image_encoder,
|
273 |
+
)
|
274 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
275 |
+
self.clip_image_processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
276 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
277 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
278 |
+
self.control_image_processor = VaeImageProcessor(
|
279 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
280 |
+
)
|
281 |
+
if image_encoder is None:
|
282 |
+
self.image_encoder = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224").to(dtype=torch.float16,device="cuda")
|
283 |
+
|
284 |
+
|
285 |
+
@torch.inference_mode()
|
286 |
+
def get_image_embeds(self, pil_image=None):
|
287 |
+
if isinstance(pil_image, Image.Image):
|
288 |
+
pil_image = [pil_image]
|
289 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
290 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
291 |
+
clip_image = {"pixel_values": clip_image}
|
292 |
+
clip_image_embeds = self.image_encoder(**clip_image, output_hidden_states=True).hidden_states[-2]
|
293 |
+
|
294 |
+
return clip_image_embeds
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
def _encode_prompt(
|
299 |
+
self,
|
300 |
+
prompt,
|
301 |
+
device,
|
302 |
+
num_images_per_prompt,
|
303 |
+
do_classifier_free_guidance,
|
304 |
+
negative_prompt=None,
|
305 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
306 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
307 |
+
lora_scale: Optional[float] = None,
|
308 |
+
**kwargs,
|
309 |
+
):
|
310 |
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
311 |
+
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
312 |
+
|
313 |
+
prompt_embeds_tuple = self.encode_prompt(
|
314 |
+
prompt=prompt,
|
315 |
+
device=device,
|
316 |
+
num_images_per_prompt=num_images_per_prompt,
|
317 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
318 |
+
negative_prompt=negative_prompt,
|
319 |
+
prompt_embeds=prompt_embeds,
|
320 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
321 |
+
lora_scale=lora_scale,
|
322 |
+
**kwargs,
|
323 |
+
)
|
324 |
+
|
325 |
+
# concatenate for backwards comp
|
326 |
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
327 |
+
|
328 |
+
return prompt_embeds
|
329 |
+
|
330 |
+
def encode_prompt(
|
331 |
+
self,
|
332 |
+
prompt,
|
333 |
+
device,
|
334 |
+
num_images_per_prompt,
|
335 |
+
do_classifier_free_guidance,
|
336 |
+
negative_prompt=None,
|
337 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
338 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
339 |
+
img_only_prompt_embeds: Optional[torch.Tensor] = None,
|
340 |
+
img_prompt_everything_cond: Optional[torch.Tensor] = None,
|
341 |
+
lora_scale: Optional[float] = None,
|
342 |
+
clip_skip: Optional[int] = None,
|
343 |
+
):
|
344 |
+
r"""
|
345 |
+
Encodes the prompt into text encoder hidden states.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
prompt (`str` or `List[str]`, *optional*):
|
349 |
+
prompt to be encoded
|
350 |
+
device: (`torch.device`):
|
351 |
+
torch device
|
352 |
+
num_images_per_prompt (`int`):
|
353 |
+
number of images that should be generated per prompt
|
354 |
+
do_classifier_free_guidance (`bool`):
|
355 |
+
whether to use classifier free guidance or not
|
356 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
357 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
358 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
359 |
+
less than `1`).
|
360 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
361 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
362 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
363 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
364 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
365 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
366 |
+
argument.
