Spaces:
Running
on
Zero
Running
on
Zero
Update controlnet/callable_functions.py
Browse files- controlnet/callable_functions.py +38 -14
controlnet/callable_functions.py
CHANGED
@@ -10,34 +10,58 @@ from transformers import AutoProcessor, SiglipVisionModel
|
|
10 |
|
11 |
|
12 |
|
13 |
-
def process_single_image(model,image_path, image=None):
|
14 |
-
|
15 |
# Set up model components
|
16 |
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda")
|
17 |
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda")
|
18 |
-
stylecodes_model.requires_grad_(False)
|
19 |
-
stylecodes_model= stylecodes_model.to("cuda")
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
stylecodes_model.load_model(model)
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
if image is None:
|
25 |
image = Image.open(image_path).convert("RGB")
|
26 |
image = image.resize((512, 512))
|
27 |
|
28 |
# Set up generator with a fixed seed for reproducibility
|
29 |
seed = 238
|
30 |
-
|
31 |
-
image_encoder = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224").to(dtype=torch.float16,device=stylecodes_model.device)
|
32 |
-
clip_image = clip_image_processor(images=image, return_tensors="pt").pixel_values
|
33 |
-
clip_image = clip_image.to(stylecodes_model.device, dtype=torch.float16)
|
34 |
-
clip_image = {"pixel_values": clip_image}
|
35 |
-
clip_image_embeds = image_encoder(**clip_image, output_hidden_states=True).hidden_states[-2]
|
36 |
|
37 |
# Run the image through the pipeline with the specified prompt
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
def process_single_image_both_ways(model,image_path, prompt, num_inference_steps,image=None):
|
|
|
10 |
|
11 |
|
12 |
|
13 |
+
def process_single_image(model,image_path, prompt, num_inference_steps, stylecode,image=None):
|
14 |
+
# Load and preprocess image
|
15 |
# Set up model components
|
16 |
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda")
|
17 |
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda")
|
|
|
|
|
18 |
|
19 |
+
noise_scheduler = DDIMScheduler(
|
20 |
+
num_train_timesteps=1000,
|
21 |
+
beta_start=0.00085,
|
22 |
+
beta_end=0.012,
|
23 |
+
beta_schedule="scaled_linear",
|
24 |
+
clip_sample=False,
|
25 |
+
set_alpha_to_one=False,
|
26 |
+
steps_offset=1,
|
27 |
+
)
|
28 |
|
29 |
stylecodes_model.load_model(model)
|
30 |
+
|
31 |
+
pipe = StableDiffusionPipelineXSv2.from_pretrained(
|
32 |
+
"runwayml/stable-diffusion-v1-5",
|
33 |
+
unet=unet,
|
34 |
+
stylecodes_model=stylecodes_model,
|
35 |
+
torch_dtype=torch.float16,
|
36 |
+
device="cuda",
|
37 |
+
scheduler=noise_scheduler,
|
38 |
+
feature_extractor=None,
|
39 |
+
safety_checker=None,
|
40 |
+
)
|
41 |
+
|
42 |
+
pipe.enable_model_cpu_offload()
|
43 |
+
|
44 |
if image is None:
|
45 |
image = Image.open(image_path).convert("RGB")
|
46 |
image = image.resize((512, 512))
|
47 |
|
48 |
# Set up generator with a fixed seed for reproducibility
|
49 |
seed = 238
|
50 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# Run the image through the pipeline with the specified prompt
|
53 |
+
output_images = pipe(
|
54 |
+
prompt=prompt,
|
55 |
+
guidance_scale=3,
|
56 |
+
#image=image,
|
57 |
+
num_inference_steps=num_inference_steps,
|
58 |
+
generator=generator,
|
59 |
+
controlnet_conditioning_scale=0.9,
|
60 |
+
width=512,
|
61 |
+
height=512,
|
62 |
+
stylecode=stylecode,
|
63 |
+
).images
|
64 |
+
return output_images
|
65 |
|
66 |
|
67 |
def process_single_image_both_ways(model,image_path, prompt, num_inference_steps,image=None):
|