|
367 |
+
lora_scale (`float`, *optional*):
|
368 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
369 |
+
clip_skip (`int`, *optional*):
|
370 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
371 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
372 |
+
"""
|
373 |
+
# set lora scale so that monkey patched LoRA
|
374 |
+
# function of text encoder can correctly access it
|
375 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
376 |
+
self._lora_scale = lora_scale
|
377 |
+
|
378 |
+
# dynamically adjust the LoRA scale
|
379 |
+
if not USE_PEFT_BACKEND:
|
380 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
381 |
+
else:
|
382 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
383 |
+
|
384 |
+
batch_size = 1
|
385 |
+
print("prompt ",prompt)
|
386 |
+
if prompt_embeds is None:
|
387 |
+
# textual inversion: process multi-vector tokens if necessary
|
388 |
+
#if isinstance(self, TextualInversionLoaderMixin):
|
389 |
+
# prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
390 |
+
|
391 |
+
text_inputs = self.tokenizer(
|
392 |
+
prompt,
|
393 |
+
padding="max_length",
|
394 |
+
max_length=self.tokenizer.model_max_length,
|
395 |
+
truncation=True,
|
396 |
+
return_tensors="pt",
|
397 |
+
)
|
398 |
+
text_input_ids = text_inputs.input_ids
|
399 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
400 |
+
|
401 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
402 |
+
text_input_ids, untruncated_ids
|
403 |
+
):
|
404 |
+
removed_text = self.tokenizer.batch_decode(
|
405 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
406 |
+
)
|
407 |
+
logger.warning(
|
408 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
409 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
410 |
+
)
|
411 |
+
|
412 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
413 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
414 |
+
else:
|
415 |
+
attention_mask = None
|
416 |
+
|
417 |
+
if clip_skip is None:
|
418 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
419 |
+
prompt_embeds = prompt_embeds[0]
|
420 |
+
else:
|
421 |
+
prompt_embeds = self.text_encoder(
|
422 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
423 |
+
)
|
424 |
+
# Access the `hidden_states` first, that contains a tuple of
|
425 |
+
# all the hidden states from the encoder layers. Then index into
|
426 |
+
# the tuple to access the hidden states from the desired layer.
|
427 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
428 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
429 |
+
# representations. The `last_hidden_states` that we typically use for
|
430 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
431 |
+
# layer.
|
432 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
433 |
+
|
434 |
+
if self.text_encoder is not None:
|
435 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
436 |
+
elif self.unet is not None:
|
437 |
+
prompt_embeds_dtype = self.unet.dtype
|
438 |
+
else:
|
439 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
440 |
+
|
441 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
442 |
+
|
443 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
444 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
445 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
446 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
447 |
+
|
448 |
+
# get unconditional embeddings for classifier free guidance
|
449 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
450 |
+
uncond_tokens: List[str]
|
451 |
+
if negative_prompt is None:
|
452 |
+
uncond_tokens = [""] * batch_size
|
453 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
454 |
+
raise TypeError(
|
455 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
456 |
+
f" {type(prompt)}."
|
457 |
+
)
|
458 |
+
elif isinstance(negative_prompt, str):
|
459 |
+
uncond_tokens = [negative_prompt]
|
460 |
+
elif batch_size != len(negative_prompt):
|
461 |
+
raise ValueError(
|
462 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
463 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
464 |
+
" the batch size of `prompt`."
|
465 |
+
)
|
466 |
+
else:
|
467 |
+
uncond_tokens = negative_prompt
|
468 |
+
|
469 |
+
# textual inversion: process multi-vector tokens if necessary
|
470 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
471 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
472 |
+
|
473 |
+
max_length = prompt_embeds.shape[1]
|
474 |
+
uncond_input = self.tokenizer(
|
475 |
+
uncond_tokens,
|
476 |
+
padding="max_length",
|
477 |
+
max_length=max_length,
|
478 |
+
truncation=True,
|
479 |
+
return_tensors="pt",
|
480 |
+
)
|
481 |
+
|
482 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
483 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
484 |
+
else:
|
485 |
+
attention_mask = None
|
486 |
+
|
487 |
+
negative_prompt_embeds = self.text_encoder(
|
488 |
+
uncond_input.input_ids.to(device),
|
489 |
+
attention_mask=attention_mask,
|
490 |
+
)
|
491 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
492 |
+
|
493 |
+
if do_classifier_free_guidance:
|
494 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
495 |
+
seq_len = negative_prompt_embeds.shape[1]
|
496 |
+
|
497 |
+
# if negative_prompt is not None:
|
498 |
+
# negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
499 |
+
|
500 |
+
# negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
501 |
+
# negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
502 |
+
|
503 |
+
# #prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
504 |
+
|
505 |
+
# #prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
506 |
+
# #prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
507 |
+
|
508 |
+
if img_only_prompt_embeds is not None:
|
509 |
+
seq_len = img_only_prompt_embeds.shape[1]
|
510 |
+
img_only_prompt_embeds = img_only_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
511 |
+
|
512 |
+
img_only_prompt_embeds = img_only_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
513 |
+
img_only_prompt_embeds = img_only_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
514 |
+
|
515 |
+
if img_prompt_everything_cond is not None:
|
516 |
+
seq_len = img_prompt_everything_cond.shape[1]
|
517 |
+
img_prompt_everything_cond = img_prompt_everything_cond.to(dtype=prompt_embeds_dtype, device=device)
|
518 |
+
|
519 |
+
img_prompt_everything_cond = img_prompt_everything_cond.repeat(1, num_images_per_prompt, 1)
|
520 |
+
img_prompt_everything_cond = img_prompt_everything_cond.view(batch_size * num_images_per_prompt, seq_len, -1)
|
521 |
+
|
522 |
+
if self.text_encoder is not None:
|
523 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
524 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
525 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
526 |
+
if img_only_prompt_embeds is not None:
|
527 |
+
return prompt_embeds, negative_prompt_embeds, img_only_prompt_embeds,img_prompt_everything_cond
|
528 |
+
else:
|
529 |
+
return prompt_embeds, negative_prompt_embeds
|
530 |
+
def prepare_image(
|
531 |
+
self,
|
532 |
+
image,
|
533 |
+
width,
|
534 |
+
height,
|
535 |
+
batch_size,
|
536 |
+
num_images_per_prompt,
|
537 |
+
device,
|
538 |
+
dtype,
|
539 |
+
do_classifier_free_guidance=False,
|
540 |
+
):
|
541 |
+
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
542 |
+
image_batch_size = image.shape[0]
|
543 |
+
|
544 |
+
if image_batch_size == 1:
|
545 |
+
repeat_by = batch_size
|
546 |
+
else:
|
547 |
+
# image batch size is the same as prompt batch size
|
548 |
+
repeat_by = num_images_per_prompt
|
549 |
+
|
550 |
+
ctrl_noise = torch.randn_like(image)
|
551 |
+
image = image + (ctrl_noise * 0.02)
|
552 |
+
|
553 |
+
|
554 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
555 |
+
|
556 |
+
image = image.to(device=device, dtype=dtype)
|
557 |
+
uncond = torch.zeros_like(image)
|
558 |
+
#if do_classifier_free_guidance:
|
559 |
+
# image = torch.cat([image],[uncond])
|
560 |
+
|
561 |
+
return image,uncond
|
562 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
563 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
564 |
+
|
565 |
+
if not isinstance(image, torch.Tensor):
|
566 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
567 |
+
|
568 |
+
image = image.to(device=device, dtype=dtype)
|
569 |
+
if output_hidden_states:
|
570 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
571 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
572 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
573 |
+
torch.zeros_like(image), output_hidden_states=True
|
574 |
+
).hidden_states[-2]
|
575 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
576 |
+
num_images_per_prompt, dim=0
|
577 |
+
)
|
578 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
579 |
+
else:
|
580 |
+
image_embeds = self.image_encoder(image).image_embeds
|
581 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
582 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
583 |
+
|
584 |
+
return image_embeds, uncond_image_embeds
|
585 |
+
|
586 |
+
def prepare_ip_adapter_image_embeds(
|
587 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
588 |
+
):
|
589 |
+
if ip_adapter_image_embeds is None:
|
590 |
+
if not isinstance(ip_adapter_image, list):
|
591 |
+
ip_adapter_image = [ip_adapter_image]
|
592 |
+
|
593 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
594 |
+
raise ValueError(
|
595 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
596 |
+
)
|
597 |
+
|
598 |
+
image_embeds = []
|
599 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
600 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
601 |
+
):
|
602 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
603 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
604 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
605 |
+
)
|
606 |
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
607 |
+
single_negative_image_embeds = torch.stack(
|
608 |
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
609 |
+
)
|
610 |
+
|
611 |
+
if do_classifier_free_guidance:
|
612 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
613 |
+
single_image_embeds = single_image_embeds.to(device)
|
614 |
+
|
615 |
+
image_embeds.append(single_image_embeds)
|
616 |
+
else:
|
617 |
+
repeat_dims = [1]
|
618 |
+
image_embeds = []
|
619 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
620 |
+
if do_classifier_free_guidance:
|
621 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
622 |
+
single_image_embeds = single_image_embeds.repeat(
|
623 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
624 |
+
)
|
625 |
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
626 |
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
627 |
+
)
|
628 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
629 |
+
else:
|
630 |
+
single_image_embeds = single_image_embeds.repeat(
|
631 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
632 |
+
)
|
633 |
+
image_embeds.append(single_image_embeds)
|
634 |
+
|
635 |
+
return image_embeds
|
636 |
+
|
637 |
+
def run_safety_checker(self, image, device, dtype):
|
638 |
+
if self.safety_checker is None:
|
639 |
+
has_nsfw_concept = None
|
640 |
+
else:
|
641 |
+
if torch.is_tensor(image):
|
642 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
643 |
+
else:
|
644 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
645 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
646 |
+
image, has_nsfw_concept = self.safety_checker(
|
647 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
648 |
+
)
|
649 |
+
return image, has_nsfw_concept
|
650 |
+
|
651 |
+
def decode_latents(self, latents):
|
652 |
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
653 |
+
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
654 |
+
|
655 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
656 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
657 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
658 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
659 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
660 |
+
return image
|
661 |
+
|
662 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
663 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
664 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
665 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
666 |
+
# and should be between [0, 1]
|
667 |
+
|
668 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
669 |
+
extra_step_kwargs = {}
|
670 |
+
if accepts_eta:
|
671 |
+
extra_step_kwargs["eta"] = eta
|
672 |
+
|
673 |
+
# check if the scheduler accepts generator
|
674 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
675 |
+
if accepts_generator:
|
676 |
+
extra_step_kwargs["generator"] = generator
|
677 |
+
return extra_step_kwargs
|
678 |
+
|
679 |
+
def check_inputs(
|
680 |
+
self,
|
681 |
+
prompt,
|
682 |
+
height,
|
683 |
+
width,
|
684 |
+
callback_steps,
|
685 |
+
negative_prompt=None,
|
686 |
+
prompt_embeds=None,
|
687 |
+
negative_prompt_embeds=None,
|
688 |
+
ip_adapter_image=None,
|
689 |
+
ip_adapter_image_embeds=None,
|
690 |
+
callback_on_step_end_tensor_inputs=None,
|
691 |
+
):
|
692 |
+
if height % 8 != 0 or width % 8 != 0:
|
693 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
694 |
+
|
695 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
696 |
+
raise ValueError(
|
697 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
698 |
+
f" {type(callback_steps)}."
|
699 |
+
)
|
700 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
701 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
702 |
+
):
|
703 |
+
raise ValueError(
|
704 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
705 |
+
)
|
706 |
+
|
707 |
+
#if prompt is not None and prompt_embeds is not None:
|
708 |
+
# raise ValueError(
|
709 |
+
# f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
710 |
+
# " only forward one of the two."
|
711 |
+
# )
|
712 |
+
elif prompt is None and prompt_embeds is None:
|
713 |
+
raise ValueError(
|
714 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
715 |
+
)
|
716 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
717 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
718 |
+
|
719 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
720 |
+
raise ValueError(
|
721 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
722 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
723 |
+
)
|
724 |
+
|
725 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
726 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
727 |
+
raise ValueError(
|
728 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
729 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
730 |
+
f" {negative_prompt_embeds.shape}."
|
731 |
+
)
|
732 |
+
|
733 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
734 |
+
raise ValueError(
|
735 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
736 |
+
)
|
737 |
+
|
738 |
+
if ip_adapter_image_embeds is not None:
|
739 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
740 |
+
raise ValueError(
|
741 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
742 |
+
)
|
743 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
744 |
+
raise ValueError(
|
745 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
746 |
+
)
|
747 |
+
|
748 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
749 |
+
shape = (
|
750 |
+
batch_size,
|
751 |
+
num_channels_latents,
|
752 |
+
int(height) // self.vae_scale_factor,
|
753 |
+
int(width) // self.vae_scale_factor,
|
754 |
+
)
|
755 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
756 |
+
raise ValueError(
|
757 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
758 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
759 |
+
)
|
760 |
+
|
761 |
+
if latents is None:
|
762 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
763 |
+
else:
|
764 |
+
latents = latents.to(device)
|
765 |
+
|
766 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
767 |
+
latents = latents * self.scheduler.init_noise_sigma
|
768 |
+
return latents
|
769 |
+
|
770 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
771 |
+
def get_guidance_scale_embedding(
|
772 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
773 |
+
) -> torch.Tensor:
|
774 |
+
"""
|
775 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
776 |
+
|
777 |
+
Args:
|
778 |
+
w (`torch.Tensor`):
|
779 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
780 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
781 |
+
Dimension of the embeddings to generate.
|
782 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
783 |
+
Data type of the generated embeddings.
|
784 |
+
|
785 |
+
Returns:
|
786 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
787 |
+
"""
|
788 |
+
assert len(w.shape) == 1
|
789 |
+
w = w * 1000.0
|
790 |
+
|
791 |
+
half_dim = embedding_dim // 2
|
792 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
793 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
794 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
795 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
796 |
+
if embedding_dim % 2 == 1: # zero pad
|
797 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
798 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
799 |
+
return emb
|
800 |
+
|
801 |
+
@property
|
802 |
+
def guidance_scale(self):
|
803 |
+
return self._guidance_scale
|
804 |
+
|
805 |
+
@property
|
806 |
+
def guidance_rescale(self):
|
807 |
+
return self._guidance_rescale
|
808 |
+
|
809 |
+
@property
|
810 |
+
def clip_skip(self):
|
811 |
+
return self._clip_skip
|
812 |
+
|
813 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
814 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
815 |
+
# corresponds to doing no classifier free guidance.
|
816 |
+
@property
|
817 |
+
def do_classifier_free_guidance(self):
|
818 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
819 |
+
|
820 |
+
@property
|
821 |
+
def cross_attention_kwargs(self):
|
822 |
+
return self._cross_attention_kwargs
|
823 |
+
|
824 |
+
@property
|
825 |
+
def num_timesteps(self):
|
826 |
+
return self._num_timesteps
|
827 |
+
|
828 |
+
@property
|
829 |
+
def interrupt(self):
|
830 |
+
return self._interrupt
|
831 |
+
|
832 |
+
@torch.no_grad()
|
833 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
834 |
+
def __call__(
|
835 |
+
self,
|
836 |
+
prompt: Union[str, List[str]] = None,
|
837 |
+
height: Optional[int] = None,
|
838 |
+
width: Optional[int] = None,
|
839 |
+
num_inference_steps: int = 50,
|
840 |
+
timesteps: List[int] = None,
|
841 |
+
sigmas: List[float] = None,
|
842 |
+
guidance_scale: float = 7.5,
|
843 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
844 |
+
num_images_per_prompt: Optional[int] = 1,
|
845 |
+
eta: float = 0.0,
|
846 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
847 |
+
latents: Optional[torch.Tensor] = None,
|
848 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
849 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
850 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
851 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
852 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
853 |
+
output_type: Optional[str] = "pil",
|
854 |
+
image: Optional[Union[Image.Image, List[Image.Image]]] = None,
|
855 |
+
return_dict: bool = True,
|
856 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
857 |
+
guidance_rescale: float = 0.0,
|
858 |
+
clip_skip: Optional[int] = None,
|
859 |
+
stylecode: Optional[str] = None,
|
860 |
+
callback_on_step_end: Optional[
|
861 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
862 |
+
] = None,
|
863 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
864 |
+
**kwargs,
|
865 |
+
):
|
866 |
+
r"""
|
867 |
+
The call function to the pipeline for generation.
|
868 |
+
|
869 |
+
Args:
|
870 |
+
prompt (`str` or `List[str]`, *optional*):
|
871 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
872 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
873 |
+
The height in pixels of the generated image.
|
874 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
875 |
+
The width in pixels of the generated image.
|
876 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
877 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
878 |
+
expense of slower inference.
|
879 |
+
timesteps (`List[int]`, *optional*):
|
880 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
881 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
882 |
+
passed will be used. Must be in descending order.
|
883 |
+
sigmas (`List[float]`, *optional*):
|
884 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
885 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
886 |
+
will be used.
|
887 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
888 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
889 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
890 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
891 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
892 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
893 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
894 |
+
The number of images to generate per prompt.
|
895 |
+
eta (`float`, *optional*, defaults to 0.0):
|
896 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
897 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
898 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
899 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
900 |
+
generation deterministic.
|
901 |
+
latents (`torch.Tensor`, *optional*):
|
902 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
903 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
904 |
+
tensor is generated by sampling using the supplied random `generator`.
|
905 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
906 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
907 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
908 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
909 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
910 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
911 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
912 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
913 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
914 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
915 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
916 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
917 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
918 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
919 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
920 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
921 |
+
plain tuple.
|
922 |
+
cross_attention_kwargs (`dict`, *optional*):
|
923 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
924 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
925 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
926 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
927 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
928 |
+
using zero terminal SNR.
|
929 |
+
clip_skip (`int`, *optional*):
|
930 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
931 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
932 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
933 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
934 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
935 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
936 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
937 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
938 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
939 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
940 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
941 |
+
|
942 |
+
Examples:
|
943 |
+
|
944 |
+
Returns:
|
945 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
946 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
947 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
948 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
949 |
+
"not-safe-for-work" (nsfw) content.
|
950 |
+
"""
|
951 |
+
|
952 |
+
callback = kwargs.pop("callback", None)
|
953 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
954 |
+
|
955 |
+
if callback is not None:
|
956 |
+
deprecate(
|
957 |
+
"callback",
|
958 |
+
"1.0.0",
|
959 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
960 |
+
)
|
961 |
+
if callback_steps is not None:
|
962 |
+
deprecate(
|
963 |
+
"callback_steps",
|
964 |
+
"1.0.0",
|
965 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
966 |
+
)
|
967 |
+
|
968 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
969 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
970 |
+
|
971 |
+
# 0. Default height and width to unet
|
972 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
973 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
974 |
+
# to deal with lora scaling and other possible forward hooks
|
975 |
+
|
976 |
+
# 1. Check inputs. Raise error if not correct
|
977 |
+
self.check_inputs(
|
978 |
+
prompt,
|
979 |
+
height,
|
980 |
+
width,
|
981 |
+
callback_steps,
|
982 |
+
negative_prompt,
|
983 |
+
prompt_embeds,
|
984 |
+
negative_prompt_embeds,
|
985 |
+
ip_adapter_image,
|
986 |
+
ip_adapter_image_embeds,
|
987 |
+
callback_on_step_end_tensor_inputs,
|
988 |
+
)
|
989 |
+
|
990 |
+
self._guidance_scale = guidance_scale
|
991 |
+
self._guidance_rescale = guidance_rescale
|
992 |
+
self._clip_skip = clip_skip
|
993 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
994 |
+
self._interrupt = False
|
995 |
+
|
996 |
+
# 2. Define call parameters
|
997 |
+
# if prompt is not None and isinstance(prompt, str):
|
998 |
+
# batch_size = 1
|
999 |
+
# elif prompt is not None and isinstance(prompt, list):
|
1000 |
+
# batch_size = len(prompt)
|
1001 |
+
# else:
|
1002 |
+
#batch_size = prompt_embeds.shape[0]
|
1003 |
+
#this broke something ages ago, youll have to add it back in :P
|
1004 |
+
batch_size = 1
|
1005 |
+
device = self._execution_device
|
1006 |
+
|
1007 |
+
# 3. Encode input prompt
|
1008 |
+
lora_scale = (
|
1009 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1010 |
+
)
|
1011 |
+
|
1012 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
1013 |
+
prompt,
|
1014 |
+
device,
|
1015 |
+
num_images_per_prompt,
|
1016 |
+
self.do_classifier_free_guidance,
|
1017 |
+
negative_prompt,
|
1018 |
+
prompt_embeds=prompt_embeds,
|
1019 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1020 |
+
lora_scale=lora_scale,
|
1021 |
+
clip_skip=self.clip_skip,
|
1022 |
+
)
|
1023 |
+
if image is not None:
|
1024 |
+
controlnet_cond = self.get_image_embeds(image)
|
1025 |
+
else:
|
1026 |
+
controlnet_cond =None
|
1027 |
+
|
1028 |
+
if self.do_classifier_free_guidance:
|
1029 |
+
prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds])
|
1030 |
+
if controlnet_cond is not None:
|
1031 |
+
controlnet_cond = torch.cat([controlnet_cond,controlnet_cond])
|
1032 |
+
else:
|
1033 |
+
controlnet_cond = None
|
1034 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1035 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1036 |
+
ip_adapter_image,
|
1037 |
+
ip_adapter_image_embeds,
|
1038 |
+
device,
|
1039 |
+
batch_size * num_images_per_prompt,
|
1040 |
+
self.do_classifier_free_guidance,
|
1041 |
+
)
|
1042 |
+
|
1043 |
+
# 4. Prepare timesteps
|
1044 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1045 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
# 5. Prepare latent variables
|
1049 |
+
num_channels_latents = self.unet.config.in_channels
|
1050 |
+
latents = self.prepare_latents(
|
1051 |
+
batch_size * num_images_per_prompt,
|
1052 |
+
num_channels_latents,
|
1053 |
+
height,
|
1054 |
+
width,
|
1055 |
+
prompt_embeds.dtype,
|
1056 |
+
device,
|
1057 |
+
generator,
|
1058 |
+
latents,
|
1059 |
+
)
|
1060 |
+
|
1061 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1062 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1063 |
+
|
1064 |
+
# 6.1 Add image embeds for IP-Adapter
|
1065 |
+
added_cond_kwargs = (
|
1066 |
+
{"image_embeds": image_embeds}
|
1067 |
+
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
|
1068 |
+
else None
|
1069 |
+
)
|
1070 |
+
|
1071 |
+
# 6.2 Optionally get Guidance Scale Embedding
|
1072 |
+
timestep_cond = None
|
1073 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
1074 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1075 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
1076 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1077 |
+
).to(device=device, dtype=latents.dtype)
|
1078 |
+
|
1079 |
+
# 7. Denoising loop
|
1080 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1081 |
+
self._num_timesteps = len(timesteps)
|
1082 |
+
#image_pil = save_debug_image(image[0])
|
1083 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1084 |
+
for i, t in enumerate(timesteps):
|
1085 |
+
if self.interrupt:
|
1086 |
+
continue
|
1087 |
+
|
1088 |
+
latent_expand_num = 2
|
1089 |
+
latent_model_input = torch.cat([latents] * latent_expand_num) if self.do_classifier_free_guidance else latents
|
1090 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1091 |
+
|
1092 |
+
# predict the noise residual
|
1093 |
+
dont_control=False
|
1094 |
+
if dont_control:
|
1095 |
+
noise_pred = self.unet(
|
1096 |
+
latent_model_input,
|
1097 |
+
t,
|
1098 |
+
encoder_hidden_states=prompt_embeds,
|
1099 |
+
timestep_cond=timestep_cond,
|
1100 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1101 |
+
added_cond_kwargs=added_cond_kwargs,
|
1102 |
+
return_dict=False,
|
1103 |
+
)[0]
|
1104 |
+
else:
|
1105 |
+
#print("shape ",prompt_embeds.shape,latent_model_input.shape)
|
1106 |
+
noise_pred = self.stylecodes_model(
|
1107 |
+
base_model=self.unet,
|
1108 |
+
sample=latent_model_input,
|
1109 |
+
timestep=t,
|
1110 |
+
encoder_hidden_states=prompt_embeds,
|
1111 |
+
encoder_hidden_states_controlnet=prompt_embeds,
|
1112 |
+
controlnet_cond=controlnet_cond,
|
1113 |
+
conditioning_scale=controlnet_conditioning_scale,
|
1114 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1115 |
+
return_dict=True,
|
1116 |
+
stylecode=stylecode,
|
1117 |
+
)[0]
|
1118 |
+
|
1119 |
+
|
1120 |
+
|
1121 |
+
|
1122 |
+
# Save the image
|
1123 |
+
# perform guidance
|
1124 |
+
if self.do_classifier_free_guidance:
|
1125 |
+
|
1126 |
+
noise_pred_full, noise_pred_fully_uncond = noise_pred.chunk(2)
|
1127 |
+
noise_pred = noise_pred_fully_uncond + self.guidance_scale * (noise_pred_full - noise_pred_fully_uncond)
|
1128 |
+
|
1129 |
+
#if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1130 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1131 |
+
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1132 |
+
|
1133 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1134 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1135 |
+
|
1136 |
+
if callback_on_step_end is not None:
|
1137 |
+
callback_kwargs = {}
|
1138 |
+
for k in callback_on_step_end_tensor_inputs:
|
1139 |
+
callback_kwargs[k] = locals()[k]
|
1140 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1141 |
+
|
1142 |
+
latents = callback_outputs.pop("latents", latents)
|
1143 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1144 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1145 |
+
|
1146 |
+
# call the callback, if provided
|
1147 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1148 |
+
progress_bar.update()
|
1149 |
+
if callback is not None and i % callback_steps == 0:
|
1150 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1151 |
+
callback(step_idx, t, latents)
|
1152 |
+
|
1153 |
+
if not output_type == "latent":
|
1154 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
1155 |
+
0
|
1156 |
+
]
|
1157 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1158 |
+
else:
|
1159 |
+
image = latents
|
1160 |
+
has_nsfw_concept = None
|
1161 |
+
|
1162 |
+
if has_nsfw_concept is None:
|
1163 |
+
do_denormalize = [True] * image.shape[0]
|
1164 |
+
else:
|
1165 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1166 |
+
|
1167 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1168 |
+
|
1169 |
+
# Offload all models
|
1170 |
+
self.maybe_free_model_hooks()
|
1171 |
+
|
1172 |
+
if not return_dict:
|
1173 |
+
return (image, has_nsfw_concept)
|
1174 |
+
|
1175 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
1176 |
+
def save_debug_image(image, filename='debug_image2.png'):
|
1177 |
+
print("Debugging image information:")
|
1178 |
+
print(f"Type of image: {type(image)}")
|
1179 |
+
|
1180 |
+
if isinstance(image, torch.Tensor):
|
1181 |
+
print(f"Image tensor shape: {image.shape}")
|
1182 |
+
print(f"Image tensor dtype: {image.dtype}")
|
1183 |
+
print(f"Image tensor device: {image.device}")
|
1184 |
+
print(f"Image tensor min: {image.min()}, max: {image.max()}")
|
1185 |
+
|
1186 |
+
# Move to CPU and convert to numpy
|
1187 |
+
image_np = image.cpu().detach().numpy()
|
1188 |
+
|
1189 |
+
elif isinstance(image, np.ndarray):
|
1190 |
+
image_np = image
|
1191 |
+
else:
|
1192 |
+
print(f"Unexpected image type: {type(image)}")
|
1193 |
+
return
|
1194 |
+
|
1195 |
+
print(f"Numpy array shape: {image_np.shape}")
|
1196 |
+
print(f"Numpy array dtype: {image_np.dtype}")
|
1197 |
+
print(f"Numpy array min: {image_np.min()}, max: {image_np.max()}")
|
1198 |
+
|
1199 |
+
# Handle different array shapes
|
1200 |
+
if image_np.ndim == 4:
|
1201 |
+
# Assume shape is (batch, channel, height, width)
|
1202 |
+
image_np = np.squeeze(image_np, axis=0) # Remove batch dimension
|
1203 |
+
image_np = np.transpose(image_np, (1, 2, 0)) # Change to (height, width, channel)
|
1204 |
+
elif image_np.ndim == 3:
|
1205 |
+
if image_np.shape[0] in [1, 3, 4]:
|
1206 |
+
image_np = np.transpose(image_np, (1, 2, 0))
|
1207 |
+
elif image_np.ndim == 2:
|
1208 |
+
image_np = np.expand_dims(image_np, axis=-1)
|
1209 |
+
|
1210 |
+
print(f"Processed numpy array shape: {image_np.shape}")
|
1211 |
+
|
1212 |
+
# Normalize to 0-255 range if not already
|
1213 |
+
if image_np.dtype != np.uint8:
|
1214 |
+
if image_np.max() <= 1:
|
1215 |
+
image_np = (image_np * 255).astype(np.uint8)
|
1216 |
+
else:
|
1217 |
+
image_np = np.clip(image_np, 0, 255).astype(np.uint8)
|
1218 |
+
|
1219 |
+
try:
|
1220 |
+
image_pil = Image.fromarray(image_np)
|
1221 |
+
image_pil.save(filename)
|
1222 |
+
print(f"Debug image saved as '{filename}'")
|
1223 |
+
except Exception as e:
|
1224 |
+
print(f"Error saving image: {str(e)}")
|
1225 |
+
print("Attempting to save as numpy array...")
|
1226 |
+
np.save(filename.replace('.png', '.npy'), image_np)
|
1227 |
+
print(f"Numpy array saved as '{filename.replace('.png', '.npy')}'")
|